1
|
Diaz CJ, Douglas KJ, Kang K, Kolarik AL, Malinovski R, Torres-Tiji Y, Molino JV, Badary A, Mayfield SP. Developing algae as a sustainable food source. Front Nutr 2023; 9:1029841. [PMID: 36742010 PMCID: PMC9892066 DOI: 10.3389/fnut.2022.1029841] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
Current agricultural and food production practices are facing extreme stress, posed by climate change and an ever-increasing human population. The pressure to feed nearly 8 billion people while maintaining a minimal impact on the environment has prompted a movement toward new, more sustainable food sources. For thousands of years, both the macro (seaweed and kelp) and micro (unicellular) forms of algae have been cultivated as a food source. Algae have evolved to be highly efficient at resource utilization and have proven to be a viable source of nutritious biomass that could address many of the current food production issues. Particularly for microalgae, studies of their large-scale growth and cultivation come from the biofuel industry; however, this knowledge can be reasonably translated into the production of algae-based food products. The ability of algae to sequester CO2 lends to its sustainability by helping to reduce the carbon footprint of its production. Additionally, algae can be produced on non-arable land using non-potable water (including brackish or seawater), which allows them to complement rather than compete with traditional agriculture. Algae inherently have the desired qualities of a sustainable food source because they produce highly digestible proteins, lipids, and carbohydrates, and are rich in essential fatty acids, vitamins, and minerals. Although algae have yet to be fully domesticated as food sources, a variety of cultivation and breeding tools exist that can be built upon to allow for the increased productivity and enhanced nutritional and organoleptic qualities that will be required to bring algae to mainstream utilization. Here we will focus on microalgae and cyanobacteria to highlight the current advancements that will expand the variety of algae-based nutritional sources, as well as outline various challenges between current biomass production and large-scale economic algae production for the food market.
Collapse
Affiliation(s)
- Crisandra J. Diaz
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Kai J. Douglas
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Kalisa Kang
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Ashlynn L. Kolarik
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Rodeon Malinovski
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Yasin Torres-Tiji
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - João V. Molino
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Amr Badary
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Stephen P. Mayfield
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States,California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, United States,*Correspondence: Stephen P. Mayfield,
| |
Collapse
|
2
|
A novel stepwise dilution strategy to improve astaxanthin production of Haematococcus pluvialis in outdoor horizontal tubular photobioreactors. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
3
|
Leonardi RJ, Ibañez MV, Morelli MN, Heinrich JM. Evaluation of the phototrophic growth of Haematococcus pluvialis under outdoor lighting conditions inside a bubble column reactor at a laboratory scale. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
4
|
Koopmann IK, Möller S, Elle C, Hindersin S, Kramer A, Labes A. Optimization of Astaxanthin Recovery in the Downstream Process of Haematococcus pluvialis. Foods 2022; 11:1352. [PMID: 35564075 PMCID: PMC9105871 DOI: 10.3390/foods11091352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Astaxanthin derived from Haematococcus pluvialis is a valuable metabolite applied in a wide range of products. Its extraction depends on a sophisticated series of downstream process steps, including harvesting, disruption, drying, and extraction, of which some are dependent on each other. To determine the processes that yield maximum astaxanthin recovery, bead milling, high-pressure homogenization, and no disruption of H. pluvialis biomass were coupled with spray-drying, vacuum-drying, and freeze-drying in all possible combinations. Eventually, astaxanthin was extracted using supercritical CO2. Optimal conditions for spray-drying were evaluated through the design of experiments and standard least squares regression (feed rate: 5.8 mL/min, spray gas flow: 400 NL/h, inlet temperature: 180 °C). Maximal astaxanthin recoveries were yielded using high-pressure homogenization and lyophilization (85.4%). All combinations of milling or high-pressure homogenization and lyophilization or spray-drying resulted in similar recoveries. Bead milling and spray-drying repeated with a larger spray-dryer resulted in similar astaxanthin recoveries compared with the laboratory scale. Smaller astaxanthin recoveries after the extraction of vacuum-dried biomass were mainly attributed to textural changes. Evaluation of these results in an economic context led to a recommendation for bead milling and spray-drying prior to supercritical CO2 extraction to achieve the maximum astaxanthin recoveries.
Collapse
Affiliation(s)
- Inga K. Koopmann
- ZAiT, Bio and Food Technology, Faculty Energy and Biotechnology, Flensburg University of Applied Sciences, 24943 Flensburg, Germany; (I.K.K.); (S.M.); (A.K.)
- Sea & Sun Technology GmbH, 24610 Trappenkamp, Germany; (C.E.); (S.H.)
| | - Simone Möller
- ZAiT, Bio and Food Technology, Faculty Energy and Biotechnology, Flensburg University of Applied Sciences, 24943 Flensburg, Germany; (I.K.K.); (S.M.); (A.K.)
- Sea & Sun Technology GmbH, 24610 Trappenkamp, Germany; (C.E.); (S.H.)
| | - Clemens Elle
- Sea & Sun Technology GmbH, 24610 Trappenkamp, Germany; (C.E.); (S.H.)
| | - Stefan Hindersin
- Sea & Sun Technology GmbH, 24610 Trappenkamp, Germany; (C.E.); (S.H.)
| | - Annemarie Kramer
- ZAiT, Bio and Food Technology, Faculty Energy and Biotechnology, Flensburg University of Applied Sciences, 24943 Flensburg, Germany; (I.K.K.); (S.M.); (A.K.)
| | - Antje Labes
- ZAiT, Bio and Food Technology, Faculty Energy and Biotechnology, Flensburg University of Applied Sciences, 24943 Flensburg, Germany; (I.K.K.); (S.M.); (A.K.)
| |
Collapse
|
5
|
Parkes R, Barone ME, Herbert H, Gillespie E, Touzet N. Antioxidant Activity and Carotenoid Content Responses of Three Haematococcus sp. (Chlorophyta) Strains Exposed to Multiple Stressors. Appl Biochem Biotechnol 2022; 194:4492-4510. [PMID: 35467238 DOI: 10.1007/s12010-022-03926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/02/2022]
Abstract
There has been increasing demands worldwide for bioactive compounds of natural origins, especially for the nutraceutical and food-supplement sectors. In this context, microalgae are viewed as sustainable sources of molecules with an array of health benefits. For instance, astaxanthin is a xanthophyll pigment with powerful antioxidant capacity produced by microalgae such as the chlorophyte Haematococcus sp., which is regarded as the most suitable organism for the mass production of this pigment. In this study, three Haematococcus sp. strains were cultivated using a batch mode under favourable conditions to promote vegetative growth. Their environment was altered in a second phase using a higher and constant illumination regime combined with either exposure to blue LED light, an osmotic shock (with NaCl addition) or supplementation with a phytohormone (gibberellic acid, GA3), a plant extract (ginger), an herbicide (molinate) or an oxidant reagent (hydrogen peroxide). The effects of these stressors were evaluated in terms of antioxidant response and astaxanthin and β-carotene accumulation. Overall, strain CCAP 34/7 returned the highest Trolox Equivalent Antioxidant Capacity (TEAC) response (14.1-49.1 µmoL Trolox eq. g- 1 of DW), while the highest antioxidant response with the Folin-Ciocalteu (FC) was obtained for strain RPFW01 (62.5-155 µmoL Trolox eq. g- 1 of DW). The highest β-β-carotene content was found in strain LAFW15 when supplemented with the ginger extract (4.8 mg. g- 1). Strain RPFW01 exposed to blue light returned the highest astaxanthin yield (2.8 mg. g- 1), 5-fold that of strain CCAP 34/7 on average. This study documents the importance of screening several strains when prospecting for species with potential to produce high-value metabolites. It highlights that strain-specific responses can ensue from exposure of cells to a variety of stressors, which is important for the adequate tailoring of a biorefinery pipeline.
Collapse
Affiliation(s)
- Rachel Parkes
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Sligo, Ireland.
| | - Maria Elena Barone
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Sligo, Ireland
| | - Helen Herbert
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Sligo, Ireland
| | - Eoin Gillespie
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Sligo, Ireland
| | - Nicolas Touzet
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Sligo, Ireland
| |
Collapse
|
6
|
The Dynamic Behaviors of Photosynthesis during Non-Motile Cell Germination in Haematococcus pluvialis. WATER 2022. [DOI: 10.3390/w14081280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Haematococcus pluvialis undergoes a three-phase process during the process of germination: first, repeated mitotic events; next, cytokinesis to form the zoospore; and finally, a fast release of motile cells. Physiological properties were measured using chlorophyll a fluorescence (OJIP) transient. The most obvious increase in K-value and L-value appeared at 17 h, suggesting that oxygen-evolving complex damage and lower energetic connectivity of the photosystem II units of the mother non-motile cell occurred. Compared to phase I, the values of the maximum quantum yield of PSII photochemistry (FV/FM) and PIABS increased significantly in phases II and III, suggesting that photosynthetic photochemical activity was greatly up-regulated during cytokinesis to form zoospores and the fast release of motile cells. Moreover, the significant increase in the K-band at 17 h and 22 h indicates that the PSII donor side was the limiting factor during the initial period of germination. All these results suggest that the cellular photosynthetic activity continues to strengthen during cytokinesis to form the zoospore and the fast release of motile cells, and it was postulated to meet the demands for sporangium swelling and new organelle formation.
Collapse
|
7
|
Mota GCP, Moraes LBSD, Oliveira CYB, Oliveira DWS, Abreu JLD, Dantas DMM, Gálvez AO. Astaxanthin from Haematococcus pluvialis: processes, applications, and market. Prep Biochem Biotechnol 2021; 52:598-609. [PMID: 34424829 DOI: 10.1080/10826068.2021.1966802] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Astaxanthin is a xanthophyll carotenoid widely used in aquaculture and nutraceutical industries. Among natural sources, the microalga Haematococcus pluvialis is the non-genetically modified organism with the greatest capacity to accumulate astaxanthin. Therefore, it is important to understand emerging strategies in upstream and downstream processing of astaxanthin from this microalga. This review covers all aspects regarding the production and the market of natural astaxanthin from H. pluvialis. Astaxanthin biosynthesis, metabolic pathways, and nutritional metabolisms from the green vegetative motile to red hematocyst stage were reviewed in detail. Also, traditional and emerging techniques on biomass harvesting and astaxanthin recovery were presented and evaluated. Moreover, the global market of astaxanthin was discussed, and guidelines for sustainability increasing of the production chain of astaxanthin from H. pluvialis were highlighted, based on biorefinery models. This review can serve as a baseline on the current knowledge of H. pluvialis and encourage new researchers to enter this field of research.
Collapse
Affiliation(s)
| | | | - Carlos Yure B Oliveira
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | | | - Jéssika Lima de Abreu
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | | | - Alfredo Olivera Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| |
Collapse
|
8
|
Radice RP, Fiorentino R, De Luca M, Limongi AR, Viviano E, Bermano G, Martelli G. An innovative protocol to select the best growth phase for astaxanthin biosynthesis in H. pluvialis. ACTA ACUST UNITED AC 2021; 31:e00655. [PMID: 34258244 PMCID: PMC8253952 DOI: 10.1016/j.btre.2021.e00655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022]
Abstract
H. pluvialis non-motile cells produce more astaxanthin. H. pluvialis cells could be separated, based on their size, by an electric field. H. pluvialis non-motile cells are bigger than motile cells, and it's possible to recovery non-motile cells using this innovative protocol.
H. pluvialis is a green unicellular microalgae and it is the first producer of natural astaxanthin in the world if subjected to stress conditions such as high light, high salinity and nutrient starvation. Astaxanthin is a powerful antioxidant used in many fields, such as aquaculture, pharmaceutical, food supplements and cosmetic. To obtain a large amount of astaxanthin, researcher focused on the optimisation of H. pluvialis growth. H. pluvialis has four different size growth stage (macrozooids, microzooids, palmelloid and “red non-motile astaxanthin accumulated encysted”), and astaxanthin production occur in the last phase. Recent studies shown that non-motile cells can produce more astaxanthin than motile cells if subjected to light stress. For these reasons, the aim of this study is to find a new and innovative methodology to select and recovery H. pluvialis in his last growth phase thanks to an electrophoretic run, and optimize, in this way, astaxanthin production.
Collapse
Affiliation(s)
- Rosa Paola Radice
- University of Basilicata, Viale dell'AteneoLucano, 1 85100 Potenza (Pz), Italy.,Bioinnova s.r.l.s, via Ponte Nove Luci 9, 85100 Potenza (Pz), Italy.,Department of science, University of Basilicata, via dell'ateneo lucano 10
| | - Rocco Fiorentino
- University of Basilicata, Viale dell'AteneoLucano, 1 85100 Potenza (Pz), Italy
| | - Maria De Luca
- University of Basilicata, Viale dell'AteneoLucano, 1 85100 Potenza (Pz), Italy.,ALMACABIO Srl, C/so Italia 27, 39100 Bolzano, Italy
| | - Antonina Rita Limongi
- University of Basilicata, Viale dell'AteneoLucano, 1 85100 Potenza (Pz), Italy.,Bioinnova s.r.l.s, via Ponte Nove Luci 9, 85100 Potenza (Pz), Italy
| | - Emanuele Viviano
- University of Basilicata, Viale dell'AteneoLucano, 1 85100 Potenza (Pz), Italy.,Thema Informatik s.r.l., Via Ressel 2/F, 39100 Bolzano, Italy
| | - Giovanna Bermano
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen United Kingdom
| | - Giuseppe Martelli
- University of Basilicata, Viale dell'AteneoLucano, 1 85100 Potenza (Pz), Italy
| |
Collapse
|
9
|
Growth of Haematococcus pluvialis on a Small-Scale Angled Porous Substrate Photobioreactor for Green Stage Biomass. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the production of astaxanthin from Haematococcus pluvialis, the process of growing algal biomass in the vegetative green stage is an indispensable step in both suspended and immobilized cultivations. The green algal biomass is usually cultured in a suspension under a low light intensity. However, for astaxanthin accumulation, the microalgae need to be centrifuged and transferred to a new medium or culture system, a significant difficulty when upscaling astaxanthin production. In this research, a small-scale angled twin-layer porous substrate photobioreactor (TL-PSBR) was used to cultivate green stage biomass of H. pluvialis. Under low light intensities of 20–80 µmol photons m−2·s−1, algae in the biofilm consisted exclusively of non-motile vegetative cells (green palmella cells) after ten days of culturing. The optimal initial biomass density was 6.5 g·m−2, and the dry biomass productivity at a light intensity of 80 µmol photons m−2·s−1 was 6.5 g·m−2·d−1. The green stage biomass of H. pluvialis created in this small-scale angled TL-PSBR can be easily harvested and directly used as the source of material for the inoculation of a pilot-scale TL-PSBR for the production of astaxanthin.
Collapse
|
10
|
Perozeni F, Cazzaniga S, Baier T, Zanoni F, Zoccatelli G, Lauersen KJ, Wobbe L, Ballottari M. Turning a green alga red: engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2053-2067. [PMID: 32096597 PMCID: PMC7540493 DOI: 10.1111/pbi.13364] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 05/03/2023]
Abstract
The green alga Chlamydomonas reinhardtii does not synthesize high-value ketocarotenoids like canthaxanthin and astaxanthin; however, a β-carotene ketolase (CrBKT) can be found in its genome. CrBKT is poorly expressed, contains a long C-terminal extension not found in homologues and likely represents a pseudogene in this alga. Here, we used synthetic redesign of this gene to enable its constitutive overexpression from the nuclear genome of C. reinhardtii. Overexpression of the optimized CrBKT extended native carotenoid biosynthesis to generate ketocarotenoids in the algal host causing noticeable changes the green algal colour to reddish-brown. We found that up to 50% of native carotenoids could be converted into astaxanthin and more than 70% into other ketocarotenoids by robust CrBKT overexpression. Modification of the carotenoid metabolism did not impair growth or biomass productivity of C. reinhardtii, even at high light intensities. Under different growth conditions, the best performing CrBKT overexpression strain was found to reach ketocarotenoid productivities up to 4.3 mg/L/day. Astaxanthin productivity in engineered C. reinhardtii shown here might be competitive with that reported for Haematococcus lacustris (formerly pluvialis) which is currently the main organism cultivated for industrial astaxanthin production. In addition, the extractability and bio-accessibility of these pigments were much higher in cell wall-deficient C. reinhardtii than the resting cysts of H. lacustris. Engineered C. reinhardtii strains could thus be a promising alternative to natural astaxanthin producing algal strains and may open the possibility of other tailor-made pigments from this host.
Collapse
Affiliation(s)
| | | | - Thomas Baier
- Faculty of BiologyCenter for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | | | | | - Kyle J. Lauersen
- Faculty of BiologyCenter for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | - Lutz Wobbe
- Faculty of BiologyCenter for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | | |
Collapse
|
11
|
Han SI, Chang SH, Lee C, Jeon MS, Heo YM, Kim S, Choi YE. Astaxanthin biosynthesis promotion with pH shock in the green microalga, Haematococcus lacustris. BIORESOURCE TECHNOLOGY 2020; 314:123725. [PMID: 32615445 DOI: 10.1016/j.biortech.2020.123725] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
In this study, the use of pH shock to improve astaxanthin synthesis in Haematococcus lacustris was investigated. It has been found that pH shock (pH = 4.5, 60 s) imposes stress in the cells and induces physiological changes, which result in astaxanthin accumulation. The optimal acid-base combination of pH shock was H2SO4-KOH, which increased the astaxanthin content per cell to 39 ± 6.92% than those of the control. In addition, pH shock can be applied simultaneously with the other inductive strategies such as high irradiance and carbon source supply. When high irradiance was applied simultaneously with pH shock, astaxanthin yield was increased 65 ± 0.541% than control. In addition, astaxanthin content per cell was increased 105 ± 6.66% than those of the control, with the concomitant application of carbon source addition with pH shock. Herein, these novel findings provide a useful technique for producing astaxanthin using H. lacustris.
Collapse
Affiliation(s)
- Sang-Il Han
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | | | - Changsu Lee
- Division of Applied Life Sciences (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Seo Jeon
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young Mok Heo
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sok Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Li X, Wang X, Duan C, Yi S, Gao Z, Xiao C, Agathos SN, Wang G, Li J. Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis. Biotechnol Adv 2020; 43:107602. [PMID: 32711005 DOI: 10.1016/j.biotechadv.2020.107602] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 01/14/2023]
Abstract
Although biotechnologies for astaxanthin production from Haematococcus pluvialis have been developed for decades and many production facilities have been established throughout the world, the production cost is still high. This paper is to evaluate the current production processes and production facilities, to analyze the R&D strategies for process improvement, and to review the recent research advances shedding light on production cost reduction. With these efforts being made, we intent to conclude that the production cost of astaxanthin from Haematococcus might be substantially reduced to the levels comparable to that of chemical astaxanthin through further R&D and the future research might need to focus on strain selection and improvement, cultivation process optimization, innovation of cultivation methodologies, and revolution of extraction technologies.
Collapse
Affiliation(s)
- Xin Li
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, PR China
| | - Xiaoqian Wang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, PR China
| | - Chuanlan Duan
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, PR China
| | - Shasha Yi
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, PR China
| | - Zhengquan Gao
- School of Life Sciences, Shandong University of Technology, Zibo, PR China
| | - Chaowen Xiao
- College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Spiros N Agathos
- Earth and Life Institute, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | - Jian Li
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, PR China.
| |
Collapse
|
13
|
Enhanced Biomass and Astaxanthin Production of Haematococcus pluvialis by a Cell Transformation Strategy with Optimized Initial Biomass Density. Mar Drugs 2020; 18:md18070341. [PMID: 32610482 PMCID: PMC7401282 DOI: 10.3390/md18070341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 01/08/2023] Open
Abstract
Astaxanthin from H. pluvialis is an antioxidant and presents a promising application in medicine for human health. The two-stage strategy has been widely adopted to produce astaxanthin by the Haematococcus industry and research community. However, cell death and low astaxanthin productivity have seriously affected the stability of astaxanthin production. This study aims to test the effect of cell transformation strategies on the production of astaxanthin from H. pluvialis and determine the optimal initial biomass density (IBD) in the red stage. The experimental design is divided into two parts, one is the vegetative growth experiment and the other is the stress experiment. The results indicated that: (1) the cell transformation strategy of H. pluvialis can effectively reduce cell death occurred in the red stage and significantly increase the biomass and astaxanthin production. (2) Compared with the control group, the cell mortality rate of the red stage in the treatment group was reduced by up to 81.6%, and the biomass and astaxanthin production was increased by 1.63 times and 2.1 times, respectively. (3) The optimal IBD was determined to be 0.5, and the highest astaxanthin content can reach 38.02 ± 2.40 mg·g−1. Thus, this work sought to give useful information that will lead to an improved understanding of the cost-effective method of cultivation of H. pluvialis for natural astaxanthin. This will be profitable for algal and medicine industry players.
Collapse
|
14
|
Mixotrophy in green microalgae grown on an organic and nutrient rich waste. World J Microbiol Biotechnol 2020; 36:20. [DOI: 10.1007/s11274-020-2802-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/11/2020] [Indexed: 11/26/2022]
|
15
|
Khoo KS, Lee SY, Ooi CW, Fu X, Miao X, Ling TC, Show PL. Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis. BIORESOURCE TECHNOLOGY 2019; 288:121606. [PMID: 31178260 DOI: 10.1016/j.biortech.2019.121606] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 05/21/2023]
Abstract
Haematococcus pluvialis is one of the most abundant sources of natural astaxanthin as compared to others microorganism. Therefore, it is important to understand the biorefinery of astaxanthin from H. pluvialis, starting from the cultivation stage to the downstream processing of astaxanthin. The present review begins with an introduction of cellular morphologies and life cycle of H. pluvialis from green vegetative motile stage to red non-motile haematocyst stage. Subsequently, the conventional biorefinery methods (e.g., mechanical disruption, solvent extraction, direct extraction using vegetable oils, and enhanced solvent extraction) and recent advanced biorefinery techniques (e.g., supercritical CO2 extraction, magnetic-assisted extraction, ionic liquids extraction, and supramolecular solvent extraction) were presented and evaluated. Moreover, future prospect and challenges were highlighted to provide a useful guide for future development of biorefinery of astaxanthin from H. pluvialis. The review aims to serve as a present knowledge for researchers dealing with the bioproduction of astaxanthin from H. pluvialis.
Collapse
Affiliation(s)
- Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Sze Ying Lee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Kajang 43000, Selangor, Malaysia
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Xiaoting Fu
- College of Food Science & Engineering, Ocean University of China, Qingdao 266000, China
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
16
|
Effects of an auxin-producing symbiotic bacterium on cell growth of the microalga Haematococcus pluvialis: Elevation of cell density and prolongation of exponential stage. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101547] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Wang F, Gao B, Wu M, Huang L, Zhang C. A novel strategy for the hyper-production of astaxanthin from the newly isolated microalga Haematococcus pluvialis JNU35. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101466] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Han SI, Yao J, Lee C, Park J, Choi YE. A novel approach to enhance astaxanthin production in Haematococcus lacustris using a microstructure-based culture platform. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Accumulation of Astaxanthin Was Improved by the Nonmotile Cells of Haematococcus pluvialis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8101762. [PMID: 30868075 PMCID: PMC6379868 DOI: 10.1155/2019/8101762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/13/2018] [Accepted: 01/23/2019] [Indexed: 11/17/2022]
Abstract
The current commercial production of natural astaxanthin is mainly carried out using Haematococcus pluvialis vegetative cells in the "two-stage" batch mode. The motile vegetative cells are more sensitive to stress than nonmotile vegetative cells, thereby affecting the overall astaxanthin productivity in H. pluvialis cultures. In this study, we compared the differences between motile cells and nonmotile cells in astaxanthin productivity, morphological changes, the mortality rate, and the diameter of the formed cysts. The experimental design was achieved by two different types H. pluvialis cell under continuous light of 80 μmol photons m-2 s-1 for a 9-day induction period. The highest astaxanthin concentration of 48.42 ± 3.13 mg L-1 was obtained in the nonmotile cell cultures with the highest the productivity of 5.04 ± 0.15 mg L-1 day-1, which was significantly higher than that in the motile cell cultures. The microscopic examination of cell morphological showed a large number of photooxidative damaged cells occurring in the motile cell cultures, resulting in higher cell mortality rate (22.2 ± 3.97%) than nonmotile cell cultures (9.6 ± 0.63%). In addition, the analysis results of cell diameter statistics indicated that nonmotile cells were more conducive to the formation of large astaxanthin-rich cysts than motile cells. In conclusion, the works presented here suggest that the accumulation of astaxanthin was significantly improved by nonmotile cells of H. pluvialis, which provided a possibility of optimizing the existing H. pluvialis cultivation strategy for the industrial production.
Collapse
|
20
|
Li F, Cai M, Lin M, Huang X, Wang J, Ke H, Zheng X, Chen D, Wang C, Wu S, An Y. Differences between Motile and Nonmotile Cells of Haematococcus pluvialis in the Production of Astaxanthin at Different Light Intensities. Mar Drugs 2019; 17:md17010039. [PMID: 30634492 PMCID: PMC6356902 DOI: 10.3390/md17010039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 11/16/2022] Open
Abstract
Haematococcus pluvialis, as the best natural resource of astaxanthin, is widely used in nutraceuticals, aquaculture, and cosmetic industries. The purpose of this work was to compare the differences in astaxanthin accumulation between motile and nonmotile cells of H. pluvialis and to determine the relationship between the two cells and astaxanthin production. The experiment design was achieved by two different types of H. pluvialis cell and three different light intensities for an eight day induction period. The astaxanthin concentrations in nonmotile cell cultures were significantly increased compared to motile cell cultures. The increase of astaxanthin was closely associated with the enlargement of cell size, and the nonmotile cells were more conducive to the formation of large astaxanthin-rich cysts than motile cells. The cyst enlargement and astaxanthin accumulation of H. pluvialis were both affected by light intensity, and a general trend was that the higher the light intensity, the larger the cysts formed, and the larger the quantity of astaxanthin accumulated. In addition, the relatively low cell mortality rate in the nonmotile cell cultures indicated that the nonmotile cells have a stronger tolerance to photooxidative stress. We suggest that applying nonmotile cells as the major cell type of H. pluvialis to the induction period may help to enhance the content of astaxanthin and the stability of astaxanthin production.
Collapse
Affiliation(s)
- Feng Li
- The Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361101, China.
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361101, China.
- Key Laboratory of Marine Chemistry and Applied Technology, Xiamen 361101, China.
- College of Ocean and Earth Science, Xiamen University, Xiamen 361101, China.
| | - Minggang Cai
- The Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361101, China.
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361101, China.
- Key Laboratory of Marine Chemistry and Applied Technology, Xiamen 361101, China.
- College of Ocean and Earth Science, Xiamen University, Xiamen 361101, China.
- Xiamen Ocean Vocational College, Xiamen 361101, China.
| | - Mingwei Lin
- College of Ocean and Earth Science, Xiamen University, Xiamen 361101, China.
| | - Xianghu Huang
- College of fisheries, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Jun Wang
- Xiamen Ocean Vocational College, Xiamen 361101, China.
| | - Hongwei Ke
- College of Ocean and Earth Science, Xiamen University, Xiamen 361101, China.
| | - Xuehong Zheng
- Key Laboratory of Marine Chemistry and Applied Technology, Xiamen 361101, China.
- College of Ocean and Earth Science, Xiamen University, Xiamen 361101, China.
| | - Ding Chen
- Key Laboratory of Marine Chemistry and Applied Technology, Xiamen 361101, China.
- College of Ocean and Earth Science, Xiamen University, Xiamen 361101, China.
| | - Chunhui Wang
- Key Laboratory of Marine Chemistry and Applied Technology, Xiamen 361101, China.
- College of Ocean and Earth Science, Xiamen University, Xiamen 361101, China.
| | - Shaoting Wu
- College of Ocean and Earth Science, Xiamen University, Xiamen 361101, China.
| | - Yu An
- College of Ocean and Earth Science, Xiamen University, Xiamen 361101, China.
| |
Collapse
|
21
|
Blue light enhances astaxanthin biosynthesis metabolism and extraction efficiency in Haematococcus pluvialis by inducing haematocyst germination. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Polyploid polynuclear consecutive cell-cycle enables large genome-size in Haematococcus pluvialis. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Deng Y, Hu Z, Shang L, Peng Q, Tang YZ. Transcriptomic Analyses of Scrippsiella trochoidea Reveals Processes Regulating Encystment and Dormancy in the Life Cycle of a Dinoflagellate, with a Particular Attention to the Role of Abscisic Acid. Front Microbiol 2017; 8:2450. [PMID: 29312167 PMCID: PMC5732363 DOI: 10.3389/fmicb.2017.02450] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022] Open
Abstract
Due to the vital importance of resting cysts in the biology and ecology of many dinoflagellates, a transcriptomic investigation on Scrippsiella trochoidea was conducted with the aim to reveal the molecular processes and relevant functional genes regulating encystment and dormancy in dinoflagellates. We identified via RNA-seq 3,874 (out of 166,575) differentially expressed genes (DEGs) between resting cysts and vegetative cells; a pause of photosynthesis (confirmed via direct measurement of photosynthetic efficiency); an active catabolism including β-oxidation, glycolysis, glyoxylate pathway, and TCA in resting cysts (tested via measurements of respiration rate); 12 DEGs encoding meiotic recombination proteins and members of MEI2-like family potentially involved in sexual reproduction and encystment; elevated expressions in genes encoding enzymes responding to pathogens (chitin deacetylase) and ROS stress in cysts; and 134 unigenes specifically expressed in cysts. We paid particular attention to genes pertaining to phytohormone signaling and identified 4 key genes regulating abscisic acid (ABA) biosynthesis and catabolism, with further characterization based on their full-length cDNA obtained via RACE-PCR. The qPCR results demonstrated elevated biosynthesis and repressed catabolism of ABA during the courses of encystment and cyst dormancy, which was significantly enhanced by lower temperature (4 ± 1°C) and darkness. Direct measurements of ABA using UHPLC-MS/MS and ELISA in vegetative cells and cysts both fully supported qPCR results. These results collectively suggest a vital role of ABA in regulating encystment and maintenance of dormancy, akin to its function in seed dormancy of higher plants. Our results provided a critical advancement in understanding molecular processes in resting cysts of dinoflagellates.
Collapse
Affiliation(s)
- Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Quancai Peng
- Research Center of Analysis and Measurement, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
24
|
Astaxanthin from Haematococcus pluvialis as a natural photosensitizer for dye-sensitized solar cell. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.06.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
|
26
|
Murray AM, Fotidis IA, Isenschmid A, Haxthausen KRA, Angelidaki I. Wirelessly powered submerged-light illuminated photobioreactors for efficient microalgae cultivation. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Astaxanthin biosynthetic pathway: Molecular phylogenies and evolutionary behaviour of Crt genes in eubacteria. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Vo TT, Lee C, Han SI, Kim JY, Kim S, Choi YE. Effect of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid on different growth stages of Haematococcus pluvialis. BIORESOURCE TECHNOLOGY 2016; 220:85-93. [PMID: 27566516 DOI: 10.1016/j.biortech.2016.08.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
In this study, we explored the effects of ACC on other stages of H. pluvialis. Interestingly, even though ACC displayed a dose-dependent effect on astaxanthin production, it is evident that astaxanthin production could be facilitated whenever the cells were treated at the early red stage. The transcriptional levels of BKT, CHY, SOD, and CAT genes supported enhanced astaxanthin biosynthesis upon ACC treatment at the early red stage. The combinatorial synergistic effect of ACC and light intensity was also confirmed. Finally, two-step application of ACC at the vegetative phase to increase biomass production and at the early-red stage to promote astaxanthin biosynthesis was proposed to maximize the efficiency of ACC treatment.
Collapse
Affiliation(s)
- Thi-Thao Vo
- Department of Bioactive Material Sciences, Chonbuk National University, Republic of Korea
| | - Changsu Lee
- Department of Bioprocess Engineering, Chonbuk National University, Republic of Korea
| | - Sang-Il Han
- Division of Environmental Science & Ecological Engineering, Korea University, Republic of Korea
| | - Jee Young Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Republic of Korea
| | - Sok Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Republic of Korea
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, Korea University, Republic of Korea.
| |
Collapse
|
29
|
Enhancement of astaxanthin production from Haematococcus pluvialis mutants by three-stage mutagenesis breeding. J Biotechnol 2016; 236:71-7. [PMID: 27527395 DOI: 10.1016/j.jbiotec.2016.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 11/22/2022]
Abstract
Haematococcus pluvialis was modified for higher astaxanthin production compatible with the superiorities of high biomass and high activity by three-stage mutagenesis breeding. UV irradiation mutants named UV11-4 made an increase on cell dry weight, but showed a longer growth circle than the wild type. On the basis of UV mutants, ethyl methane sulphonate (EMS) mutants E2-5 cut down the latent phase, brought forward and extended the logarithmic phase. The inhibitor diphenylamine (DPA) was employed to screen high-yield astaxanthin producer by the color change of colonies from green to red on solid medium. Via the contravariant cultivation, proliferation and transformation, the mutant DPA12-2 possessed an 1.7-fold astaxanthin production compared to the wild type, reaching 47.21±3.30mg/g dry cells.
Collapse
|
30
|
|
31
|
Choi YY, Hong ME, Sim SJ. Enhanced astaxanthin extraction efficiency from Haematococcus pluvialis via the cyst germination in outdoor culture systems. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Wen Z, Liu Z, Hou Y, Liu C, Gao F, Zheng Y, Chen F. Ethanol induced astaxanthin accumulation and transcriptional expression of carotenogenic genes in Haematococcus pluvialis. Enzyme Microb Technol 2015. [PMID: 26215339 DOI: 10.1016/j.enzmictec.2015.06.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Haematococcus pluvialis is one of the most promising natural sources of astaxanthin. However, inducing the accumulation process has become one of the primary obstacles in astaxanthin production. In this study, the effect of ethanol on astaxanthin accumulation was investigated. The results demonstrated that astaxanthin accumulation occurred with ethanol addition even under low-light conditions. The astaxanthin productivity could reach 11.26 mg L(-1) d(-1) at 3% (v/v) ethanol, which was 2.03 times of that of the control. The transcriptional expression patterns of eight carotenogenic genes were evaluated using real-time PCR. The results showed that ethanol greatly enhanced transcription of the isopentenyl diphosphate (IPP) isomerase genes (ipi-1 and ipi-2), which were responsible for isomerization reaction of IPP and dimethylallyl diphosphate (DMAPP). This finding suggests that ethanol induced astaxanthin biosynthesis was up-regulated mainly by ipi-1 and ipi-2 at transcriptional level, promoting isoprenoid synthesis and substrate supply to carotenoid formation. Thus ethanol has the potential to be used as an effective reagent to induce astaxanthin accumulation in H. pluvialis.
Collapse
Affiliation(s)
- Zewen Wen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Zhiyong Liu
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Yuyong Hou
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Chenfeng Liu
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Feng Gao
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Yubin Zheng
- Shandong Jinjing Biotechnology Co., Ltd, Shandong 261313, PR China
| | - Fangjian Chen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| |
Collapse
|
33
|
Enhanced autotrophic astaxanthin production from Haematococcus pluvialis under high temperature via heat stress-driven Haber-Weiss reaction. Appl Microbiol Biotechnol 2015; 99:5203-15. [PMID: 25683663 DOI: 10.1007/s00253-015-6440-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/20/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
High temperatures (30-36 °C) inhibited astaxanthin accumulation in Haematococcus pluvialis under photoautotrophic conditions. The depression of carotenogenesis was primarily attributed to excess intracellular less reactive oxygen species (LROS; O2 (-) and H2O2) levels generated under high temperature conditions. Here, we show that the heat stress-driven inefficient astaxanthin production was improved by accelerating the iron-catalyzed Haber-Weiss reaction to convert LROS into more reactive oxygen species (MROS; O2 and OH·), thereby facilitating lipid peroxidation. As a result, during 18 days of photoautotrophic induction, the astaxanthin concentration of cells cultured in high temperatures in the presence of iron (450 μM) was dramatically increased by 75 % (30 °C) and 133 % (36 °C) compared to that of cells exposed to heat stress alone. The heat stress-driven Haber-Weiss reaction will be useful for economically producing astaxanthin by reducing energy cost and enhancing photoautotrophic astaxanthin production, particularly outdoors utilizing natural solar radiation including heat and light for photo-induction of H. pluvialis.
Collapse
|
34
|
Nogami S, Ohnuki S, Ohya Y. Hyperspectral imaging techniques for the characterization of Haematococcus pluvialis (Chlorophyceae). JOURNAL OF PHYCOLOGY 2014; 50:939-947. [PMID: 26988647 DOI: 10.1111/jpy.12226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/25/2014] [Indexed: 06/05/2023]
Abstract
A hyperspectral imaging camera was combined with a bright-field microscope to investigate the intracellular distribution of pigments in cells of the green microalga Haematococcus pluvialis, a synonym for H. lacustris (Chlorophyceae). We applied multivariate curve resolution to the hyperspectral image data to estimate the pigment contents in culture and revealed that the predicted values were consistent with actual measurements obtained from extracted pigments. Because it was possible to estimate pigment contents in every pixel, the intracellular distribution of the pigments was investigated during various life-cycle stages. Astaxanthin was localized specifically at the eyespot of zoospores in early culture stages. Then, it became widely distributed in cells, but subsequently localized differently than the chl. Integrated with our recently developed image-processing program "HaematoCalMorph," the hyperspectral imaging system was useful for monitoring intracellular distributions of pigments during culture as well as for studying cellular responses under various conditions.
Collapse
Affiliation(s)
- Satoru Nogami
- Laboratory of Signal Transduction, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, FSB101, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
- JST-CREST, Kashiwa, 277-8562, Japan
| | - Shinsuke Ohnuki
- Laboratory of Signal Transduction, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, FSB101, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
- JST-CREST, Kashiwa, 277-8562, Japan
| | - Yoshikazu Ohya
- Laboratory of Signal Transduction, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, FSB101, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
- JST-CREST, Kashiwa, 277-8562, Japan
| |
Collapse
|
35
|
Chekanov K, Lobakova E, Selyakh I, Semenova L, Sidorov R, Solovchenko A. Accumulation of astaxanthin by a new Haematococcus pluvialis strain BM1 from the white sea coastal rocks (Russia). Mar Drugs 2014; 12:4504-20. [PMID: 25196836 PMCID: PMC4145328 DOI: 10.3390/md12084504] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/17/2014] [Accepted: 08/04/2014] [Indexed: 11/26/2022] Open
Abstract
We report on a novel arctic strain BM1 of a carotenogenic chlorophyte from a coastal habitat with harsh environmental conditions (wide variations in solar irradiance, temperature, salinity and nutrient availability) identified as Haematococcus pluvialis Flotow. Increased (25‰) salinity exerted no adverse effect on the growth of the green BM1 cells. Under stressful conditions (high light, nitrogen and phosphorus deprivation), green vegetative cells of H. pluvialis BM1 grown in BG11 medium formed non-motile palmelloid cells and, eventually, hematocysts capable of a massive accumulation of the keto-carotenoid astaxanthin with a high nutraceutical and therapeutic potential. Routinely, astaxanthin was accumulated at the level of 4% of the cell dry weight (DW), reaching, under prolonged stress, 5.5% DW. Astaxanthin was predominantly accumulated in the form of mono- and diesters of fatty acids from C16 and C18 families. The palmelloids and hematocysts were characterized by the formation of red-colored cytoplasmic lipid droplets, increasingly large in size and number. The lipid droplets tended to merge and occupied almost the entire volume of the cell at the advanced stages of stress-induced carotenogenesis. The potential application of the new strain for the production of astaxanthin is discussed in comparison with the H. pluvialis strains currently employed in microalgal biotechnology.
Collapse
Affiliation(s)
- Konstantin Chekanov
- Biological Faculty of Lomonosov Moscow State University, 1/12 Leninskie Gori, Moscow 119234, Russia.
| | - Elena Lobakova
- Biological Faculty of Lomonosov Moscow State University, 1/12 Leninskie Gori, Moscow 119234, Russia.
| | - Irina Selyakh
- Biological Faculty of Lomonosov Moscow State University, 1/12 Leninskie Gori, Moscow 119234, Russia.
| | - Larisa Semenova
- Biological Faculty of Lomonosov Moscow State University, 1/12 Leninskie Gori, Moscow 119234, Russia.
| | - Roman Sidorov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 35, Botanicheskaya str., Moscow 127276, Russia.
| | - Alexei Solovchenko
- Biological Faculty of Lomonosov Moscow State University, 1/12 Leninskie Gori, Moscow 119234, Russia.
| |
Collapse
|
36
|
Ohnuki S, Nogami S, Ota S, Watanabe K, Kawano S, Ohya Y. Image-Based Monitoring System for Green Algal Haematococcus pluvialis (Chlorophyceae) Cells during Culture. ACTA ACUST UNITED AC 2013; 54:1917-29. [DOI: 10.1093/pcp/pct126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Gu W, Xie X, Gao S, Zhou W, Pan G, Wang G. Comparison of different cells of Haematococcus pluvialis reveals an extensive acclimation mechanism during its aging process: from a perspective of photosynthesis. PLoS One 2013; 8:e67028. [PMID: 23922648 PMCID: PMC3724872 DOI: 10.1371/journal.pone.0067028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/14/2013] [Indexed: 11/18/2022] Open
Abstract
Both biomass dominated green vegetative cells (GV) and astaxanthin-dominated orange resting cells (OR) affect the final astaxanthin yield in industry. Examination of Haematococcus pluvialis revealed that the OR cells greatly varied from the GV cells at both cellular and subcellular levels. In particular, the thylakoid membranes in the OR were disassembled and fragmented. Furthermore, the OR conserved most of the photosynthetic pigments, with elevated concentrations of violaxanthin, antheraxanthin, and neoxanthin. Notably, moderate photosynthesis was detected in OR, even though most of the thylakoid membranes were disassembled, when compared with those in the GV. However, the energy distribution pattern between photosystem I and II (PSI and PSII) in the OR favored PSI, which was also confirmed by 77-K fluorescence. As zeaxanthin was not detected in the OR, we attribute the acclimation role to astaxanthin, instead of xanthophyll cycle. Additionally, proteomic-scale comparison analysis of thylakoids of the OR and GV indicated no photosynthetically remarkable variations. However, an extensive acclimation mechanism of H. pluvialis was proposed, in which proteins in thylakoid of GV were noted to be involved in biomass accumulation and those in OR were involved in stress response. Conclusions of the comparative analysis might provide some physiological background of OR for astaxanthin production by using H. pluvialis.
Collapse
Affiliation(s)
- Wenhui Gu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | | | | | | | |
Collapse
|
38
|
Gharibzahedi SMT, Razavi SH, Mousavi SM. Microbial canthaxanthin: Perspectives on biochemistry and biotechnological production. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Seyed Mohammad Taghi Gharibzahedi
- Bioprocess Engineering Laboratory (BPEL); Department of Food Science, Engineering and Technology; Faculty of Agricultural Engineering and Technology, University of Tehran; Karaj Iran
| | - Seyed Hadi Razavi
- Bioprocess Engineering Laboratory (BPEL); Department of Food Science, Engineering and Technology; Faculty of Agricultural Engineering and Technology, University of Tehran; Karaj Iran
| | - Seyed Mohammad Mousavi
- Bioprocess Engineering Laboratory (BPEL); Department of Food Science, Engineering and Technology; Faculty of Agricultural Engineering and Technology, University of Tehran; Karaj Iran
| |
Collapse
|
39
|
Yen HW, Hu IC, Chen CY, Ho SH, Lee DJ, Chang JS. Microalgae-based biorefinery--from biofuels to natural products. BIORESOURCE TECHNOLOGY 2013; 135:166-174. [PMID: 23206809 DOI: 10.1016/j.biortech.2012.10.099] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/18/2012] [Accepted: 10/23/2012] [Indexed: 05/20/2023]
Abstract
The potential for biodiesel production from microalgal lipids and for CO2 mitigation due to photoautotrophic growth of microalgae have recently been recognized. Microalgae biomass also has other valuable components, including carbohydrates, long chain fatty acids, pigments and proteins. The microalgae-based carbohydrates consist mainly of cellulose and starch without lignin; thus they can be ready carbon source for the fermentation industry. Some microalgae can produce long chain fatty acids (such as DHA and EPA) as valuable health food supplements. In addition, microalgal pigments and proteins have considerable potential for many medical applications. This review article presents comprehensive information on the current state of these commercial applications, as well as the utilization and characteristics of the microalgal components, in addition to the key factors and challenges that should be addressed during the production of these materials, and thus provides a useful report that can aid the development of an efficient microalgae-based biorefinery process.
Collapse
Affiliation(s)
- Hong-Wei Yen
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
40
|
Hong ME, Choi SP, Park YI, Kim YK, Chang WS, Kim BW, Sim SJ. Astaxanthin production by a highly photosensitive Haematococcus mutant. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Enhanced production of astaxanthin in Paracoccus sp. strain N-81106 by using random mutagenesis and genetic engineering. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Han D, Wang J, Sommerfeld M, Hu Q. SUSCEPTIBILITY AND PROTECTIVE MECHANISMS OF MOTILE AND NON MOTILE CELLS OF HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE) TO PHOTOOXIDATIVE STRESS(1). JOURNAL OF PHYCOLOGY 2012; 48:693-705. [PMID: 27011086 DOI: 10.1111/j.1529-8817.2012.01147.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The life cycle of the unicellular green alga Haematococcus pluvialis consists of motile and nonmotile stages under typical growing conditions. In this study, we observed that motile cells were more susceptible than nonmotile cells to high light, resulting in a decrease in population density and photo-bleaching. Using two Haematococcus strains, CCAP 34/12 (a motile cell dominated strain) and SAG 34/1b (a nonmotile cell dominated strain), as model systems we investigated the cause of cell death and the protective mechanisms of the cells that survived high light. The death of motile cells under high light was attributed to the generation of excess reactive oxygen species (ROS), which caused severe damage to the photosynthetic components and the membrane system. Motile cells were able to dissipate excess light energy by nonphotochemical quenching and to relax ROS production by a partially up-regulated scavenging enzyme system. However, these strategies were not sufficient to protect the motile cells from high light stress. In contrast, nonmotile cells were able to cope with and survive under high light by (i) relaxing the over-reduced photosynthetic electron transport chain (PETC), thereby effectively utilizing PETC-generated NADPH to produce storage starch, neutral lipid, and astaxanthin, and thus preventing formation of excess ROS; (ii) down-regulating the linear electron transport by decreasing the level of cytochrome f; and (iii) consuming excess electrons produced by PSII via a significantly enhanced plastid terminal oxidase pathway.
Collapse
Affiliation(s)
- Danxiang Han
- Department of Applied Sciences and Mathematics, Arizona State University, 7001 E. Williams Field Road, Mesa, Arizona 85212, USAInstitute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of ChinaDepartment of Applied Sciences and Mathematics, Arizona State University, 7001 E. Williams Field Road, Mesa, Arizona 85212, USA
| | - Junfeng Wang
- Department of Applied Sciences and Mathematics, Arizona State University, 7001 E. Williams Field Road, Mesa, Arizona 85212, USAInstitute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of ChinaDepartment of Applied Sciences and Mathematics, Arizona State University, 7001 E. Williams Field Road, Mesa, Arizona 85212, USA
| | - Milton Sommerfeld
- Department of Applied Sciences and Mathematics, Arizona State University, 7001 E. Williams Field Road, Mesa, Arizona 85212, USAInstitute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of ChinaDepartment of Applied Sciences and Mathematics, Arizona State University, 7001 E. Williams Field Road, Mesa, Arizona 85212, USA
| | - Qiang Hu
- Department of Applied Sciences and Mathematics, Arizona State University, 7001 E. Williams Field Road, Mesa, Arizona 85212, USAInstitute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of ChinaDepartment of Applied Sciences and Mathematics, Arizona State University, 7001 E. Williams Field Road, Mesa, Arizona 85212, USA
| |
Collapse
|
43
|
Kaczor A, Baranska M. Structural Changes of Carotenoid Astaxanthin in a Single Algal Cell Monitored in Situ by Raman Spectroscopy. Anal Chem 2011; 83:7763-70. [DOI: 10.1021/ac201302f] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Agnieszka Kaczor
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| |
Collapse
|
44
|
Kaczor A, Turnau K, Baranska M. In situ Raman imaging of astaxanthin in a single microalgal cell. Analyst 2011; 136:1109-12. [DOI: 10.1039/c0an00553c] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Lemoine Y, Schoefs B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. PHOTOSYNTHESIS RESEARCH 2010; 106:155-77. [PMID: 20706789 DOI: 10.1007/s11120-010-9583-3] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 07/05/2010] [Indexed: 05/03/2023]
Abstract
Under stressful environments, many green algae such as Haematococcus pluvialis accumulate secondary ketocarotenoids such as canthaxanthin and astaxanthin. The carotenogenesis, responsible for natural phenomena such as red snows, generally accompanies larger metabolic changes as well as morphological modifications, i.e., the conversion of the green flagellated macrozoids into large red cysts. Astaxanthin accumulation constitutes a convenient way to store energy and carbon, which will be used for further synthesis under less stressful conditions. Besides this, the presence of high amount of astaxanthin enhances the cell resistance to oxidative stress generated by unfavorable environmental conditions including excess light, UV-B irradiation, and nutrition stress and, therefore, confers a higher survival capacity to the cells. This better resistance results from the quenching of oxygen atoms for the synthesis itself as well as from the antioxidant properties of the astaxanthin molecules. Therefore, astaxanthin synthesis corresponds to a multifunctional response to stress. In this contribution, the various biochemical, genetic, and molecular data related to the biosynthesis of ketocarotenoids by Haematococcus pluvialis and other taxa are reviewed and compared. A tentative regulatory model of the biochemical network driving astaxanthin production is proposed.
Collapse
Affiliation(s)
- Yves Lemoine
- University Lille Nord de France, UMR 8187 LOG CNRS/University Lille 1, Bât SN2, 59655 Villeneuve d'Ascq Cedex, France
| | | |
Collapse
|
46
|
Imamoglu E, Dalay MC, Sukan FV. Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis. N Biotechnol 2009; 26:199-204. [PMID: 19712763 DOI: 10.1016/j.nbt.2009.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/19/2009] [Accepted: 08/18/2009] [Indexed: 11/19/2022]
Abstract
Haematococcus pluvialis Flotow is used in the aquaculture, pharmaceutical and cosmetic industries. The aim of this study was to compare the effect of various stress media and high light intensities on astaxanthin accumulation. The experimental design was achieved by four different stress media and two different light intensities for 14 days of induction period. The astaxanthin concentrations of 29.62 mg g(-1) and 30.07 mg g(-1) were obtained in distilled water with CO(2) and N-free medium, respectively, with no significant difference between them at 546 micromol photons m(-2)s(-1). Because of the morphological changes of H. pluvialis, microscopic observation was considered during the induction period to facilitate the selection of stress medium. It was clear that the rate of astaxanthin accumulation was much faster in distilled water with the addition of CO(2). The main point is that, this medium is more economical than others, especially for the large-scale productions.
Collapse
Affiliation(s)
- Esra Imamoglu
- Ege University, Faculty of Engineering, Department of Bioengineering, Izmir 35100, Turkey.
| | | | | |
Collapse
|
47
|
Issarapayup K, Powtongsook S, Pavasant P. Flat panel airlift photobioreactors for cultivation of vegetative cells of microalga Haematococcus pluvialis. J Biotechnol 2009; 142:227-32. [DOI: 10.1016/j.jbiotec.2009.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 04/23/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
|
48
|
Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. ACTA ACUST UNITED AC 2008; 51:1088-93. [DOI: 10.1007/s11427-008-0145-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 07/08/2008] [Indexed: 11/26/2022]
|
49
|
Del Río E, Acién FG, García-Malea MC, Rivas J, Molina-Grima E, Guerrero MG. Efficiency assessment of the one-step production of astaxanthin by the microalga Haematococcus pluvialis. Biotechnol Bioeng 2008; 100:397-402. [PMID: 18098317 DOI: 10.1002/bit.21770] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Continuous cultivation of Haematococcus pluvialis under moderate nitrogen limitation represents a straightforward strategy, alternative to the classical two-stage approach, for astaxanthin production by this microalga. Performance of the one-step system has now been validated for more than 40 combinations of dilution rate, nitrate concentration in the feed medium, and incident irradiance, steady state conditions being achieved and maintained in all instances. Specific nitrate input and average irradiance were decisive parameters in determining astaxanthin content of the biomass, as well as productivity of the system. The growth rate of the continuous photoautotrophic cultures was a hyperbolic function of average irradiance. As long as specific nitrate input was above the threshold value of 2.7 mmol/g day, cells performed green and astaxanthin was present at basal levels only. Below the threshold value, under moderate nitrogen limitation conditions, astaxanthin accumulated to reach cellular levels of up to 1.1% of the dry biomass. Increasing irradiance resulted in enhancement of astaxanthin accumulation when nitrogen input was limiting, but never under nitrogen sufficiency. Mean daily productivity values of 20.8 +/- 2.8 mg astaxanthin/L day (1.9 +/- 0.3 g dry biomass/L day) were consistently achieved for a specific nitrate input of about 0.8 mmol/g day and an average irradiance range of 77-110 microE/m(2) s. Models relating growth rate and astaxanthin accumulation with both average irradiance and specific nitrate input fitted accurately experimental data. Simulations provided support to the contention of achieving efficient production of the carotenoid through convenient adjustment of the determining parameters, and yielded productivity estimates for the one-step system higher than 60 mg astaxanthin/L day. The demonstrated capabilities of this production system, as well as its product quality, made it a real alternative to the current two-stage system for the production of astaxanthin-rich biomass.
Collapse
Affiliation(s)
- Esperanza Del Río
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Investigaciones Científicas Isla de la Cartuja, Avda. Américo Vespucio, 49, 41092-Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Hoffman Y, Aflalo C, Zarka A, Gutman J, James TY, Boussiba S. Isolation and characterization of a novel chytrid species (phylum Blastocladiomycota), parasitic on the green alga Haematococcus. ACTA ACUST UNITED AC 2008; 112:70-81. [DOI: 10.1016/j.mycres.2007.09.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 06/17/2007] [Accepted: 09/11/2007] [Indexed: 11/27/2022]
|