1
|
Abstract
Repetitive elements in the human genome, once considered 'junk DNA', are now known to adopt more than a dozen alternative (that is, non-B) DNA structures, such as self-annealed hairpins, left-handed Z-DNA, three-stranded triplexes (H-DNA) or four-stranded guanine quadruplex structures (G4 DNA). These dynamic conformations can act as functional genomic elements involved in DNA replication and transcription, chromatin organization and genome stability. In addition, recent studies have revealed a role for these alternative structures in triggering error-generating DNA repair processes, thereby actively enabling genome plasticity. As a driving force for genetic variation, non-B DNA structures thus contribute to both disease aetiology and evolution.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA.
| |
Collapse
|
2
|
Heissl A, Betancourt AJ, Hermann P, Povysil G, Arbeithuber B, Futschik A, Ebner T, Tiemann-Boege I. The impact of poly-A microsatellite heterologies in meiotic recombination. Life Sci Alliance 2019; 2:e201900364. [PMID: 31023833 PMCID: PMC6485458 DOI: 10.26508/lsa.201900364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Meiotic recombination has strong, but poorly understood effects on short tandem repeat (STR) instability. Here, we screened thousands of single recombinant products with sperm typing to characterize the role of polymorphic poly-A repeats at a human recombination hotspot in terms of hotspot activity and STR evolution. We show that the length asymmetry between heterozygous poly-A's strongly influences the recombination outcome: a heterology of 10 A's (9A/19A) reduces the number of crossovers and elevates the frequency of non-crossovers, complex recombination products, and long conversion tracts. Moreover, the length of the heterology also influences the STR transmission during meiotic repair with a strong and significant insertion bias for the short heterology (6A/7A) and a deletion bias for the long heterology (9A/19A). In spite of this opposing insertion-/deletion-biased gene conversion, we find that poly-A's are enriched at human recombination hotspots that could have important consequences in hotspot activation.
Collapse
Affiliation(s)
- Angelika Heissl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | | | - Philipp Hermann
- Institute of Applied Statistics, Johannes Kepler University, Linz, Austria
| | - Gundula Povysil
- Institute of Bioinformatics, Johannes Kepler University, Linz, Austria
| | | | - Andreas Futschik
- Institute of Applied Statistics, Johannes Kepler University, Linz, Austria
| | - Thomas Ebner
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Kepler University Clinic, Linz, Austria
| | | |
Collapse
|
3
|
Abstract
Repetitive genomic sequences can adopt a number of alternative DNA structures that differ from the canonical B-form duplex (i.e. non-B DNA). These non-B DNA-forming sequences have been shown to have many important biological functions related to DNA metabolic processes; for example, they may have regulatory roles in DNA transcription and replication. In addition to these regulatory functions, non-B DNA can stimulate genetic instability in the presence or absence of DNA damage, via replication-dependent and/or replication-independent pathways. This review focuses on the interactions of non-B DNA conformations with DNA repair proteins and how these interactions impact genetic instability.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| |
Collapse
|
4
|
Vasquez KM, Wang G. The yin and yang of repair mechanisms in DNA structure-induced genetic instability. Mutat Res 2013; 743-744:118-131. [PMID: 23219604 PMCID: PMC3661696 DOI: 10.1016/j.mrfmmm.2012.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 01/14/2023]
Abstract
DNA can adopt a variety of secondary structures that deviate from the canonical Watson-Crick B-DNA form. More than 10 types of non-canonical or non-B DNA secondary structures have been characterized, and the sequences that have the capacity to adopt such structures are very abundant in the human genome. Non-B DNA structures have been implicated in many important biological processes and can serve as sources of genetic instability, implicating them in disease and evolution. Non-B DNA conformations interact with a wide variety of proteins involved in replication, transcription, DNA repair, and chromatin architectural regulation. In this review, we will focus on the interactions of DNA repair proteins with non-B DNA and their roles in genetic instability, as the proteins and DNA involved in such interactions may represent plausible targets for selective therapeutic intervention.
Collapse
Affiliation(s)
- Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| |
Collapse
|
5
|
Lang WH, Coats JE, Majka J, Hura GL, Lin Y, Rasnik I, McMurray CT. Conformational trapping of mismatch recognition complex MSH2/MSH3 on repair-resistant DNA loops. Proc Natl Acad Sci U S A 2011; 108:E837-44. [PMID: 21960445 PMCID: PMC3198364 DOI: 10.1073/pnas.1105461108] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Insertion and deletion of small heteroduplex loops are common mutations in DNA, but why some loops are prone to mutation and others are efficiently repaired is unknown. Here we report that the mismatch recognition complex, MSH2/MSH3, discriminates between a repair-competent and a repair-resistant loop by sensing the conformational dynamics of their junctions. MSH2/MSH3 binds, bends, and dissociates from repair-competent loops to signal downstream repair. Repair-resistant Cytosine-Adenine-Guanine (CAG) loops adopt a unique DNA junction that traps nucleotide-bound MSH2/MSH3, and inhibits its dissociation from the DNA. We envision that junction dynamics is an active participant and a conformational regulator of repair signaling, and governs whether a loop is removed by MSH2/MSH3 or escapes to become a precursor for mutation.
Collapse
Affiliation(s)
- Walter H. Lang
- Lawrence Berkeley National Laboratory, Life Sciences Division, 1 Cyclotron Road, Berkeley, CA 94720
| | - Julie E. Coats
- Department of Physics, Emory University, 400 Dowman Drive, MSC N214, Atlanta, GA 30322
| | - Jerzy Majka
- Lawrence Berkeley National Laboratory, Life Sciences Division, 1 Cyclotron Road, Berkeley, CA 94720
| | - Greg L. Hura
- Lawrence Berkeley National Laboratory, Life Sciences Division, 1 Cyclotron Road, Berkeley, CA 94720
| | - Yuyen Lin
- Department of Physics, Emory University, 400 Dowman Drive, MSC N214, Atlanta, GA 30322
| | - Ivan Rasnik
- Department of Physics, Emory University, 400 Dowman Drive, MSC N214, Atlanta, GA 30322
| | - Cynthia T. McMurray
- Lawrence Berkeley National Laboratory, Life Sciences Division, 1 Cyclotron Road, Berkeley, CA 94720
- Department of Molecular Pharmacology and Experimental Therapeutics
- Department of Biochemistry and Molecular Biology, Mayo Foundation, 200 First Street, Rochester, MN 55905; and
| |
Collapse
|
6
|
Wang G, Vasquez KM. Models for chromosomal replication-independent non-B DNA structure-induced genetic instability. Mol Carcinog 2009; 48:286-98. [PMID: 19123200 PMCID: PMC2766916 DOI: 10.1002/mc.20508] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Regions of genomic DNA containing repetitive nucleotide sequences can adopt a number of different structures in addition to the canonical B-DNA form: many of these non-B DNA structures are causative factors in genetic instability and human disease. Although chromosomal DNA replication through such repetitive sequences has been considered a major cause of non-B form DNA structure-induced genetic instability, it is also observed in non-proliferative tissues. In this review, we discuss putative mechanisms responsible for the mutagenesis induced by non-B DNA structures in the absence of chromosomal DNA replication.
Collapse
Affiliation(s)
- Guliang Wang
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| | - Karen M. Vasquez
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| |
Collapse
|
7
|
Russell DW, Hirata RK. Human gene targeting favors insertions over deletions. Hum Gene Ther 2008; 19:907-14. [PMID: 18680404 DOI: 10.1089/hum.2008.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gene targeting is a powerful technique for manipulating the human genome, but few studies have directly compared the targeting frequencies of various types of vector constructs. Here we show that similar targeting constructs are able to insert nucleotides at the homologous chromosomal target locus more efficiently than they can delete nucleotides, and combination insertion/deletion vectors appear to target at intermediate frequencies. This holds true for deletions ranging from 1 to 334 bp and insertions ranging from 1 to 1332 bp. In addition, vectors designed to inactivate the human hypoxanthine phosphoribosyltransferase gene (HPRT) by deleting nucleotides often produced rearrangements at the target locus that in many cases were due to insertions of multimerized vector constructs, effectively converting a deletion vector into an insertion vector. These findings were obtained when adeno-associated virus vectors were used to efficiently deliver single-stranded DNA targeting constructs, but the same phenomenon was also observed when transfecting linearized double-stranded plasmids. Thus human cells distinguish between deletion and insertion vectors and process their recombination intermediates differently, presumably at the heteroduplex stage, with implications for the design of gene-targeting vectors and the evolution of human genomes.
Collapse
Affiliation(s)
- David W Russell
- Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
8
|
Abstract
Repetitive DNA sequences are abundant in eukaryotic genomes, and many of these sequences have the potential to adopt non-B DNA conformations. Genes harboring non-B DNA structure-forming sequences increase the risk of genetic instability and thus are associated with human diseases. In this review, we discuss putative mechanisms responsible for genetic instability events occurring at these non-B DNA structures, with a focus on hairpins, left-handed Z-DNA, and intramolecular triplexes or H-DNA. Slippage and misalignment are the most common events leading to DNA structure-induced mutagenesis. However, a number of other mechanisms of genetic instability have been proposed based on the finding that these structures not only induce expansions and deletions, but can also induce DNA strand breaks and rearrangements. The available data implicate a variety of proteins, such as mismatch repair proteins, nucleotide excision repair proteins, topoisomerases, and structure specific-nucleases in the processing of these mutagenic DNA structures. The potential mechanisms of genetic instability induced by these structures and their contribution to human diseases are discussed.
Collapse
Affiliation(s)
- Guliang Wang
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, P.O. Box 389, Smithville, 78957, USA
| | | |
Collapse
|
9
|
McCulloch RD, Baker MD. Analysis of one-sided marker segregation patterns resulting from mammalian gene targeting. Genetics 2006; 172:1767-81. [PMID: 16554412 PMCID: PMC1456313 DOI: 10.1534/genetics.105.051680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 12/06/2005] [Indexed: 11/18/2022] Open
Abstract
The double-strand break repair (DSBR) model is currently accepted as the paradigm for acts of double-strand break (DSB) repair that lead to crossing over between homologous sequences. The DSBR model predicts that asymmetric heteroduplex DNA (hDNA) will form on both sides of the DSB (two-sided events; 5:3/5:3 segregation). In contrast, in yeast and mammalian cells, a considerable fraction of recombinants are one sided: they display full conversion (6:2 segregation) or half-conversion (5:3 segregation) on one side of the DSB together with normal 4:4 segregation on the other side of the DSB. Two mechanisms have been proposed to account for these observations: (i) hDNA formation is restricted to one side of the DSB or the other, and (ii) recombination is initially two sided, but hDNA repair directed by Holliday junction cuts restores normal 4:4 segregation on that side of the DSB in which the mismatch is closest to the cut junction initiating repair. In this study, we exploited a well-characterized gene-targeting assay to test the predictions that these mechanisms make with respect to the frequency of recombinants displaying 4:4 marker segregation on one side of the DSB. Unexpectedly, the results do not support the predictions of either mechanism. We propose a derivation of mechanism (ii) in which the nicks arising from Holliday junction cleavage are not equivalent with respect to directing repair of adjacent hDNA, possibly as a result of asynchronous cleavage of the DSBR intermediate.
Collapse
Affiliation(s)
- Richard D McCulloch
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
10
|
Chuang YK, Cheng WC, Goodman SD, Chang YT, Kao JT, Lee CN, Tsai KS, Fang WH. Nick-directed repair of palindromic loop mismatches in human cell extracts. J Biomed Sci 2005; 12:659-69. [PMID: 16078003 DOI: 10.1007/s11373-005-7891-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 05/25/2005] [Indexed: 11/28/2022] Open
Abstract
Palindromic sequences present in DNA may form secondary structures that block DNA replication and transcription causing adverse effects on genome stability. It has been suggested that hairpin structures containing mispaired bases could stimulate the repair systems in human cells. In this study, processing of variable length of palindromic loops in the presence or absence of single-base mismatches was investigated in human cell extracts. Our results showed that hairpin structures were efficiently processed through a nick-directed mechanism. In a similar sequence context, mismatch-containing hairpins have higher repair efficiencies. We also found that shorter hairpins are generally better repaired. A strand break located either 3' or 5' to the loop is sufficient to activate hairpin repair on the nicked strand. The reaction requires Mg(2+), the four dNTPs and hydrolysis of ATP for efficient repair on both palindromic loop insertions and deletions. Correction of each of these heteroduplexes was abolished by aphidicolin but was relatively insensitive to the presence of ddTTP, suggesting involvement of polymerase(s) alpha and/or delta. These findings are most consistent with the nick-directed loop repair pathway being responsible for processing hairpin heterologies in human cells.
Collapse
Affiliation(s)
- Yi-Kuang Chuang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, 7, Chung-Shan South Road, 100-63, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Drury MD, Skogen MJ, Kmiec EB. A tolerance of DNA heterology in the mammalian targeted gene repair reaction. Oligonucleotides 2005; 15:155-71. [PMID: 16201904 DOI: 10.1089/oli.2005.15.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Targeted gene repair consists of at least two major steps, the pairing of an oligonucleotide to a site bearing DNA sequence complementarity followed by a nucleotide exchange reaction directed by the oligonucleotide. In this study, oligonucleotides with different structures were designed to target a stably integrated (mutant) enhanced green fluorescent protein (EGFP) gene and used to direct the repair of a single base mutation. We show that the efficiency of correction is influenced by the degree of DNA sequence homology existing between the oligonucleotide and target gene. Correction is reduced when a heterologous stretch of DNA sequence is placed in the center of the oligonucleotide and the mismatched base pair is then formed near the terminus. The negative impact of heterology is dependent on the type of DNA sequence inserted and on the size of the heterologous region. If the heterologous sequence is palindromic and adopts a secondary structure, the negative impact on the correction frequency is removed, and wild-type levels of repair are restored. Although differences in the efficiency of correction are observed in various cell types, the effect of structural changes on gene repair is consistent. These results reveal the existence of a directional-specific repair pathway that relies on the pairing stability of a bilateral complex and emphasize the importance of sequence homology between pairing partners for efficient catalysis of gene repair.
Collapse
Affiliation(s)
- Miya D Drury
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | |
Collapse
|
12
|
Miller CA, Bill CA, Nickoloff JA. Characterization of palindromic loop mismatch repair tracts in mammalian cells. DNA Repair (Amst) 2004; 3:421-8. [PMID: 15010318 DOI: 10.1016/j.dnarep.2003.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2003] [Indexed: 01/03/2023]
Abstract
Single- and multi-base (loop) mismatches can arise in DNA by replication errors, during recombination, and by chemical modification of DNA. Single-base and loop mismatches of several nucleotides are efficiently repaired in mammalian cells by a nick-directed, MSH2-dependent mechanism. Larger loop mismatches (> or =12 bases) are repaired by an MSH2-independent mechanism. Prior studies have shown that 12- and 14-base palindromic loops are repaired with bias toward loop retention, and that repair bias is eliminated when five single-base mismatches flank the loop mismatch. Here we show that one single-base mismatch near a 12-base palindromic loop is sufficient to eliminate loop repair bias in wild-type, but not MSH2-defective mammalian cells. We also show that palindromic loop and single-base mismatches separated by 12 bases are repaired independently at least 10% of the time in wild-type cells, and at least 30% of the time in MSH2-defective cells. Palindromic loop and single-base mismatches separated by two bases were never repaired independently. These and other data indicate that loop repair tracts are variable in length. All tracts extend at least 2 bases, some extend <12 bases, and others >12 bases, on one side of the loop. These properties distinguish palindromic loop mismatch repair from the three known excision repair pathways: base excision repair which has one to six base tracts, nucleotide excision repair which has approximately 30 base tracts, and MSH2-dependent mismatch repair, which has tracts that extend for several hundred bases.
Collapse
Affiliation(s)
- Cheryl A Miller
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
13
|
Corrette-Bennett SE, Borgeson C, Sommer D, Burgers PMJ, Lahue RS. DNA polymerase delta, RFC and PCNA are required for repair synthesis of large looped heteroduplexes in Saccharomyces cerevisiae. Nucleic Acids Res 2004; 32:6268-75. [PMID: 15576353 PMCID: PMC535674 DOI: 10.1093/nar/gkh965] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Small looped mispairs are corrected by DNA mismatch repair (MMR). In addition, a distinct process called large loop repair (LLR) corrects loops up to several hundred nucleotides in extracts of bacteria, yeast or human cells. Although LLR activity can be readily demonstrated, there has been little progress in identifying its protein components. This study identified some of the yeast proteins responsible for DNA repair synthesis during LLR. Polyclonal antisera to either Pol31 or Pol32 subunits of polymerase delta efficiently inhibited LLR in extracts by blocking repair just prior to gap filling. Gap filling was inhibited regardless of whether the loop was retained or removed. These experiments suggest polymerase delta is uniquely required in yeast extracts for LLR-associated synthesis. Similar results were obtained with antisera to the clamp loader proteins Rfc3 and Rfc4, and to PCNA, i.e. LLR was inhibited just prior to gap filling for both loop removal and loop retention. Thus PCNA and RFC seem to act in LLR only during repair synthesis, in contrast to their roles at both pre- and post-excision steps of MMR. These biochemical experiments support the idea that yeast polymerase delta, RFC and PCNA are required for large loop DNA repair synthesis.
Collapse
Affiliation(s)
- Stephanie E Corrette-Bennett
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | | | | | | | |
Collapse
|
14
|
Huang YM, Chen SU, Goodman SD, Wu SH, Kao JT, Lee CN, Cheng WC, Tsai KS, Fang WH. Interaction of Nick-directed DNA Mismatch Repair and Loop Repair in Human Cells. J Biol Chem 2004; 279:30228-35. [PMID: 15151992 DOI: 10.1074/jbc.m401675200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In human cells, large DNA loop heterologies are repaired through a nick-directed pathway independent of mismatch repair. However, a 3'-nick generated by bacteriophage fd gene II protein heterology is not capable of stimulating loop repair. To evaluate the possibility that a mismatch near a loop could induce both repair types in human cell extracts, we constructed and tested a set of DNA heteroduplexes, each of which contains a combination of mismatches and loops. We have demonstrated that a strand break generated by restriction endonucleases 3' to a large loop is capable of provoking and directing loop repair. The repair of 3'-heteroduplexes in human cell extracts is very similar to that of 5'-heteroduplex repair, being strand-specific and highly biased to the nicked strand. This observation suggests that the loop repair pathway possesses bidirectional repair capability similar to that of the bacterial loop repair system. We also found that a nick 5' to a coincident mismatch and loop can apparently stimulate the repair of both. In contrast, 3'-nick-directed repair of a G-G mismatch was reduced when in the vicinity of a loop (33 or 46 bp between two sites). Increasing the distance separating the G-G mismatch and loop by 325 bp restored the efficiency of repair to the level of a single base-base mismatch. This observation suggests interference between 3'-nick-directed large loop repair and conventional mismatch repair systems when a mispair is near a loop. We propose a model in which DNA repair systems avoid simultaneous repair at adjacent sites to avoid the creation of double-stranded DNA breaks.
Collapse
Affiliation(s)
- Yao-Ming Huang
- School of Medical Technology, National Taiwan University, Taipei, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
All nucleated mammalian cells contain mitochondrial DNA, a small (approximately 15-17 kb) circular genome found in the matrix. This molecule is present in multiple copies, with numbers routinely exceeding 1000 per cell. Many pathogenic mutations of this genome have been reported, with the vast majority being highly recessive. A mismatch repair activity has been recently described in mitochondria that shows no strand bias for correcting point mutations. What could be the physiological function of such an activity? Mammalian mtDNA is remarkable in being a patchwork of many short repeat sequences. With reference to several recent publications, we hypothesise that the function of this activity is to preserve the mitochondrial genome by repairing short loop out sequences that would otherwise be lost as mitochondrial DNA polymerase gamma replicates the mitochondrial genome.
Collapse
Affiliation(s)
- P A Mason
- School of Neurology, Neurobiology and Psychiatry, University of Newcastle upon Tyne, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | |
Collapse
|
16
|
McCulloch SD, Gu L, Li GM. Nick-dependent and -independent processing of large DNA loops in human cells. J Biol Chem 2003; 278:50803-9. [PMID: 14522965 DOI: 10.1074/jbc.m309025200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA loop heterologies are products of normal DNA metabolism and can lead to severe genomic instability if unrepaired. To understand how human cells process DNA loop structures, a set of circular heteroduplexes containing a 30-nucleotide loop were constructed and tested for repair in vitro by human cell nuclear extracts. We demonstrate here that, in addition to the previously identified 5' nick-directed loop repair pathway (Littman, S. J., Fang, W. H., and Modrich, P. (1999) J. Biol. Chem. 274, 7474-7481), human cells can process large DNA loop heterologies in a loop-directed manner. The loop-directed repair specifically removes the loop structure and occurs only in the looped strand, and appears to require limited DNA synthesis. Like the nick-directed loop repair, the loop-directed repair is independent of many known DNA repair pathways, including DNA mismatch repair and nucleotide excision repair. In addition, our data also suggest that an aphidicolin-sensitive DNA polymerase is involved in the excision step of the nick-directed loop repair pathway.
Collapse
Affiliation(s)
- Scott D McCulloch
- Graduate Center for Toxicology, Lucille P. Markey Cancer Center, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
17
|
Pearson CE, Tam M, Wang YH, Montgomery SE, Dar AC, Cleary JD, Nichol K. Slipped-strand DNAs formed by long (CAG)*(CTG) repeats: slipped-out repeats and slip-out junctions. Nucleic Acids Res 2002; 30:4534-47. [PMID: 12384601 PMCID: PMC137136 DOI: 10.1093/nar/gkf572] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The disease-associated expansion of (CTG)*(CAG) repeats is likely to involve slipped-strand DNAs. There are two types of slipped DNAs (S-DNAs): slipped homoduplex S-DNAs are formed between two strands having the same number of repeats; and heteroduplex slipped intermediates (SI-DNAs) are formed between two strands having different numbers of repeats. We present the first characterization of S-DNAs formed by disease-relevant lengths of (CTG)*(CAG) repeats which contained all predicted components including slipped-out repeats and slip-out junctions, where two arms of the three-way junction were composed of complementary paired repeats. In S-DNAs multiple short slip-outs of CTG or CAG repeats occurred throughout the repeat tract. Strikingly, in SI-DNAs most of the excess repeats slipped-out at preferred locations along the fully base-paired Watson-Crick duplex, forming defined three-way slip-out junctions. Unexpectedly, slipped-out CAG and slipped-out CTG repeats were predominantly in the random-coil and hairpin conformations, respectively. Both the junctions and the slip-outs could be recognized by DNA metabolizing proteins: only the strand with the excess repeats was hypersensitive to cleavage by the junction-specific T7 endonuclease I, while slipped-out CAG was preferentially bound by single-strand binding protein. An excellent correlation was observed for the size of the slip-outs in S-DNAs and SI-DNAs with the size of the tract length changes observed in quiescent and proliferating tissues of affected patients-suggesting that S-DNAs and SI-DNAs are mutagenic intermediates in those tissues, occurring during error-prone DNA metabolism and replication fork errors.
Collapse
Affiliation(s)
- Christopher E Pearson
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, 555 University Avenue, Elm Wing 11-135, Toronto, Ontario M5G 1X8, Canada.
| | | | | | | | | | | | | |
Collapse
|
18
|
Raynard SJ, Baker MD. Incorporation of large heterologies into heteroduplex DNA during double-strand-break repair in mouse cells. Genetics 2002; 162:977-85. [PMID: 12399405 PMCID: PMC1462280 DOI: 10.1093/genetics/162.2.977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, the formation and repair of large (>1 kb) insertion/deletion (I/D) heterologies during double-strand-break repair (DSBR) was investigated using a gene-targeting assay that permits efficient recovery of sequence insertion events at the haploid chromosomal immunoglobulin (Ig) mu-locus in mouse hybridoma cells. The results revealed that (i) large I/D heterologies were generated on one or both sides of the DSB and, in some cases, formed symmetrically in both homology regions; (ii) large I/D heterologies did not negatively affect the gene targeting frequency; and (iii) prior to DNA replication, the large I/D heterologies were rectified.
Collapse
Affiliation(s)
- Steven J Raynard
- Department of Molecular Biology and Genetics, College of Biological Science, University of Guelph, Ontario, Canada
| | | |
Collapse
|
19
|
Panigrahi GB, Cleary JD, Pearson CE. In vitro (CTG)*(CAG) expansions and deletions by human cell extracts. J Biol Chem 2002; 277:13926-34. [PMID: 11832482 DOI: 10.1074/jbc.m109761200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The mechanism of disease-associated (CTG)*(CAG) expansion may involve DNA replication slippage, replication direction, Okazaki fragment processing, recombination, or repair. A length-dependent bias for expansions is observed in humans affected by a trinucleotide repeat-associated disease. We developed an assay to test the effect of replication direction on (CTG)*(CAG) instabilities incurred during in vitro (SV40) DNA replication mediated by human cell extracts. This system recapitulates the bias for expansions observed in humans. Replication by HeLa cell extracts generated expansions and deletions that depended upon repeat tract length and the direction of replication. Templates with 79 repeats yielded predominantly expansions (CAG as lagging strand template) or predominantly deletions (CTG as lagging strand template). Templates containing 17 repeats were stable. Thus, replication direction determined the type of mutation. These results provide new insights into the orientation of replication effect upon repeat stability. This system will be useful in determining the contribution of specific human proteins to (CTG)*(CAG) expansions.
Collapse
Affiliation(s)
- Gagan B Panigrahi
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario M5A 1X8, Canada
| | | | | |
Collapse
|
20
|
Corrette-Bennett SE, Mohlman NL, Rosado Z, Miret JJ, Hess PM, Parker BO, Lahue RS. Efficient repair of large DNA loops in Saccharomyces cerevisiae. Nucleic Acids Res 2001; 29:4134-43. [PMID: 11600702 PMCID: PMC60213 DOI: 10.1093/nar/29.20.4134] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Small looped mispairs are efficiently corrected by mismatch repair. The situation with larger loops is less clear. Repair activity on large loops has been reported as anywhere from very low to quite efficient. There is also uncertainty about how many loop repair activities exist and whether any are conserved. To help address these issues, we studied large loop repair in Saccharomyces cerevisiae using in vivo and in vitro assays. Transformation of heteroduplexes containing 1, 16 or 38 nt loops led to >90% repair for all three substrates. Repair of the 38 base loop occurred independently of mutations in key genes for mismatch repair (MR) and nucleotide excision repair (NER), unlike other reported loop repair functions in yeast. Correction of the 16 base loop was mostly independent of MR, indicating that large loop repair predominates for this size heterology. Similarities between mammalian and yeast large loop repair were suggested by the inhibitory effects of loop secondary structure and by the role of defined nicks on the relative proportions of loop removal and loop retention products. These observations indicate a robust large loop repair pathway in yeast, distinct from MR and NER, and conserved in mammals.
Collapse
Affiliation(s)
- S E Corrette-Bennett
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Box 986805, Omaha, NE 68198-6805, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Clikeman JA, Wheeler SL, Nickoloff JA. Efficient incorporation of large (>2 kb) heterologies into heteroduplex DNA: Pms1/Msh2-dependent and -independent large loop mismatch repair in Saccharomyces cerevisiae. Genetics 2001; 157:1481-91. [PMID: 11290705 PMCID: PMC1461601 DOI: 10.1093/genetics/157.4.1481] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA double-strand break (DSB) repair in yeast is effected primarily by gene conversion. Conversion can conceivably result from gap repair or from mismatch repair of heteroduplex DNA (hDNA) in recombination intermediates. Mismatch repair is normally very efficient, but unrepaired mismatches segregate in the next cell division, producing sectored colonies. Conversion of small heterologies (single-base differences or insertions <15 bp) in meiosis and mitosis involves mismatch repair of hDNA. The repair of larger loop mismatches in plasmid substrates or arising by replication slippage is inefficient and/or independent of Pms1p/Msh2p-dependent mismatch repair. However, large insertions convert readily (without sectoring) during meiotic recombination, raising the question of whether large insertions convert by repair of large loop mismatches or by gap repair. We show that insertions of 2.2 and 2.6 kbp convert efficiently during DSB-induced mitotic recombination, primarily by Msh2p- and Pms1p-dependent repair of large loop mismatches. These results support models in which Rad51p readily incorporates large heterologies into hDNA. We also show that large heterologies convert more frequently than small heterologies located the same distance from an initiating DSB and propose that this reflects Msh2-independent large loop-specific mismatch repair biased toward loop loss.
Collapse
Affiliation(s)
- J A Clikeman
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| | | | | |
Collapse
|