1
|
Hou M, Yuan J, Dong X, Wang Y, Yang S, Gao J. Engineering Oxygen-Independent NADH Oxidase Integrated with Electrocatalytic FAD Cofactor Regeneration. JACS AU 2024; 4:3581-3592. [PMID: 39328752 PMCID: PMC11423319 DOI: 10.1021/jacsau.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/28/2024]
Abstract
An electrochemically mediated enzyme process for nicotinamide adenine dinucleotide (NADH) oxidation and biosensing has been developed in which the oxygen-dependent activities of wild-type NADH oxidase are replaced by electrochemical regeneration of the flavin adenine dinucleotide (FAD) cofactor in the active site. Consequently, the present bioelectrocatalysis does not rely on a continuous oxygen supply through bubbling air or pure oxygen in biosynthetic applications, which reduces enzyme stability. The coupled electrochemical and enzymatic catalysis is achieved through a combination of enzyme immobilization on the electrode and electrochemical oxidation of FADH2 in the active site mediated by the electron transfer mediator ferrocene carboxylic acid (FcCA). Furthermore, to minimize the effect of dissolved oxygen when the electrocatalytic process is exposed to air, we successfully designed mutations at the Leu40 and Cys42 sites of Leuconostoc mesenteroides (LmNOx) to block the oxygen passage into the active site and to eliminate the native FAD cofactor regeneration half-reaction. The engineered enzymes, whose activities are significantly reduced or inactive in solution, are electrocatalytically active toward conversion of NADH to NAD+, demonstrating successful FAD cofactor regeneration in the active site via electrochemistry. Finally, we developed two highly responsive electrochemical biosensors for NADH detection which has a superior substrate specific to standard detectors using metal electrodes, and comparable detection range and detection limit (1-3 μM).
Collapse
Affiliation(s)
- Mengjie Hou
- School
of Chemical Biology and Biotechnology, Peking
University Shenzhen Graduate School, Shenzhen 518055, China
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen 518055, China
| | - Jing Yuan
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen 518055, China
| | - Xinyu Dong
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen 518055, China
| | - Yingjie Wang
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen 518055, China
| | - Shihe Yang
- School
of Advanced Materials, Peking University
Shenzhen Graduate School, Shenzhen 518055, China
- Institute
of Biomedical Engineering, Shenzhen Bay
Laboratory, Shenzhen 518055, China
| | - Jiali Gao
- School
of Chemical Biology and Biotechnology, Peking
University Shenzhen Graduate School, Shenzhen 518055, China
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen 518055, China
- Department
of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Zhao X, Liu Z, Qiu Y, Zhang Q, Chen Y, Wang D, Zhu Z, Meng L, Zheng H. Pt-Cluster-Embedded Metal-Organic Frameworks-Derived Fe@C as Dual-Enzyme Mimics for NADH Detection in Serum. Anal Chem 2024; 96:12120-12128. [PMID: 38990044 DOI: 10.1021/acs.analchem.4c02208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Dihydro-nicotinamide adenine dinucleotide (NADH) detection is crucial since it is a vital coenzyme in organism metabolism. Compared to the traditional method based on natural NADH oxidase (NOX), nanozymes with multienzyme-like activity can catalyze multistage reactions in a singular setup, simplifying detection processes and enhancing sensitivity. In this study, an innovative NADH detection method was developed using iron-doped carbon (Fe@C) nanozyme synthesized from metal-organic frameworks with in situ reduced Pt clusters. This nanozyme composite (Pt/Fe@C) demonstrated dual NOX and peroxidase-like characteristics, significantly enhancing the catalytic efficiency and enabling NADH conversion to NAD+ and H2O2 with subsequent detection. The collaborative research involving both experimental and theoretical simulations has uncovered the catalytic process and the cooperative effect of Fe and Pt atoms, leading to enhanced oxygen adsorption and activation, as well as a decrease in the energy barrier of the key step in the H2O2 decomposition process. These findings indicate that the catalytic performance of Pt/Fe@C in NOX-like and POD-like reactions can be significantly improved. The colorimetric sensor detects NADH with a limit of detection as low as 0.4 nM, signifying a breakthrough in enzyme-mimicking nanozyme technology for precise NADH measurement.
Collapse
Affiliation(s)
- Xiaoping Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou 730000, P. R. China
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhicheng Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yao Qiu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Qingmiao Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yanni Chen
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Daquan Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lingjie Meng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou 730000, P. R. China
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
Liu X, Wan Z, Chen K, Yan Y, Li X, Wang Y, Wang M, Zhao R, Pei J, Zhang L, Sun S, Li J, Chen X, Xin Q, Zhang S, Liu S, Wang H, Liu C, Mu X, Zhang XD. Mated-Atom Nanozymes with Efficient Assisted NAD + Replenishment for Skin Regeneration. NANO LETTERS 2024. [PMID: 38619329 DOI: 10.1021/acs.nanolett.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Excessive accumulation of reduced nicotinamide adenine dinucleotide (NADH) within biological organisms is closely associated with many diseases. It remains a challenge to efficiently convert superfluous and detrimental NADH to NAD+. NADH oxidase (NOX) is a crucial oxidoreductase that catalyzes the oxidation of NADH to NAD+. Herein, M1M2 (Mi=V/Mn/Fe/Co/Cu/Mo/Rh/Ru/Pd, i = 1 or 2) mated-atom nanozymes (MANs) are designed by mimicking natural enzymes with polymetallic active centers. Excitingly, RhCo MAN possesses excellent and sustainable NOX-like activity, with Km-NADH (16.11 μM) being lower than that of NOX-mimics reported so far. Thus, RhCo MAN can significantly promote the regeneration of NAD+ and regulate macrophage polarization toward the M2 phenotype through down-regulation of TLR4 expression, which may help to recover skin regeneration. However, RhRu MAN with peroxidase-like activity and RhMn MAN with superoxide dismutase-like activity exhibit little modulating effects on eczema. This work provides a new strategy to inhibit skin inflammation and promote skin regeneration.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Zhen Wan
- Haihe Hospital, Tianjin University, Tianjin 300350, China
| | - Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yuxing Yan
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xuyan Li
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yili Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Miaoyu Wang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ruoli Zhao
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Jiahui Pei
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Lijie Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Jiarong Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xinzhu Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuangjie Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Changlong Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
4
|
Ricciardi A, Storti LV, Giavalisco M, Parente E, Zotta T. The Effect of Respiration, pH, and Citrate Co-Metabolism on the Growth, Metabolite Production and Enzymatic Activities of Leuconostoc mesenteroides subsp. cremoris E30. Foods 2022; 11:foods11040535. [PMID: 35206012 PMCID: PMC8871477 DOI: 10.3390/foods11040535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023] Open
Abstract
Leuconostoc mesenteroides includes strains used as starter and/or adjunct cultures for the production of several fermented foods. In this study, the effect of anaerobic and respiratory cultivations, as well as of citrate supplementation and different pH values, was evaluated on growth, biomass, metabolite, and enzymatic activities (pyruvate oxidase, POX; NADH-dependent oxidase, NOX; NADH-dependent peroxidase, NPR) of Leuconostoc mesenteroides subsp. cremoris E30. We compared the respiration-increased growth rate and biomass production of Leuc. mesenteroides E30 to anaerobic cultivation. A supplementation of citrate impaired the growth rate of the respiratory cells. As expected, anaerobic cultures did not consume oxygen, and a similar trend in oxygen uptake was observed in respiratory cultures. The aerobic incubation caused changes in the metabolic pattern, reducing the production of ethanol in favour of acetic acid. Citrate was already exhausted in the exponential phase and did not affect the yields in acetic acid and ethanol. NOX activity increased in the presence of oxygen, while catalase was also detected in the absence of hemin. The absence of H2O2 suggested its degradation by NPR and catalase. Respiratory cultivation provided benefits (increase in growth rate, biomass, and activity in antioxidant enzymes) for Leuc. mesenteroides E30. Therefore, the exploitation of respiratory phenotypes may be useful for the formulation of competitive starter or adjunct cultures.
Collapse
|
5
|
Chen J, Zheng X, Zhang J, Ma Q, Zhao Z, Huang L, Wu W, Wang Y, Wang J, Dong S. Bubble-templated synthesis of nanocatalyst Co/C as NADH oxidase mimic. Natl Sci Rev 2021; 9:nwab186. [PMID: 35261777 PMCID: PMC8897313 DOI: 10.1093/nsr/nwab186] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
Designing highly active nanozymes for various enzymatic reactions remains a challenge in practical applications and fundamental research. In this work, by studying the catalytic functions of natural NADH oxidase (NOX), we devised and synthesized a porous carbon-supported cobalt catalyst (Co/C) to mimic NOX. The Co/C can catalyze dehydrogenation of NADH and transfers electrons to O2 to produce H2O2. Density functional theory calculations reveal that the Co/C can catalyze O2 reduction to H2O2 or H2O considerably. The Co/C can also mediate electron transfer from NADH to heme protein cytochrome c, thereby exhibiting cytochrome c reductase-like activity. The Co/C nanoparticles can deplete NADH in cancer cells, induce increase of the reactive oxygen species, lead to impairment of oxidative phosphorylation and decrease in mitochondrial membrane potential, and cause ATP production to be damaged. This ‘domino effect’ facilitates the cell to approach apoptosis.
Collapse
Affiliation(s)
- Jinxing Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiliang Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiaxin Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qian Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhiwei Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Liang Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Weiwei Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Chen J, Ma Q, Li M, Wu W, Huang L, Liu L, Fang Y, Dong S. Coenzyme-dependent nanozymes playing dual roles in oxidase and reductase mimics with enhanced electron transport. NANOSCALE 2020; 12:23578-23585. [PMID: 33225340 DOI: 10.1039/d0nr06605b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although nanozymes overcome a series of shortcomings of natural enzymes, their wide applications are hampered due to their limited varieties. In this work, we propose a coenzyme-dependent nanozyme, a synergistic composite comprising zeolitic imidazolate frameworks encapsulated with polyethylenimine (PEI) and functionalized with a flavin mononucleotide (PEI/ZIF-FMN). The flavin mononucleotide (FMN) plays the role of a prosthetic group, and the positively charged NH2 groups in PEI readily provide the binding affinity to nicotinamide adenine dinucleotide (NADH), which facilitates the electron transfer from NADH to FMN and terminal electron acceptors (such as O2) with a greatly enhanced (80 times) catalytic performance. The integrated nanoparticle-coenzyme composite works as an NADH oxidase mimic and couples with dehydrogenases for the tandem enzymatic reaction. PEI/ZIF-FMN also mediated the electron transfer from NADH to cytochrome c (Cyt c), thereby exhibiting Cyt c reductase-like activity.
Collapse
Affiliation(s)
- Jinxing Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Petschacher B, Staunig N, Müller M, Schürmann M, Mink D, De Wildeman S, Gruber K, Glieder A. Cofactor Specificity Engineering of Streptococcus mutans NADH Oxidase 2 for NAD(P)(+) Regeneration in Biocatalytic Oxidations. Comput Struct Biotechnol J 2014; 9:e201402005. [PMID: 24757503 PMCID: PMC3995211 DOI: 10.5936/csbj.201402005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/16/2014] [Accepted: 02/21/2014] [Indexed: 11/22/2022] Open
Abstract
Soluble water-forming NAD(P)H oxidases constitute a promising NAD(P)(+) regeneration method as they only need oxygen as cosubstrate and produce water as sole byproduct. Moreover, the thermodynamic equilibrium of O2 reduction is a valuable driving force for mostly energetically unfavorable biocatalytic oxidations. Here, we present the generation of an NAD(P)H oxidase with high activity for both cofactors, NADH and NADPH. Starting from the strictly NADH specific water-forming Streptococcus mutans NADH oxidase 2 several rationally designed cofactor binding site mutants were created and kinetic values for NADH and NADPH conversion were determined. Double mutant 193R194H showed comparable high rates and low K m values for NADPH (k cat 20 s(-1), K m 6 µM) and NADH (k cat 25 s(-1), K m 9 µM) with retention of 70% of wild type activity towards NADH. Moreover, by screening of a SeSaM library S. mutans NADH oxidase 2 variants showing predominantly NADPH activity were found, giving further insight into cofactor binding site architecture. Applicability for cofactor regeneration is shown for coupling with alcohol dehydrogenase from Sphyngobium yanoikuyae for 2-heptanone production.
Collapse
Affiliation(s)
- Barbara Petschacher
- Austrian Centre of Industrial Biotechnology GmbH, c/o Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Nicole Staunig
- Austrian Centre of Industrial Biotechnology GmbH, c/o Institute of Molecular Biosciences, University Graz, Humboldtstrasse 50/3, 8010 Graz, Austria
| | - Monika Müller
- DSM Innovative Synthesis B.V., P.O. Box 18, 6160 MD Geleen, Netherlands
| | - Martin Schürmann
- DSM Innovative Synthesis B.V., P.O. Box 18, 6160 MD Geleen, Netherlands
| | - Daniel Mink
- DSM Innovative Synthesis B.V., P.O. Box 18, 6160 MD Geleen, Netherlands
| | | | - Karl Gruber
- Austrian Centre of Industrial Biotechnology GmbH, c/o Institute of Molecular Biosciences, University Graz, Humboldtstrasse 50/3, 8010 Graz, Austria
| | - Anton Glieder
- Austrian Centre of Industrial Biotechnology GmbH, c/o Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
8
|
Dissecting the energy metabolism in Mycoplasma pneumoniae through genome-scale metabolic modeling. Mol Syst Biol 2013; 9:653. [PMID: 23549481 PMCID: PMC3658275 DOI: 10.1038/msb.2013.6] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 02/20/2013] [Indexed: 12/15/2022] Open
Abstract
A new genome-scale metabolic reconstruction of M. pneumonia is used in combination with external metabolite measurement and protein abundance measurements to quantitatively explore the energy metabolism of this genome-reduce human pathogen. ![]()
We established a detailed biomass composition for M. pneumoniae, thus allowing for growth simulations. Using our metabolic model, we corrected the metabolic network topology and the functional annotation of key metabolic enzymes. M. pneumoniae, unlike other laboratory-grown bacteria, uses a high fraction of energy (up to 89%) for cellular maintenance and not for growth. Simulating different growth conditions as well as single and double mutant phenotypes, we analyzed pathway connectivity and the impact of gene deletions on the growth performance of M. pneumoniae, highlighting the limited adaptive capabilities of this minimal model organism.
Mycoplasma pneumoniae, a threatening pathogen with a minimal genome, is a model organism for bacterial systems biology for which substantial experimental information is available. With the goal of understanding the complex interactions underlying its metabolism, we analyzed and characterized the metabolic network of M. pneumoniae in great detail, integrating data from different omics analyses under a range of conditions into a constraint-based model backbone. Iterating model predictions, hypothesis generation, experimental testing, and model refinement, we accurately curated the network and quantitatively explored the energy metabolism. In contrast to other bacteria, M. pneumoniae uses most of its energy for maintenance tasks instead of growth. We show that in highly linear networks the prediction of flux distributions for different growth times allows analysis of time-dependent changes, albeit using a static model. By performing an in silico knock-out study as well as analyzing flux distributions in single and double mutant phenotypes, we demonstrated that the model accurately represents the metabolism of M. pneumoniae. The experimentally validated model provides a solid basis for understanding its metabolic regulatory mechanisms.
Collapse
|
9
|
Zhang YW, Tiwari MK, Gao H, Dhiman SS, Jeya M, Lee JK. Cloning and characterization of a thermostable H2O-forming NADH oxidase from Lactobacillus rhamnosus. Enzyme Microb Technol 2012; 50:255-62. [PMID: 22418266 DOI: 10.1016/j.enzmictec.2012.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 01/13/2012] [Accepted: 01/28/2012] [Indexed: 11/30/2022]
Abstract
NADH oxidase (Nox) catalyzes the conversion of NADH to NAD(+). A previously uncharacterized Nox gene (LrNox) was cloned from Lactobacillus rhamnosus and overexpressed in Escherichia coli BL21(DE3). Sequence analysis revealed an open reading frame of 1359 bp, capable of encoding a polypeptide of 453 amino acid residues. The molecular mass of the purified LrNox enzyme was estimated to be ~50 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 100 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme had optimal activity at pH 5.6 and temperature 65 °C, and k(cat)/K(m) of 3.77×10(7) s(-1) M(-1), the highest ever reported. Heat inactivation studies revealed that LrNox had high thermostability, with a half-life of 120 min at 80 °C. Molecular dynamics simulation studies shed light on the factors contributing to the high activity of LrNox. Although the properties of Nox from several microorganisms have been reported, this is the first report on the characterization of a recombinant H(2)O-forming Nox with high activity and thermostability. The characteristics of the LrNox enzyme could prove to be of interest in industrial applications such as NAD(+) regeneration.
Collapse
Affiliation(s)
- Ye-Wang Zhang
- Department of Chemical Engineering, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
10
|
Yang X, Ma K. Characterization of an exceedingly active NADH oxidase from the anaerobic hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 2007; 189:3312-7. [PMID: 17293421 PMCID: PMC1855830 DOI: 10.1128/jb.01525-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An NADH oxidase from the anaerobic hyperthermophilic bacterium Thermotoga maritima was purified. The enzyme was very active in catalyzing the reduction of oxygen to hydrogen peroxide with an optimal pH value of 7 at 80 degrees C. The V(max) was 230 +/- 14 mumol/min/mg (k(cat)/K(m) = 548,000 min(-1) mM(-1)), and the K(m) values for NADH and oxygen were 42 +/- 3 and 43 +/- 4 muM, respectively. The NADH oxidase was a heterodimeric flavoprotein with two subunits with molecular masses of 54 kDa and 46 kDa. Its gene sequences were identified, and the enzyme might represent a new type of NADH oxidase in anaerobes. An NADH-dependent peroxidase with a specific activity of 0.1 U/mg was also present in the cell extract of T. maritima.
Collapse
Affiliation(s)
- Xianqin Yang
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
11
|
Hemme D, Foucaud-Scheunemann C. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int Dairy J 2004. [DOI: 10.1016/j.idairyj.2003.10.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Geueke B, Riebel B, Hummel W. NADH oxidase from Lactobacillus brevis: a new catalyst for the regeneration of NAD. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(02)00290-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Geueke B, Hummel W. A new bacterial l-amino acid oxidase with a broad substrate specificity: purification and characterization. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(02)00072-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Hashimoto, Katsumata. Mechanism of alanine hyperproduction by arthrobacter oxydans HAP-1: metabolic shift to fermentation under nongrowth aerobic conditions. Appl Environ Microbiol 1999; 65:2781-3. [PMID: 10347080 PMCID: PMC91415 DOI: 10.1128/aem.65.6.2781-2783.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/1999] [Accepted: 03/23/1999] [Indexed: 11/20/2022] Open
Abstract
Arthrobacter oxydans HAP-1 hyperproduces DL-alanine in a non-growth-associated manner. We found that decreased activities of pyruvate dehydrogenase and of the enzyme catalyzing NADH oxidation in the stationary phase are paralleled by a shift of pyruvate metabolism to alanine synthesis by L-alanine dehydrogenase. We propose that this enzyme functions as an electron sink even under aerobic conditions.
Collapse
Affiliation(s)
- Hashimoto
- Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., 3-6-6 Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | | |
Collapse
|
15
|
Sakamoto M, Tano Y, Uchimura T, Komagata K. Aerobic growth of some lactic acid bacteria enabled by the external addition of peroxidase (horseradish) to the culture medium. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0922-338x(98)80017-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|