1
|
Kyllo T, Allocco D, Hei LV, Wulff H, Erickson JD. Riluzole attenuates acute neural injury and reactive gliosis, hippocampal-dependent cognitive impairments and spontaneous recurrent generalized seizures in a rat model of temporal lobe epilepsy. Front Pharmacol 2024; 15:1466953. [PMID: 39539628 PMCID: PMC11558044 DOI: 10.3389/fphar.2024.1466953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
Background Riluzole exhibits neuroprotective and therapeutic effects in several neurological disease models associated with excessive synaptic glutamate (Glu) release. We recently showed riluzole prevents acute excitotoxic hippocampal neural injury at 3 days in the kainic acid (KA) model of temporal lobe epilepsy (TLE). Currently, it is unknown if preventing acute neural injury and the neuroinflammatory response is sufficient to suppress epileptogenesis. Methods The KA rat model of TLE was used to determine if riluzole attenuates acute hippocampal neural injury and reactive gliosis. KA was administered to adult male Sprague-Dawley (250 g) rats at 5 mg/kg/hr until status epilepticus (SE) was observed, and riluzole was administered at 10 mg/kg 1 h and 4 h after SE and once per day for the next 2 days. Immunostaining was used to assess neural injury (FJC and NeuN), microglial activation (Iba1 and ED-1/CD68) and astrogliosis (GFAP and vimentin) at day 7 and day 14 after KA-induced SE. Learning and memory tests (Y-maze, Novel object recognition test, Barnes maze), behavioral hyperexcitability tests, and spontaneous generalized recurrent seizure (SRS) activity (24-hour video monitoring) were assessed at 11-15 weeks. Results Here we show that KA-induced hippocampal neural injury precedes the neuroimmune response and that riluzole attenuates acute neural injury, microglial activation, and astrogliosis at 7 and 14 days. We find that reducing acute hippocampal injury and the associated neuroimmune response following KA-induced SE by riluzole attenuates hippocampal-dependent cognitive impairment, behavioral hyperexcitability, and tonic/clonic generalized SRS activity after 3 months. We also show that riluzole attenuates SE-associated body weight loss during the first week after KA-induced SE. Discussion Riluzole acts on multiple targets that are involved to prevent excessive synaptic Glu transmission and excitotoxic neuronal injury. Attenuating KA-induced neural injury and subsequent microglia/astrocyte activation in the hippocampus and extralimbic regions with riluzole reduces TLE-associated cognitive deficits and generalized SRS and suggests that riluzole could be a potential antiepileptogenic drug.
Collapse
Affiliation(s)
- Thomas Kyllo
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, United States
| | - Dominic Allocco
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, United States
| | - Laine Vande Hei
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, United States
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California-Davis, Davis, CA, United States
| | - Jeffrey D. Erickson
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, United States
| |
Collapse
|
2
|
Citraro R, Bosco F, Di Gennaro G, Tallarico M, Guarnieri L, Gallelli L, Rania V, Siniscalchi A, De Sarro G, Leo A. An In Vivo Electroencephalographic Analysis of the Effect of Riluzole against Limbic and Absence Seizure and Comparison with Glutamate Antagonists. Pharmaceutics 2023; 15:2006. [PMID: 37514193 PMCID: PMC10386681 DOI: 10.3390/pharmaceutics15072006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Riluzole (RLZ) has demonstrated neuroprotective effects in several neurological disorders. These neuroprotective effects seem to be mainly due to its ability to inhibit the excitatory glutamatergic neurotransmission, acting on different targets located both at the presynaptic and postsynaptic levels. METHODS In the present study, we evaluated the effects of Riluzole (RLZ) against limbic seizures, induced by AMPA, kainate, and NMDA receptor agonists in Sprague-Dawley rats, and in a well-validated genetic model of absence epilepsy, the WAG/Rij rat. Furthermore, in this latter model, we also studied the effect of RLZ in co-administration with the competitive NMDA receptor antagonist, CPP, or the non-competitive AMPA receptor antagonist, THIQ-10c, on spike-wave discharges (SWDs) in WAG/Rij rats, to understand the potential involvement of AMPA and NMDA receptors in the anti-absence effect of RLZ. RESULTS In Sprague-Dawley rats, RLZ pretreatment significantly reduced the limbic seizure severity induced by glutamatergic agonists, suggesting an antagonism of RLZ mainly on NMDA rather than non-NMDA receptors. RLZ also reduced SWD parameters in WAG/Rij rats. Interestingly, the co-administration of RLZ with CPP did not increase the anti-absence activity of RLZ in this model, advocating a competitive effect on the NMDA receptor. In contrast, the co-administration of RLZ with THIQ-10c induced an additive effect against absence seizure in WAG/Rij rats. CONCLUSIONS these results suggest that the antiepileptic effects of RLZ, in both seizure models, can be mainly due to the antagonism of the NMDA glutamatergic receptors.
Collapse
Affiliation(s)
- Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Gianfranco Di Gennaro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Martina Tallarico
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Luca Gallelli
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Rania
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Siniscalchi
- Department of Neurology and Stroke Unit, Annunziata Hospital of Cosenza, 87100 Cosenza, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Green JL, Dos Santos WF, Fontana ACK. Role of glutamate excitotoxicity and glutamate transporter EAAT2 in epilepsy: Opportunities for novel therapeutics development. Biochem Pharmacol 2021; 193:114786. [PMID: 34571003 DOI: 10.1016/j.bcp.2021.114786] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022]
Abstract
Epilepsy is a complex neurological syndrome characterized by seizures resulting from neuronal hyperexcitability and sudden and synchronized bursts of electrical discharges. Impaired astrocyte function that results in glutamate excitotoxicity has been recognized to play a key role in the pathogenesis of epilepsy. While there are 26 drugs marketed as anti-epileptic drugs no current treatments are disease modifying as they only suppress seizures rather than the development and progression of epilepsy. Excitatory amino acid transporters (EAATs) are critical for maintaining low extracellular glutamate concentrations and preventing excitotoxicity. When extracellular glutamate concentrations rise to abnormal levels, glutamate receptor overactivation and the subsequent excessive influx of calcium into the post-synaptic neuron can trigger cell death pathways. In this review we discuss targeting EAAT2, the predominant glutamate transporter in the CNS, as a promising approach for developing therapies for epilepsy. EAAT2 upregulation via transcriptional and translational regulation has proven successful in vivo in reducing spontaneous recurrent seizures and offering neuroprotective effects. Another approach to regulate EAAT2 activity is through positive allosteric modulation (PAM). Novel PAMs of EAAT2 have recently been identified and are under development, representing a promising approach for the advance of novel therapeutics for epilepsy.
Collapse
Affiliation(s)
- Jennifer Leigh Green
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, United States
| | | | | |
Collapse
|
4
|
Tidball AM, Lopez-Santiago LF, Yuan Y, Glenn TW, Margolis JL, Clayton Walker J, Kilbane EG, Miller CA, Martina Bebin E, Scott Perry M, Isom LL, Parent JM. Variant-specific changes in persistent or resurgent sodium current in SCN8A-related epilepsy patient-derived neurons. Brain 2021; 143:3025-3040. [PMID: 32968789 DOI: 10.1093/brain/awaa247] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Missense variants in the SCN8A voltage-gated sodium channel gene are linked to early-infantile epileptic encephalopathy type 13, also known as SCN8A-related epilepsy. These patients exhibit a wide spectrum of intractable seizure types, severe developmental delay, movement disorders, and elevated risk of sudden unexpected death in epilepsy. The mechanisms by which SCN8A variants lead to epilepsy are poorly understood, although heterologous expression systems and mouse models have demonstrated altered sodium current properties. To investigate these mechanisms using a patient-specific model, we generated induced pluripotent stem cells from three patients with missense variants in SCN8A: p.R1872>L (Patient 1); p.V1592>L (Patient 2); and p.N1759>S (Patient 3). Using small molecule differentiation into excitatory neurons, induced pluripotent stem cell-derived neurons from all three patients displayed altered sodium currents. Patients 1 and 2 had elevated persistent current, while Patient 3 had increased resurgent current compared to controls. Neurons from all three patients displayed shorter axon initial segment lengths compared to controls. Further analyses focused on one of the patients with increased persistent sodium current (Patient 1) and the patient with increased resurgent current (Patient 3). Excitatory cortical neurons from both patients had prolonged action potential repolarization. Using doxycycline-inducible expression of the neuronal transcription factors neurogenin 1 and 2 to synchronize differentiation of induced excitatory cortical-like neurons, we investigated network activity and response to pharmacotherapies. Both small molecule differentiated and induced patient neurons displayed similar abnormalities in action potential repolarization. Patient induced neurons showed increased burstiness that was sensitive to phenytoin, currently a standard treatment for SCN8A-related epilepsy patients, or riluzole, an FDA-approved drug used in amyotrophic lateral sclerosis and known to block persistent and resurgent sodium currents, at pharmacologically relevant concentrations. Patch-clamp recordings showed that riluzole suppressed spontaneous firing and increased the action potential firing threshold of patient-derived neurons to more depolarized potentials. Two of the patients in this study were prescribed riluzole off-label. Patient 1 had a 50% reduction in seizure frequency. Patient 3 experienced an immediate and dramatic seizure reduction with months of seizure freedom. An additional patient with a SCN8A variant in domain IV of Nav1.6 (p.V1757>I) had a dramatic reduction in seizure frequency for several months after starting riluzole treatment, but then seizures recurred. Our results indicate that patient-specific neurons are useful for modelling SCN8A-related epilepsy and demonstrate SCN8A variant-specific mechanisms. Moreover, these findings suggest that patient-specific neuronal disease modelling offers a useful platform for discovering precision epilepsy therapies.
Collapse
Affiliation(s)
- Andrew M Tidball
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Yukun Yuan
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Trevor W Glenn
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - J Clayton Walker
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Emma G Kilbane
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - E Martina Bebin
- Department of Neurology, University of Alabama Birmingham School of Medicine, Birmingham, AL, USA.,Department of Pediatrics, University of Alabama Birmingham School of Medicine, Birmingham, AL, USA
| | - M Scott Perry
- Cook Children's Health Care System, Fort Worth, Texas, USA
| | - Lori L Isom
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.,Ann Arbor VA Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Ren SC, Shao H, Ji WG, Jiang HH, Xu F, Chen PZ, Mi Z, Wen B, Zhu GX, Zhu ZR. Riluzole prevents soluble Aβ1-42 oligomers-induced perturbation of spontaneous discharge in the hippocampal CA1 region of rats. Amyloid 2015; 22:36-44. [PMID: 25472656 DOI: 10.3109/13506129.2014.990558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abnormal accumulation of soluble amyloid beta (Aβ) is believed to cause malfunction of neurons in Alzheimer's disease (AD). The hippocampus is one of the earliest affected brain regions in AD. However, little effort has been made to investigate the effects of soluble Aβ1-42 oligomers on discharge properties of hippocampal neurons in vivo. This study was designed to examine the effects of soluble Aβ1-42 oligomers on the discharge properties of hippocampal CA1 neurons using extracellular single-unit recordings in vivo. The protective effects of riluzole (RLZ) were also investigated for the prevention of soluble oligomers of Aβ1-42-induced alterations in the spontaneous discharge of hippocampal neurons. The results showed that (1) the mean frequency of spontaneous discharge was increased by the local application of 100 μM Aβ1-42 oligomers; (2) Aβ1-42 oligomers also induced alterations of the neuronal firing patterns in the hippocampal CA1 region; and (3) pretreatment with 20 μM RLZ effectively inhibited the Aβ1-42-induced enhancement of spontaneous discharge and alterations of neuronal firing patterns in CA1 neurons. Our study suggested that Aβ1-42 oligomers induced hyperactivity and perturbed the firing patterns in hippocampal neurons. RLZ may provide neuroprotective effects on the Aβ1-42-induced perturbation of neuronal activities in the hippocampal region of rats.
Collapse
|
6
|
Orphenadrine-induced convulsive status epilepticus in rats responds to the NMDA antagonist dizocilpine. Pharmacol Rep 2014; 66:399-403. [PMID: 24905515 DOI: 10.1016/j.pharep.2013.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/30/2013] [Accepted: 12/03/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND Identification of new molecular targets as well as the new models recapitulating different aspects of pathophysiology of status epilepticus (SE) in humans might prove essential for the breakthrough in the efforts against pharmacoresistance in epilepsy. Recently, we described a new model of generalized convulsive SE induced with orphenadrine (ORPH) in rats with unique characteristics [5]. The current study was aimed at assessing the efficacy of a new generation antiepileptic drugs (AEDs) and some of the experimental agents in suppressing ORPH-evoked seizures in rats. METHODS ORPH was administered intraperitoneally (ip) in the dose of 80 mg/kg in male Wistar rats. The latency to first seizure, the number of seizure episodes and the duration of overt SE, as well as the incidence of deaths was scored with simultaneous electroencephalographic (EEG) recordings. RESULTS ORPH induced seizures in 100% of animals at a dose of 80 mg/kg, associated with low mortality and good behavioural outcome. Among new generation AEDs: felbamate, levetiracetam, topiramate, lamotrigine and progabide did not affect the seizure incidence. Among the experimental drugs, only dizocilpine, the non-competitive NMDA antagonist, dose-dependently affected the occurrence of the SE (p<0.001). However, CGP-39551 competitive NMDA antagonist, the same as scopolamine and mecamylamine (muscarinic and nicotinic receptors antagonists, respectively) showed no effect. CONCLUSIONS Based on the above findings, one may speculate that NMDA activation is partly involved in the proconvulsant activity of orphenadrine but may not be the primary pathomechanism. ORPH-induced seizures may provide an interesting option for studying novel targets for pharmacological interventions in status epilepticus.
Collapse
|
7
|
Ghasemi M, Schachter SC. The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav 2011; 22:617-40. [PMID: 22056342 DOI: 10.1016/j.yebeh.2011.07.024] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/01/2011] [Accepted: 07/18/2011] [Indexed: 01/02/2023]
Abstract
A substantial amount of research has shown that N-methyl-D-aspartate receptors (NMDARs) may play a key role in the pathophysiology of several neurological diseases, including epilepsy. Animal models of epilepsy and clinical studies demonstrate that NMDAR activity and expression can be altered in association with epilepsy and particularly in some specific seizure types. NMDAR antagonists have been shown to have antiepileptic effects in both clinical and preclinical studies. There is some evidence that conventional antiepileptic drugs may also affect NMDAR function. In this review, we describe the evidence for the involvement of NMDARs in the pathophysiology of epilepsy and provide an overview of NMDAR antagonists that have been investigated in clinical trials and animal models of epilepsy.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
8
|
Kim JE, Kim DS, Kwak SE, Choi HC, Song HK, Choi SY, Kwon OS, Kim YI, Kang TC. Anti-glutamatergic effect of riluzole: comparison with valproic acid. Neuroscience 2007; 147:136-45. [PMID: 17507170 DOI: 10.1016/j.neuroscience.2007.04.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 04/04/2007] [Accepted: 04/06/2007] [Indexed: 11/28/2022]
Abstract
Riluzole, an anti-amyotrophic lateral sclerosis drug, known to decrease presynaptic glutamate release, is viewed as a candidate supplementary medication for epilepsy. In the present study, we compared the effects of riluzole and valproate (VPA) in the pilocarpine-induced limbic seizure model and in the gamma-hydroxybutyrate lactone (GBL)-induced absence seizure model. We applied immunohistochemical study for vesicular transporter 1 (VGLUT1) and extracellular recording in the rat dentate gyrus of both pilocarpine- and GBL-induced seizure models to measure effects of riluzole and VPA. Both VPA and riluzole treatments reduced VGLUT1 immunoreactivity. Riluzole treatment completely inhibited pre-ictal spikes and spike-wave discharges in the pilocarpine- and GBL-induced epilepsy models, whereas VPA partially inhibited these phenomena. In both seizure models, the anti-epileptic effects of VPA and riluzole are basically related to anti-glutamatergic (reducing field excitatory postsynaptic potential slope and excitability ratio), not GABAergic (paired-pulse inhibition) effect. Riluzole was more effective at reducing seizure activity in both epilepsy models than VPA. These results suggest that riluzole is a potential antiepileptic drug with activity against limbic seizure and absence seizure.
Collapse
Affiliation(s)
- J-E Kim
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|