Mussali-Galante P, Tovar-Sánchez E, Valverde M, Rojas E. Genetic structure and diversity of animal populations exposed to metal pollution.
REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014;
227:79-106. [PMID:
24158580 DOI:
10.1007/978-3-319-01327-5_3]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Studying the genetic diversity of wild populations that are affected by pollution provides a basis for estimating the risks of environmental contamination to both wildlife, and indirectly to humans. Such research strives to produce both a better understanding of the underlying mechanisms by which genetic diversity is affected,and the long-term effects of the pollutants involved.In this review, we summarize key aspects of the field of genetic ecotoxicology that encompasses using genetic patterns to examine metal pollutants as environmental stressors of natural animal populations. We address genetic changes that result from xenobiotic exposure versus genetic alterations that result from natural ecological processes. We also describe the relationship between metal exposure and changes in the genetic diversity of chronically exposed populations, and how the affected populations respond to environmental stress. Further, we assess the genetic diversity of animal populations that were exposed to metals, focusing on the literature that has been published since the year 2000.Our review disclosed that the most common metals found in aquatic and terrestrial ecosystems were Cd, Zn, Cu and Pb; however, differences in the occurrence between aquatic (Cd=Zn>Cu>Pb>Hg) and terrestrial (Cu>Cd>Pb>Zn>Ni)environments were observed. Several molecular markers were used to assess genetic diversity in impacted populations, the order of the most common ones of which were SSR's > allozyme > RAPD's > mtDNA sequencing> other molecular markers.Genetic diversity was reduced for nearly all animal populations that were exposed to a single metal, or a mixture of metals in aquatic ecosystems (except in Hyalella azteca, Littorina littorea, Salmo trutta, and Gobio gobio); however, the pattern was less clear when terrestrial ecosystems were analyzed.We propose that future research in the topic area of this paper emphasizes seven key areas of activity that pertain to the methodological design of genetic ecotoxicological studies. Collectively, these points are designed to provide more accurate data and a deeper understanding of the relationship between alterations in genetic diversity of impacted populations and metal exposures. In particular, we believe that the exact nature of all tested chemical pollutants be clearly described, biomarkers be included, sentinel organisms be used, testing be performed at multiple experimental sites, reference populations be sampled in close geographical proximity to where pollution occurs, and genetic structure parameters and high-throughput technology be more actively employed. Furthermore, we propose a new class of biomarkers,termed "biomarkers of permanent effect," which may include measures of genetic variability in impacted populations.
Collapse