1
|
Chen L, Yu C, Dong J, Han Y, Huang H, Li W, Zhang Y, Tan X, Qiu J. Seawater electrolysis for fuels and chemicals production: fundamentals, achievements, and perspectives. Chem Soc Rev 2024; 53:7455-7488. [PMID: 38855878 DOI: 10.1039/d3cs00822c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Seawater electrolysis for the production of fuels and chemicals involved in onshore and offshore plants powered by renewable energies offers a promising avenue and unique advantages for energy and environmental sustainability. Nevertheless, seawater electrolysis presents long-term challenges and issues, such as complex composition, potential side reactions, deposition of and poisoning by microorganisms and metal ions, as well as corrosion, thus hindering the rapid development of seawater electrolysis technology. This review focuses on the production of value-added fuels (hydrogen and beyond) and fine chemicals through seawater electrolysis, as a promising step towards sustainable energy development and carbon neutrality. The principle of seawater electrolysis and related challenges are first introduced, and the redox reaction mechanisms of fuels and chemicals are summarized. Strategies for operating anodes and cathodes including the development and application of chloride- and impurity-resistant electrocatalysts/membranes are reviewed. We comprehensively summarize the production of fuels and chemicals (hydrogen, carbon monoxide, sulfur, ammonia, etc.) at the cathode and anode via seawater electrolysis, and propose other potential strategies for co-producing fine chemicals, even sophisticated and electronic chemicals. Seawater electrolysis can drive the oxidation and upgrading of industrial pollutants or natural organics into value-added chemicals or degrade them into harmless substances, which would be meaningful for environmental protection. Finally, the perspective and prospects are outlined to address the challenges and expand the application of seawater electrolysis.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Chang Yu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Junting Dong
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yingnan Han
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Hongling Huang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Wenbin Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yafang Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Xinyi Tan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Jieshan Qiu
- State Key Lab of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Creus J, Miola M, Pescarmona PP. Unravelling and overcoming the challenges in the electrocatalytic reduction of fructose to sorbitol. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:1658-1671. [PMID: 36824603 PMCID: PMC9940304 DOI: 10.1039/d2gc04451j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
In this work, we present a comprehensive study of the electrocatalytic reduction of fructose to sorbitol and mannitol, in a mild alkaline medium (pH = 11.3), with a Cu wire as the cathode. Particular attention was paid to the reaction mechanism, investigated by linear sweep voltammetry (LSV) and chronopotentiometry (CP) coupled with high-pressure liquid chromatography (HPLC). The initial results of our study showed that at the potential where the fructose reduction reaction (FRR) is achieved, competition with the hydrogen evolution reaction (HER) tends to occur, thus limiting the Faradaic efficiency towards the FRR. Moreover, products of chemical conversions were also observed in the liquid electrolyte, originating from the isomerisation of fructose to glucose and mannose and degradation reactions (C-C breaking). Through a thorough optimisation of the reaction parameters, the Faradaic efficiency could be remarkably improved, reaching values >40% and being sustained for 10 h of electrolysis at a current of i = -20 mA. More specifically, the minimisation of the undesired chemical side reactions was achieved by the careful control of the pH (11.3 ± 0.3) using a buffer electrolyte and a titration pump, thus limiting the isomerisation of fructose to glucose and mannose to <2% in 10 h. The electrochemical conversion was optimised via a tailored strategy involving a two-step potential cycling for re-activating the electrocatalyst surface, which allowed achieving 77% electrochemical conversion of fructose to sorbitol and mannitol in 10 h of electrolysis (sorbitol : mannitol = 0.43 : 0.57). This is the first time that the electrocatalytic FRR was achieved with such a high product yield and by using a non-noble metal-based cathode, thus opening up a novel, green route for the conversion of fructose into sorbitol and mannitol. This work also provides relevant, new insight into the crucial parameters that need to be taken into account to achieve the electrocatalytic reduction of saccharides, by gaining control of their complex chemistry in solution.
Collapse
Affiliation(s)
- Jordi Creus
- Chemical Engineering Group, Engineering and Technology Institute Groningen (ENTEG), University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Matteo Miola
- Chemical Engineering Group, Engineering and Technology Institute Groningen (ENTEG), University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Paolo P Pescarmona
- Chemical Engineering Group, Engineering and Technology Institute Groningen (ENTEG), University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
3
|
Electrocatalytic hydrogenation of glucose and xylose using carbon fiber supported Au nanocatalysts. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Harnisch F, Morejón MC. Hydrogen from Water is more than a Fuel: Hydrogenations and Hydrodeoxygenations for a Biobased Economy. CHEM REC 2021; 21:2277-2289. [PMID: 33734561 DOI: 10.1002/tcr.202100034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/18/2022]
Abstract
Worldwide a hydrogen-based economy is on the political agenda. Its centre forms molecular hydrogen (H2 ) that should serve mainly as energy carrier and fuel. However, currently and foreseeable in the future H2 is playing its main role as reactant in the chemical industry. Electrolytic generation and storage of H2 gas is energy demanding and may hardly become economically at the large scale. We argue that in the overall transition towards an economy that is based on biomolecules and CO2 as carbon feedstock electrochemical hydrogenations and hydrodeoxygenations in aqueous solutions need to be moved in the centre. Departing from the well-known fact that electrochemistry allows creating reactive hydrogen species from water, i. e. hydrogen in statu nascendi (H. ), at ambient temperature and pressure we illustrate the existing diversity of reactions based thereon. We focus on examples of model compounds from thermal biomass pretreatment and products from real thermal biomass pretreatment (bio-oil). Consequently, we advocate that electrochemical hydrogenations and hydrodeoxygenations have to be further explored and interweaved into existing process lines.
Collapse
Affiliation(s)
- Falk Harnisch
- Department of Environmental Microbiology, UFZ - Helmholtz-Centre for Environmental Research, 04318, Leipzig, Germany E-mail: Falk Harnisch
| | - Micjel Chávez Morejón
- Department of Environmental Microbiology, UFZ - Helmholtz-Centre for Environmental Research, 04318, Leipzig, Germany E-mail: Falk Harnisch
| |
Collapse
|
5
|
Akhade SA, Singh N, Gutiérrez OY, Lopez-Ruiz J, Wang H, Holladay JD, Liu Y, Karkamkar A, Weber RS, Padmaperuma AB, Lee MS, Whyatt GA, Elliott M, Holladay JE, Male JL, Lercher JA, Rousseau R, Glezakou VA. Electrocatalytic Hydrogenation of Biomass-Derived Organics: A Review. Chem Rev 2020; 120:11370-11419. [PMID: 32941005 DOI: 10.1021/acs.chemrev.0c00158] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sustainable energy generation calls for a shift away from centralized, high-temperature, energy-intensive processes to decentralized, low-temperature conversions that can be powered by electricity produced from renewable sources. Electrocatalytic conversion of biomass-derived feedstocks would allow carbon recycling of distributed, energy-poor resources in the absence of sinks and sources of high-grade heat. Selective, efficient electrocatalysts that operate at low temperatures are needed for electrocatalytic hydrogenation (ECH) to upgrade the feedstocks. For effective generation of energy-dense chemicals and fuels, two design criteria must be met: (i) a high H:C ratio via ECH to allow for high-quality fuels and blends and (ii) a lower O:C ratio in the target molecules via electrochemical decarboxylation/deoxygenation to improve the stability of fuels and chemicals. The goal of this review is to determine whether the following questions have been sufficiently answered in the open literature, and if not, what additional information is required:(1)What organic functionalities are accessible for electrocatalytic hydrogenation under a set of reaction conditions? How do substitutions and functionalities impact the activity and selectivity of ECH?(2)What material properties cause an electrocatalyst to be active for ECH? Can general trends in ECH be formulated based on the type of electrocatalyst?(3)What are the impacts of reaction conditions (electrolyte concentration, pH, operating potential) and reactor types?
Collapse
Affiliation(s)
- Sneha A Akhade
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Materials Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Nirala Singh
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Oliver Y Gutiérrez
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Juan Lopez-Ruiz
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Huamin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jamie D Holladay
- TU München, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, D-84747 Garching, Germany
| | - Yue Liu
- TU München, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, D-84747 Garching, Germany
| | - Abhijeet Karkamkar
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Robert S Weber
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Asanga B Padmaperuma
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Mal-Soon Lee
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Greg A Whyatt
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Michael Elliott
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Johnathan E Holladay
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jonathan L Male
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Johannes A Lercher
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,TU München, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, D-84747 Garching, Germany
| | - Roger Rousseau
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vassiliki-Alexandra Glezakou
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
6
|
Vedovato V, Vanbroekhoven K, Pant D, Helsen J. Electrosynthesis of Biobased Chemicals Using Carbohydrates as a Feedstock. Molecules 2020; 25:molecules25163712. [PMID: 32823995 PMCID: PMC7464535 DOI: 10.3390/molecules25163712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/02/2022] Open
Abstract
The current climate awareness coupled with increased focus on renewable energy and biobased chemicals have led to an increased demand for such biomass derived products. Electrosynthesis is a relatively new approach that allows a shift from conventional fossil-based chemistry towards a new model of a real sustainable chemistry that allows to use the excess renewable electricity to convert biobased feedstock into base and commodity chemicals. The electrosynthesis approach is expected to increase the production efficiency and minimize negative health for the workers and environmental impact all along the value chain. In this review, we discuss the various electrosynthesis approaches that have been applied on carbohydrate biomass specifically to produce valuable chemicals. The studies on the electro-oxidation of saccharides have mostly targeted the oxidation of the primary alcohol groups to form the corresponding uronic acids, with Au or TEMPO as the active electrocatalysts. The investigations on electroreduction of saccharides focused on the reduction of the aldehyde groups to the corresponding alcohols, using a variety of metal electrodes. Both oxidation and reduction pathways are elaborated here with most recent examples. Further recommendations have been made about the research needs, choice of electrocatalyst and electrolyte as well as upscaling the technology.
Collapse
Affiliation(s)
| | | | - Deepak Pant
- Correspondence: (D.P.); (J.H.); Tel.: +32-14-336-969 (D.P.); +32-14-336-940 (J.H.)
| | - Joost Helsen
- Correspondence: (D.P.); (J.H.); Tel.: +32-14-336-969 (D.P.); +32-14-336-940 (J.H.)
| |
Collapse
|
7
|
Lopez-Ruiz JA, Qiu Y, Andrews E, Gutiérrez OY, Holladay JD. Electrocatalytic valorization into H2 and hydrocarbons of an aqueous stream derived from hydrothermal liquefaction. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01452-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Garcia AC, Kolb MJ, van Nierop y Sanchez C, Vos J, Birdja YY, Kwon Y, Tremiliosi-Filho G, Koper MTM. Strong Impact of Platinum Surface Structure on Primary and Secondary Alcohol Oxidation during Electro-Oxidation of Glycerol. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00709] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amanda C. Garcia
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- Instituto
de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, 13569-590 São Carlos, São Paulo, Brazil
| | - Manuel J. Kolb
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | - Jan Vos
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Yuvraj Y. Birdja
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Youngkook Kwon
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Germano Tremiliosi-Filho
- Instituto
de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, 13569-590 São Carlos, São Paulo, Brazil
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
9
|
Kwon Y, Koper MTM. Electrocatalytic hydrogenation and deoxygenation of glucose on solid metal electrodes. CHEMSUSCHEM 2013; 6:455-462. [PMID: 23345067 DOI: 10.1002/cssc.201200722] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/05/2012] [Indexed: 06/01/2023]
Abstract
This Full Paper addresses the electrocatalytic hydrogenation of glucose to sorbitol or 2-deoxysorbitol on solid metal electrodes in neutral media. Combining voltammetry and online product analysis with high-performance liquid chromatography (HPLC), provides both qualitative and quantitative information regarding the reaction products as a function of potential. Three groups of catalysts clearly show affinities toward: (1) hydrogen formation [on early transition metals (Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, We, and Re) and platinum group metals (Ru, Rh, Ir, and Pt)], (2) sorbitol formation [on late transition metals (Fe, Co, Ni, Cu, Pd, Au, and Ag) and Al (sp metal)], and (3) sorbitol and 2-deoxysorbitol formation [on post-transition metals (In, Sn, Sb, Pb, and Bi), as well as Zn and Cd (d metals)]. Ni shows the lowest overpotential for the onset of sorbitol formation (-0.25 V) whereas Pb generates sorbitol with the highest yield (<0.7 mM cm(-2) ). Different from a smooth Pt electrode, a large-surface-area Pt/C electrode hydrogenates glucose to sorbitol from -0.21 V with relatively low current. This emphasizes the importance of the active sites and the surface area of the catalyst. The mechanism to form 2-deoxysorbitol from glucose and/or fructose is discussed according to the observed reaction products. The yield and selectivity of hydrogenated products are highly sensitive to the chemical nature and state of the catalyst surface.
Collapse
Affiliation(s)
- Youngkook Kwon
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
10
|
Green SK, Tompsett GA, Kim HJ, Bae Kim W, Huber GW. Electrocatalytic reduction of acetone in a proton-exchange-membrane reactor: a model reaction for the electrocatalytic reduction of biomass. CHEMSUSCHEM 2012; 5:2410-2420. [PMID: 22961747 DOI: 10.1002/cssc.201200416] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Indexed: 06/01/2023]
Abstract
Acetone was electrocatalytically reduced to isopropanol in a proton-exchange-membrane (PEM) reactor on an unsupported platinum cathode. Protons needed for the reduction were produced on the unsupported Pt-Ru anode from either hydrogen gas or electrolysis of water. The current efficiency (the ratio of current contributing to the desired chemical reaction to the overall current) and reaction rate for acetone conversion increased with increasing temperature or applied voltage for the electrocatalytic acetone/water system. The reaction rate and current efficiency went through a maximum with respect to acetone concentration. The reaction rate for acetone conversion increased with increasing temperature for the electrocatalytic acetone/hydrogen system. Increasing the applied voltage for the electrocatalytic acetone/hydrogen system decreased the current efficiency due to production of hydrogen gas. Results from this study demonstrate the commercial feasibility of using PEM reactors to electrocatalytically reduce biomass-derived oxygenates into renewable fuels and chemicals.
Collapse
Affiliation(s)
- Sara K Green
- Department of Chemical Engineering, University of Massachusetts, 686 North Pleasant Street, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|
11
|
Tomilov AP, Turygin VV, Kaabak LV. Studies in the field of electrochemistry of organic compounds in 2000–2006. RUSS J ELECTROCHEM+ 2007. [DOI: 10.1134/s1023193507100023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|