1
|
Harrison PJ, Colbourne L, Harrison CH. The neuropathology of bipolar disorder: systematic review and meta-analysis. Mol Psychiatry 2020; 25:1787-1808. [PMID: 30127470 PMCID: PMC6292507 DOI: 10.1038/s41380-018-0213-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Abstract
Various neuropathological findings have been reported in bipolar disorder (BD). However, it is unclear which findings are well established. To address this gap, we carried out a systematic review of the literature. We searched over 5000 publications, identifying 103 data papers, of which 81 were eligible for inclusion. Our main findings can be summarised as follows. First, most studies have relied on a limited number of brain collections, and have used relatively small sample sizes (averaging 12 BD cases and 15 controls). Second, surprisingly few studies have attempted to replicate closely a previous one, precluding substantial meta-analyses, such that the latter were all limited to two studies each, and comprising 16-36 BD cases and 16-74 controls. As such, no neuropathological findings can be considered to have been established beyond reasonable doubt. Nevertheless, there are several replicated positive findings in BD, including decreased cortical thickness and glial density in subgenual anterior cingulate cortex, reduced neuronal density in some amygdalar nuclei, and decreased calbindin-positive neuron density in prefrontal cortex. Many other positive findings have also been reported, but with limited or contradictory evidence. As an important negative result, it can be concluded that gliosis is not a feature of BD; neither is there neuropathological evidence for an inflammatory process.
Collapse
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| | - Lucy Colbourne
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Charlotte H Harrison
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
2
|
Postmortem evidence of brain inflammatory markers in bipolar disorder: a systematic review. Mol Psychiatry 2020; 25:94-113. [PMID: 31249382 DOI: 10.1038/s41380-019-0448-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Bipolar disorder (BD) is a chronic affective disorder with extreme mood swings that include mania or hypomania and depression. Though the exact mechanism of BD is unknown, neuroinflammation is one of the numerous investigated etiopathophysiological causes of BD. This article presents a systematic review of the data regarding brain inflammation evaluating microglia, astrocytes, cytokines, chemokines, adhesion molecules, and other inflammatory markers in postmortem BD brain samples. This systematic review was performed according to PRISMA recommendations, and relevant studies were identified by searching the PubMed/MEDLINE, PsycINFO, EMBASE, LILACS, IBECS, and Web of Science databases for peer-reviewed journal articles published by March 2019. Quality of included studies appraised using the QUADAS-2 tool. Among the 1814 articles included in the primary screening, 51 articles measured inflammatory markers in postmortem BD brain samples. A number of studies have shown evidence of inflammation in BD postmortem brain samples. However, an absolute statement cannot be concluded whether neuroinflammation is present in BD due to the large number of studies did not evaluate the presence of infiltrating peripheral immune cells in the central nervous system (CNS) parenchyma, cytokines levels, and microglia activation in the same postmortem brain sample. For example, out of 15 studies that evaluated microglia cells markers, 8 studies found no effect of BD on these cells. Similarly, 17 out of 51 studies evaluating astrocytes markers, 9 studies did not find any effect of BD on astrocyte cells, whereas 8 studies found a decrease and 2 studies presented both increase and decrease in different brain regions. In addition, multiple factors account for the variability across the studies, including postmortem interval, brain area studied, age at diagnosis, undergoing treatment, and others. Future analyses should rectify these potential sources of heterogeneity and reach a consensus regarding the inflammatory markers in postmortem BD brain samples.
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Aberrant neurogenesis may contribute to the pathogenesis, pathophysiology and symptoms of schizophrenia. This review summarizes the state of knowledge of adult neurogenesis in schizophrenia and raises important unanswered questions. We highlight how alterations in signalling molecules in the local and peripheral environments in schizophrenia may regulate adult neurogenesis in the human subgranular zone of the hippocampus and the subependymal zone (SEZ). RECENT FINDINGS Cell proliferation and density of mature neurons are reduced in the hippocampus, yet the extent of adult neurogenesis remains unexplored in the SEZ in schizophrenia. The human SEZ is a major source of postnatally migrating cortical and striatal inhibitory interneurons, indicating that aberrant neurogenesis may extend to the SEZ and contribute to inhibitory interneuron deficits in schizophrenia. Trophic factors and inflammatory cytokines regulate the generation of new neurons in rodents, suggesting that altered expression of these signalling molecules in the brain, peripheral vasculature and cerebrospinal fluid in schizophrenia may impact adult neurogenesis in both the hippocampus and the SEZ. SUMMARY Knowledge about adult neurogenesis remains scant in schizophrenia. We propose that a more rigorous examination of adult neurogenesis in relation to regulatory signalling molecules will allow us to identify how abnormalities may contribute to the pathophysiology of schizophrenia.
Collapse
|
4
|
Pellegrino G, Trubert C, Terrien J, Pifferi F, Leroy D, Loyens A, Migaud M, Baroncini M, Maurage CA, Fontaine C, Prévot V, Sharif A. A comparative study of the neural stem cell niche in the adult hypothalamus of human, mouse, rat and gray mouse lemur (Microcebus murinus). J Comp Neurol 2018; 526:1419-1443. [PMID: 29230807 DOI: 10.1002/cne.24376] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
The adult brain contains niches of neural stem cells that continuously add new neurons to selected circuits throughout life. Two niches have been extensively studied in various mammalian species including humans, the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus. Recently, studies conducted mainly in rodents have identified a third neurogenic niche in the adult hypothalamus. In order to evaluate whether a neural stem cell niche also exists in the adult hypothalamus in humans, we performed multiple immunofluorescence labeling to assess the expression of a panel of neural stem/progenitor cell (NPC) markers (Sox2, nestin, vimentin, GLAST, GFAP) in the human hypothalamus and compared them with the mouse, rat and a non-human primate species, the gray mouse lemur (Microcebus murinus). Our results show that the adult human hypothalamus contains four distinct populations of cells that express the five NPC markers: (a) a ribbon of small stellate cells that lines the third ventricular wall behind a hypocellular gap, similar to that found along the lateral ventricles, (b) ependymal cells, (c) tanycytes, which line the floor of the third ventricle in the tuberal region, and (d) a population of small stellate cells in the suprachiasmatic nucleus. In the mouse, rat and mouse lemur hypothalamus, co-expression of NPC markers is primarily restricted to tanycytes, and these species lack a ventricular ribbon. Our work thus identifies four cell populations with the antigenic profile of NPCs in the adult human hypothalamus, of which three appear specific to humans.
Collapse
Affiliation(s)
- Giuliana Pellegrino
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France
| | - Claire Trubert
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France
| | - Jérémy Terrien
- MECADEV UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Fabien Pifferi
- MECADEV UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Danièle Leroy
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France
| | - Anne Loyens
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France
| | - Martine Migaud
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS, UMR7247, Nouzilly, France; Université de Tours, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), Nouzilly, France
| | - Marc Baroncini
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France.,Department of Neurosurgery, Lille University Hospital, Lille, France
| | - Claude-Alain Maurage
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France.,Department of Neuropathology, Lille University Hospital, Lille, France
| | - Christian Fontaine
- University of Lille, School of Medicine, Lille Cedex, France.,Laboratory of Anatomy, Lille University Hospital, Lille, France
| | - Vincent Prévot
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France
| | - Ariane Sharif
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France
| |
Collapse
|
5
|
Minor physical anomalies in bipolar I and bipolar II disorders - Results with the Méhes Scale. Psychiatry Res 2017; 249:120-124. [PMID: 28092791 DOI: 10.1016/j.psychres.2017.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 11/21/2022]
Abstract
Minor physical anomalies (MPAs) are external markers of abnormal brain development, so the more common appearence of these signs among bipolar I and bipolar II patients can confirm the possibility of a neurodevelopmental deficit in these illnesses. The aim of the present study was to investigate the rate and topological profile of minor physical anomalies in patients with bipolar I and - first in literature - with bipolar II disorders compared to matched healthy control subjects. Using a list of 57 minor physical anomalies (the Méhes Scale), 30 bipolar I and 30 bipolar II patients, while as a comparison 30 matched healthy control subjects were examined. Significant differences were detected between the three groups comparing the total number of minor physical anomalies, minor malformations and phenogenetic variants and in the cases of the ear and the mouth regions. The individual analyses of the 57 minor physical anomalies by simultaneous comparison of the three groups showed, that in the cases of furrowed tongue and high arched palate were significant differences between the three groups. The results can promote the concept, that a neurodevelopmental deficit may play a role in the etiology of both bipolar I and bipolar II disorders.
Collapse
|
6
|
Kim S, Hwang Y, Lee D, Webster MJ. Transcriptome sequencing of the choroid plexus in schizophrenia. Transl Psychiatry 2016; 6:e964. [PMID: 27898074 PMCID: PMC5290353 DOI: 10.1038/tp.2016.229] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 09/19/2015] [Accepted: 09/28/2016] [Indexed: 01/11/2023] Open
Abstract
The choroid plexus (CP) has a key role in maintaining brain homeostasis by producing cerebrospinal fluid (CSF), by mediating transport of nutrients and removing metabolic products from the central nervous system and by responding to peripheral inflammatory signals. Although abnormal markers of immune response and inflammation are apparent in individuals with schizophrenia, the CP of these individuals has not been characterized. We therefore sequenced mRNA from the CP from two independent collections of individuals with schizophrenia and unaffected controls. Genes related to immune function and inflammation were upregulated in both collections. In addition, a co-expression module related to immune/inflammation response that was generated by combining mRNA-Seq data from both collections was significantly associated with disease status. The immune/inflammation-related co-expression module was positively correlated with levels of C-reactive protein (CRP), cortisol and several immune modulator proteins in the serum of the same individuals and was also positively correlated with CRP, cortisol and pro-inflammatory cytokines in the frontal cortex of the same individuals. In addition, we found a substantial number of nodes (genes) that were common to our schizophrenia-associated immune/inflammation module from the pooled data and a module we generated from lippopolysaccharides-treated mouse model data. These results suggest that the CP of individuals with schizophrenia are responding to signals from the periphery by upregulating immune/inflammation-related genes to protect the brain and maintain the homeostasis but nevertheless fails to completely prevent immune/inflammation related changes in the brain.
Collapse
Affiliation(s)
- S Kim
- Stanley Brain Research Laboratory, Stanley Medical Research Institute, Rockville, MD, USA
| | - Y Hwang
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| | - D Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea,Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea E-mail:
| | - M J Webster
- Stanley Brain Research Laboratory, Stanley Medical Research Institute, Rockville, MD, USA,Stanley Brain Research Laboratory, Stanley Medical Research Institute, 9800 Medical Center Drive, Suite C-050, Rockville, MD 20850, USA. E-mail:
| |
Collapse
|
7
|
Sinka L, Kovari E, Santos M, Herrmann FR, Gold G, Hof PR, Bouras C, Giannakopoulos P. Microvascular changes in late-life schizophrenia and mood disorders: stereological assessment of capillary diameters in anterior cingulate cortex. Neuropathol Appl Neurobiol 2012; 38:696-709. [DOI: 10.1111/j.1365-2990.2012.01263.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Comte I, Kotagiri P, Szele FG. Regional differences in human ependymal and subventricular zone cytoarchitecture are unchanged in neuropsychiatric disease. Dev Neurosci 2012; 34:299-309. [PMID: 22831917 DOI: 10.1159/000338600] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 03/29/2012] [Indexed: 01/19/2023] Open
Abstract
Much work has focused on the possible contribution of adult hippocampal neurogenesis to neuropsychiatric diseases. The hippocampal subgranular zone and the other stem cell-containing neurogenic niche, the subventricular zone (SVZ), share several cytological features and are regulated by some of the same molecular mechanisms. However, very little is known about the SVZ in neuropsychiatric disorders. This is important since it surrounds the lateral ventricles and in schizophrenia ventricular enlargement frequently follows forebrain nuclei shrinkage. Also, adult neurogenesis has been implicated in pharmacotherapy for affective disorders and many of the molecules associated with neuropsychiatric disorders affect SVZ biology. To assess the neurogenic niche, we examined material from 60 humans (Stanley Collection) and characterized the cytoarchitecture of the SVZ and ependymal layer in age-, sex- and post mortem interval-matched controls, and patients diagnosed with schizophrenia, bipolar illness, and depression (n = 15 each). There is a paucity of post mortem brains available for study in these diseases, so to maximize the number of possible parameters examined here, we quantified individual sections rather than a large series. Previous work showed that multiple sclerosis is associated with increased width of the hypocellular gap, a cell-sparse region that typifies the human SVZ. Statistically there were no differences between disease groups and controls in the width of the hypocellular gap or in the density of cells in the hypocellular gap. Because ventricular enlargement in schizophrenia may disrupt ependymal cells, we quantified them, but observed no difference between diagnostic groups and controls. There are significant differences in the prevalence of neuropsychiatric illness between the sexes. Therefore, we looked for male versus female differences, but did not observe any in the parameters quantified. We next turned to a finer spatial resolution and asked if there were differences amongst the disease groups in dorsal ventral subdivisions of the SVZ. Similar to when we treated the SVZ as a whole, we did not find such differences. However, compared to the dorsal SVZ, the ventral SVZ had a wider hypocellular gap and more ependymal cells in all four groups. In contrast, cell density was similar in dorsal ventral subregions of the SVZ hypocellular gap. These results show that though there are regional differences in the SVZ in humans, neuropsychiatric disorders do not seem to alter several fundamental histological features of this adult neurogenic zone.
Collapse
Affiliation(s)
- Isabelle Comte
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
9
|
Understanding the role of inflammatory-related pathways in the pathophysiology and treatment of psychiatric disorders: evidence from human peripheral studies and CNS studies. Int J Neuropsychopharmacol 2011; 14:997-1012. [PMID: 21156092 DOI: 10.1017/s1461145710001410] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many lines of evidence now support the hypothesis that inflammation-related pathways are involved in the pathophysiology of psychiatric disorders. Much of the data underpinning this hypothesis has come from the study of inflammation-related proteins in blood of individuals with mood disorders and schizophrenia. Significantly, recent data have emerged to suggest that changes in inflammation-related pathways are present in the CNS of subjects with psychiatric disorders. It is therefore timely to overview how such data, plus data on the role of inflammation-related proteins in CNS function, is contributing to understanding the pathophysiology of mood disorders and schizophrenia. In addition, it has been suggested that antidepressants, mood stabilizers and antipsychotic drugs act on inflammation-related pathways and therefore measuring levels of inflammation-related proteins in blood may be useful in monitoring treatment responsiveness. Despite these important neuropsychopharmacological discoveries, there is no clear understanding as to how inflammatory-related pathways can precipitate the onset of psychiatric symptoms. This review will focus on data suggesting that acute-reactive proteins and cytokines are affected by the pathophysiology of mood disorders and schizophrenia, that levels of blood inflammation-related proteins before and after treatment might be useful in the diagnosis of psychiatric disorders or measuring responsiveness to drug treatment. Finally, it will be postulated how changes in these proteins affect CNS function to cause psychiatric disorders.
Collapse
|
10
|
Sanches M, Keshavan MS, Brambilla P, Soares JC. Neurodevelopmental basis of bipolar disorder: a critical appraisal. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1617-27. [PMID: 18538910 DOI: 10.1016/j.pnpbp.2008.04.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 04/24/2008] [Accepted: 04/29/2008] [Indexed: 11/29/2022]
Abstract
Neurodevelopmental factors have been implicated in the pathophysiology of mental disorders. However, the evidence regarding their role in bipolar disorder is controversial. We reviewed the pertinent literature searching for evidence regarding a neurodevelopmental origin of bipolar disorder. Findings from clinical, epidemiological, neuroimaging, and post-mortem studies are discussed, as well as the implications of the available data for a better understanding of the mechanisms involved in the genesis of bipolar disorder. While some evidence exists for developmental risk factors in bipolar disorder, further research is needed to determine the precise extent of their contribution to pathogenesis. The timing and course of such developmentally mediated neurobiological alterations also need to be determined. Of particular importance for further study is the possibility that bipolar disorder may be mediated by an abnormal maturation of brain structures involved in affect regulation.
Collapse
Affiliation(s)
- Marsal Sanches
- MOOD-CNS Program, Division of Mood and Anxiety Disorders, Department of Psychiatry, The University of Texas Health Science Center at San Antonio, South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas, USA
| | | | | | | |
Collapse
|
11
|
Kato T. Molecular neurobiology of bipolar disorder: a disease of 'mood-stabilizing neurons'? Trends Neurosci 2008; 31:495-503. [PMID: 18774185 DOI: 10.1016/j.tins.2008.07.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 07/30/2008] [Accepted: 07/30/2008] [Indexed: 01/07/2023]
Abstract
Although the role of a genetic factor is established in bipolar disorder, causative genes or robust genetic risk factors have not been identified. Increased incidence of subcortical hyperintensity, altered calcium levels in cells derived from patients and neuroprotective effects of mood stabilizers suggest vulnerability or impaired resilience of neurons in bipolar disorder. Mitochondrial dysfunction or impaired endoplasmic reticulum stress response is suggested to play a role in the neurons' vulnerability. Progressive loss or dysfunction of 'mood-stabilizing neurons' might account for the characteristic course of the illness. The important next step in the neurobiological study of bipolar disorder is identification of the neural systems that are responsible for this disorder.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan.
| |
Collapse
|