1
|
Ghanem MM, Mohamed MA, Abd-Elaziz AM. Distribution, purification and characterization of a monofunctional catalase from Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
2
|
Peciulyte A, Samuelsson L, Olsson L, McFarland KC, Frickmann J, Østergård L, Halvorsen R, Scott BR, Johansen KS. Redox processes acidify and decarboxylate steam-pretreated lignocellulosic biomass and are modulated by LPMO and catalase. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:165. [PMID: 29946356 PMCID: PMC6004669 DOI: 10.1186/s13068-018-1159-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/31/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND The bioconversion of lignocellulosic feedstocks to ethanol is being commercialised, but further process development is required to improve their economic feasibility. Efficient saccharification of lignocellulose to fermentable sugars requires oxidative cleavage of glycosidic linkages by lytic polysaccharide monooxygenases (LPMOs). However, a proper understanding of the catalytic mechanism of this enzyme class and the interaction with other redox processes associated with the saccharification of lignocellulose is still lacking. The in-use stability of LPMO-containing enzyme cocktails is increased by the addition of catalase implying that hydrogen peroxide (H2O2) is generated in the slurry during incubation. Therefore, we sought to characterize the effects of enzymatic and abiotic sources of H2O2 on lignocellulose hydrolysis to identify parameters that could improve this process. Moreover, we studied the abiotic redox reactions of steam-pretreated wheat straw as a function of temperature and dry-matter (DM) content. RESULTS Abiotic reactions in pretreated wheat straw consume oxygen, release carbon dioxide (CO2) to the slurry, and decrease the pH. The magnitude of these reactions increased with temperature and with DM content. The presence of LPMO during saccharification reduced the amount of CO2 liberated, while the effect on pH was insignificant. Catalase led to increased decarboxylation through an unknown mechanism. Both in situ-generated and added H2O2 caused a decrease in pH. CONCLUSIONS Abiotic redox processes similar to those that occur in natural water-logged environments also affect the saccharification of pretreated lignocellulose. Heating of the lignocellulosic material and adjustment of pH trigger rapid oxygen consumption and acidification of the slurry. In industrial settings, it will be of utmost importance to control these processes. LPMOs interact with the surrounding redox compounds and redirect abiotic electron flow from decarboxylating reactions to fuel the oxidative cleavage of glycosidic bonds in cellulose.
Collapse
Affiliation(s)
- Ausra Peciulyte
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Louise Samuelsson
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Lisbeth Olsson
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | | | - Jesper Frickmann
- Novozymes North America, 77 Perry’s Chapel Church Road, Franklinton, NC 27525 USA
| | | | | | | | - Katja S. Johansen
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark
- Department of Geosciences and Natural Resource Management, Copenhagen University, Rolighedsvej 23, 1958 Frederiksberg, Denmark
| |
Collapse
|
3
|
Purification of camel liver catalase by zinc chelate affinity chromatography and pH gradient elution: An enzyme with interesting properties. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1070:104-111. [DOI: 10.1016/j.jchromb.2017.10.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/17/2017] [Accepted: 10/26/2017] [Indexed: 12/23/2022]
|
4
|
|
5
|
Cloning, Expression, and Characterization of a Novel Thermophilic Monofunctional Catalase from Geobacillus sp. CHB1. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7535604. [PMID: 27579320 PMCID: PMC4992532 DOI: 10.1155/2016/7535604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/03/2016] [Indexed: 12/11/2022]
Abstract
Catalases are widely used in many scientific areas. A catalase gene (Kat) from Geobacillus sp. CHB1 encoding a monofunctional catalase was cloned and recombinant expressed in Escherichia coli (E. coli), which was the first time to clone and express this type of catalase of genus Geobacillus strains as far as we know. This Kat gene was 1,467 bp in length and encoded a catalase with 488 amino acid residuals, which is only 81% similar to the previously studied Bacillus sp. catalase in terms of amino acid sequence. Recombinant catalase was highly soluble in E. coli and made up 30% of the total E. coli protein. Fermentation broth of the recombinant E. coli showed a high catalase activity level up to 35,831 U/mL which was only lower than recombinant Bacillus sp. WSHDZ-01 among the reported catalase production strains. The purified recombinant catalase had a specific activity of 40,526 U/mg and K m of 51.1 mM. The optimal reaction temperature of this recombinant enzyme was 60°C to 70°C, and it exhibited high activity over a wide range of reaction temperatures, ranging from 10°C to 90°C. The enzyme retained 94.7% of its residual activity after incubation at 60°C for 1 hour. High yield and excellent thermophilic properties are valuable features for this catalase in industrial applications.
Collapse
|
6
|
Kauldhar BS, Sooch BS. Tailoring nutritional and process variables for hyperproduction of catalase from a novel isolated bacterium Geobacillus sp. BSS-7. Microb Cell Fact 2016; 15:7. [PMID: 26762530 PMCID: PMC5377025 DOI: 10.1186/s12934-016-0410-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/05/2016] [Indexed: 11/25/2022] Open
Abstract
Background Catalase (EC 1.11.1.6) is one of the important industrial enzyme employed in diagnostic and analytical methods in the form of biomarkers and biosensors in addition to their enormous applications in textile, paper, food and pharmaceutical sectors. The present study demonstrates the utility of a newly isolated and adapted strain of genus Geobacillus possessing unique combination of several industrially important extremophilic properties for the hyper production of catalase. The bacterium can grow over a wide range of pH (3–12) and temperature (10–90 °C) with extraordinary capability to produce catalase. Results A novel extremophilic strain belonging to genus Geobacillus was exploited for the production of catalase by tailoring its nutritional requirements and process variables. One variable at a time traditional approach followed by computational designing was applied to customize the fermentation process. A simple fermentation media containing only three components namely sucrose (0.55 %, w/v), yeast extract (1.0 %, w/v) and BaCl2 (0.08 %, w/v) was designed for the hyperproduction of catalase. A controlled and optimum air supply caused a tremendous increase in the enzyme production on moving the bioprocess from the flask to bioreactor level. The present paper reports high quantum of catalase production (105,000 IU/mg of cells) in a short fermentation time of 12 h. To the best of our knowledge, there is no report in the literature that matches the performance of the developed protocol for the catalase production. This is the first serious study covering intracellular catalase production from thermophilic genus Geobacillus. Conclusions An increase in intracellular catalase production by 214.72 % was achieved in the optimized medium when transferred from the shake flask to the fermenter level. The extraordinary high production of catalase from Geobacillus sp. BSS-7 makes the isolated strain a prospective candidate for bulk catalase production on an industrial scale.
Collapse
Affiliation(s)
- Baljinder Singh Kauldhar
- Enzyme Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, 147002, Punjab, India.
| | - Balwinder Singh Sooch
- Enzyme Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
7
|
Ibrahim MA, Ghazy AHM, Masoud HM. Catalase from larvae of the camel tick Hyalomma dromedarii. Biochem Biophys Rep 2015; 4:411-416. [PMID: 29124232 PMCID: PMC5669351 DOI: 10.1016/j.bbrep.2015.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 09/26/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023] Open
Abstract
Catalase plays a major role in protecting cells against toxic reactive oxygen species. Here, Catalase was purified from larvae of the camel tick Hyalomma dromedarii and designated TLCAT. It was purified by ammonium sulfate precipitation and chromatography on DEAE-cellulose, Sephacryl S-300 and CM-cellulose columns. Gel filtration and SDS-PAGE of the purified TLCAT indicated that the protein has a native molecular weight of 120 kDa and is most likely a homodimer with a subunit of approximately 60 kDa. The Km value of TLCAT is 12 mM H2O2 and displayed its optimum activity at pH 7.2. CaCl2, MgCl2, MnCl2 and NiCl2 increased the activity of TLCAT, while FeCl2, CoCl2, CuCl2 and ZnCl2 inhibited the activity of TLCAT. Sodium azide inhibited TLCAT competitively with a Ki value of 0.28 mM. The presence of TLCAT in cells may play a role in protecting H. dromedarii ticks against oxidative damage. This finding will contribute to our understanding of the physiology of these ectoparasites and the development of untraditional methods to control them.
Collapse
Affiliation(s)
| | | | - Hassan M.M. Masoud
- Molecular Biology Department, National Research Centre, El-Tahrir st., Dokki, Giza, Egypt
| |
Collapse
|
8
|
Sooch BS, Kauldhar BS, Puri M. Recent insights into microbial catalases: Isolation, production and purification. Biotechnol Adv 2014; 32:1429-47. [DOI: 10.1016/j.biotechadv.2014.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 09/10/2014] [Accepted: 09/18/2014] [Indexed: 01/08/2023]
|
9
|
Purification and characterization of catalase from marine bacterium Acinetobacter sp. YS0810. BIOMED RESEARCH INTERNATIONAL 2014; 2014:409626. [PMID: 25045672 PMCID: PMC4087297 DOI: 10.1155/2014/409626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/27/2014] [Indexed: 12/16/2022]
Abstract
The catalase from marine bacterium Acinetobacter sp. YS0810 (YS0810CAT) was purified and characterized. Consecutive steps were used to achieve the purified enzyme as follows: ethanol precipitation, DEAE Sepharose ion exchange, Superdex 200 gel filtration, and Resource Q ion exchange. The active enzyme consisted of four identical subunits of 57.256 kDa. It showed a Soret peak at 405 nm, indicating the presence of iron protoporphyrin IX. The catalase was not apparently reduced by sodium dithionite but was inhibited by 3-amino-1,2,4-triazole, hydroxylamine hydrochloride, and sodium azide. Peroxidase-like activity was not found with the substrate o-phenylenediamine. So the catalase was determined to be a monofunctional catalase. N-terminal amino acid of the catalase analysis gave the sequence SQDPKKCPVTHLTTE, which showed high degree of homology with those of known catalases from bacteria. The analysis of amino acid sequence of the purified catalase by matrix-assisted laser desorption ionization time-of-flight mass spectrometry showed that it was a new catalase, in spite of its high homology with those of known catalases from other bacteria. The catalase showed high alkali stability and thermostability.
Collapse
|
10
|
Kavakçıoğlu B, Tarhan L. In vitro and in vivo inhibitory effects of some fungicides on catalase produced and purified from white-rot fungus Phanerochaete chrysosporium. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 42:356-64. [PMID: 24079700 DOI: 10.3109/21691401.2013.821412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, in vitro and in vivo effects of some commonly used fungicides, antibiotics, and various chemicals on isolated and purified catalase from Phanerochaete chrysosporium were investigated. The catalase was purified 129.10-fold by using 60% ammonium sulfate and 60% ethanol precipitations, DEAE-cellulose anion exchange and Sephacryl-S-200 gel filtration chromatographies from P. chrysosporium growth in carbon- and nitrogen-limited medium for 12 days. The molecular weight of native purified catalase from P. chrysosporium was found to be 290 ± 10 kDa, and sodium dodecyl sulfate (SDS)-PAGE results indicated that enzyme consisted of four apparently identical subunits, with a molecular weight of 72.5 ± 2.5 kDa. Kinetic characterization studies showed that optimum pH and temperature, Km and Vmax values of the purified catalase which were stable in basic region and at comparatively high temperatures were 7.5, 30°C, 289.86 mM, and 250,000 U/mg, respectively. The activity of purified catalase from P. chrysosporium was significantly inhibited by dithiothreitol (DTT), 2-mercaptoethanol, iodoacetamide, EDTA, and sodium dodecyl sulfate (SDS). It was found that while antibiotics had no inhibitory effects, 45 ppm benomyl, 144 ppm captan, and 47.5 ppm chlorothalonil caused 14.52, 10.82, and 38.86% inhibition of purified catalase, respectively. The inhibition types of these three fungicides were found to be non-competitive inhibition with the Ki values of 1.158, 0.638, and 0.145 mM and IC50 values of 0.573, 0.158, 0.010 mM, respectively. The results of in vivo experiments also showed that benomyl, captan and chlorothalonil caused 15.25, 1.96, and 36.70% activity decreases after 24-h treatments compared to that of the control.
Collapse
Affiliation(s)
- Berna Kavakçıoğlu
- Faculty of Science, Department of Chemistry, University of Dokuz Eylul , Izmir , Turkey
| | | |
Collapse
|
11
|
Characterization of catalase from psychrotolerant Psychrobacter piscatorii T-3 exhibiting high catalase activity. Int J Mol Sci 2012; 13:1733-1746. [PMID: 22408420 PMCID: PMC3291989 DOI: 10.3390/ijms13021733] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 01/16/2012] [Accepted: 01/30/2012] [Indexed: 12/30/2022] Open
Abstract
A psychrotolerant bacterium, strain T-3 (identified as Psychrobacter piscatorii), that exhibited an extraordinarily high catalase activity was isolated from the drain pool of a plant that uses H2O2 as a bleaching agent. Its cell extract exhibited a catalase activity (19,700 U·mg protein−1) that was higher than that of Micrococcus luteus used for industrial catalase production. Catalase was approximately 10% of the total proteins in the cell extract of the strain. The catalase (PktA) was purified homogeneously by only two purification steps, anion exchange and hydrophobic chromatographies. The purified catalase exhibited higher catalytic efficiency and higher sensitivity of activity at high temperatures than M. luteus catalase. The deduced amino acid sequence showed the highest homology with catalase of Psycrobacter cryohalolentis, a psychrotolelant bacterium obtained from Siberian permafrost. These findings suggest that the characteristics of the PktA molecule reflected the taxonomic relationship of the isolate as well as the environmental conditions (low temperatures and high concentrations of H2O2) under which the bacterium survives. Strain T-3 efficiently produces a catalase (PktA) at a higher rate than Exiguobacterium oxidotolerans, which produces a very strong activity of catalase (EktA) at a moderate rate, in order to adapt to high concentration of H2O2.
Collapse
|
12
|
Kandukuri SS, Noor A, Ranjini SS, Vijayalakshmi MA. Purification and characterization of catalase from sprouted black gram (Vigna mungo) seeds. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 889-890:50-4. [PMID: 22341355 DOI: 10.1016/j.jchromb.2012.01.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/23/2012] [Accepted: 01/26/2012] [Indexed: 10/14/2022]
Abstract
Black gram (Vigna mungo) is a legume which belongs to Fabaceae family. It is a rich source of protein. It has been known to have interesting small molecule antioxidant activity. However, its enzymatic antioxidant properties have not been explored much. In the present work we studied catalase, a principal antioxidant enzyme from black gram seeds. Day four sprouted black gram seeds were found to have a significant catalase content approximately of 15,240 U/g seeds. IMAC (Seph 4B-IDA-Zn(II)) was used for purifying this catalase, a purification fold of 106 and a high specific activity of 25,704 U/mg was obtained. The K(m) and V(max) of the purified catalase were found to be 16.2 mM and 2.5 μmol/min. The effect of inhibitors like Sodium azide (NaN(3)) and EDTA and different metal ions on catalase activity were studied. NaN(3), Fe(3+)and Cu(2+) were found to have profound inhibitory effects on the enzyme activity. Other metal ions like Ni(2+), Ca(2+), Mg(2+) and Mn(2+) had both enhancing and inhibitory effects. The enzyme showed optimal activity at a temperature of 40°C and pH 7.0. It was stable over a broad range of pH 6.0-10.0 and had a half life of 7h 30 min at 50°C.
Collapse
|
13
|
Nakayama M, Nakajima-Kambe T, Katayama H, Higuchi K, Kawasaki Y, Fuji R. High catalase production by Rhizobium radiobacter strain 2-1. J Biosci Bioeng 2009; 106:554-8. [PMID: 19134550 DOI: 10.1263/jbb.106.554] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 08/11/2008] [Indexed: 11/17/2022]
Abstract
To promote the application of catalase for treating wastewater containing hydrogen peroxide, bacteria exhibiting high catalase activity were screened. A bacterium, designated strain 2-1, with high catalase activity was isolated from the wastewater of a beverage factory that uses hydrogen peroxide. Strain 2-1 was identified as Rhizobium radiobacter (formerly known as Agrobacterium tumefaciens) on the basis of both phenotypic and genotypic characterizations. Although some strains of R. radiobacter are known plant pathogens, polymerase chain reaction (PCR) analysis showed that strain 2-1 has no phytopathogenic factor. Compared with a type strain of R. radiobacter, the specific catalase activity of strain 2-1 was approximately 1000-fold. Moreover, Strain 2-1 grew faster and exhibited considerably higher catalase activity than other microorganisms that have been used for industrial catalase production. Strain 2-1 is harmless to humans and the environment and produces catalase efficiently, suggesting that strain 2-1 is a good resource for the mass production of catalase for the treatment of hydrogen peroxide-containing wastewater.
Collapse
Affiliation(s)
- Mami Nakayama
- S.G. Laboratory Co., 2-35 Ohorikoen, Chuo-ku, Fukuoka 810-0051, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Brienzo M, Arantes V, Milagres AM. Enzymology of the thermophilic ascomycetous fungus Thermoascus aurantiacus. FUNGAL BIOL REV 2008. [DOI: 10.1016/j.fbr.2009.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Sutay Kocabas D, Bakir U, Phillips SEV, McPherson MJ, Ogel ZB. Purification, characterization, and identification of a novel bifunctional catalase-phenol oxidase from Scytalidium thermophilum. Appl Microbiol Biotechnol 2008; 79:407-15. [PMID: 18369615 DOI: 10.1007/s00253-008-1437-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/26/2008] [Accepted: 02/26/2008] [Indexed: 11/27/2022]
Abstract
A novel bifunctional catalase with an additional phenol oxidase activity was isolated from a thermophilic fungus, Scytalidium thermophilum. This extracellular enzyme was purified ca. 10-fold with 46% yield and was biochemically characterized. The enzyme contains heme and has a molecular weight of 320 kDa with four 80 kDa subunits and an isoelectric point of 5.0. Catalase and phenol oxidase activities were most stable at pH 7.0. The activation energies of catalase and phenol oxidase activities of the enzyme were found to be 2.7 +/- 0.2 and 10.1 +/- 0.4 kcal/mol, respectively. The pure enzyme can oxidize o-diphenols such as catechol, caffeic acid, and L-DOPA in the absence of hydrogen peroxide and the highest oxidase activity is observed against catechol. No activity is detected against tyrosine and common laccase substrates such as ABTS and syringaldazine with the exception of weak activity with p-hydroquinone. Common catechol oxidase inhibitors, salicylhydroxamic acid and p-coumaric acid, inhibit the oxidase activity. Catechol oxidation activity was also detected in three other catalases tested, from Aspergillus niger, human erythrocyte, and bovine liver, suggesting that this dual catalase-phenol oxidase activity may be a common feature of catalases.
Collapse
Affiliation(s)
- Didem Sutay Kocabas
- Chemical Engineering Department, Middle East Technical University, Ankara, Turkey
| | | | | | | | | |
Collapse
|
16
|
Amachi S, Kawaguchi N, Muramatsu Y, Tsuchiya S, Watanabe Y, Shinoyama H, Fujii T. Dissimilatory iodate reduction by marine Pseudomonas sp. strain SCT. Appl Environ Microbiol 2007; 73:5725-30. [PMID: 17644635 PMCID: PMC2074906 DOI: 10.1128/aem.00241-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 07/12/2007] [Indexed: 11/20/2022] Open
Abstract
Bacterial iodate (IO(3)(-)) reduction is poorly understood largely due to the limited number of available isolates as well as the paucity of information about key enzymes involved in the reaction. In this study, an iodate-reducing bacterium, designated strain SCT, was newly isolated from marine sediment slurry. SCT is phylogenetically closely related to the denitrifying bacterium Pseudomonas stutzeri and reduced 200 microM iodate to iodide (I(-)) within 12 h in an anaerobic culture containing 10 mM nitrate. The strain did not reduce iodate under the aerobic conditions. An anaerobic washed cell suspension of SCT reduced iodate when the cells were pregrown anaerobically with 10 mM nitrate and 200 microM iodate. However, cells pregrown without iodate did not reduce it. The cells in the former category showed methyl viologen-dependent iodate reductase activity (0.31 U mg(-1)), which was located predominantly in the periplasmic space. Furthermore, SCT was capable of anaerobic growth with 3 mM iodate as the sole electron acceptor, and the cells showed enhanced activity with respect to iodate reductase (2.46 U mg(-1)). These results suggest that SCT is a dissimilatory iodate-reducing bacterium and that its iodate reductase is induced by iodate under anaerobic growth conditions.
Collapse
Affiliation(s)
- Seigo Amachi
- Department of Bioresources Chemistry, Chiba University, 648 Matsudo, Matsudo-shi, Chiba 271-8510, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Isobe K, Inoue N, Takamatsu Y, Kamada K, Wakao N. Production of catalase by fungi growing at low pH and high temperature. J Biosci Bioeng 2006; 101:73-6. [PMID: 16503295 DOI: 10.1263/jbb.101.73] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 10/01/2005] [Indexed: 11/17/2022]
Abstract
More than 100 fungi were isolated from cultures at pH 1.0 or 2.5 and 42-45 degrees C, and the production of catalases was investigated. Four strains produced a catalase with high stability at pH 2.0, and three of them produced two extracellular catalases and four intracellular catalases. In these four intracellular catalases, two catalases were similar to extracellular catalases in enzymatic properties and pI. These strains belonged to Aspergillus niger.
Collapse
Affiliation(s)
- Kimiyasu Isobe
- Department of Agro-bioscience, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka 020-8550, Japan.
| | | | | | | | | |
Collapse
|
18
|
Ko HS, Fujiwara H, Yokoyama Y, Ohno N, Amachi S, Shinoyama H, Fujii T. Inducible production of alcohol oxidase and catalase in a pectin medium by Thermoascus aurantiacus IFO 31693. J Biosci Bioeng 2005; 99:290-2. [PMID: 16233791 DOI: 10.1263/jbb.99.290] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 11/29/2004] [Indexed: 11/17/2022]
Abstract
Thermoascus aurantiacus showed the best growth on medium containing pectin as a carbon source. The enzyme involved in the production of catalase in the fungus was alcohol oxidase. Formaldehyde dehydrogenase and formate dehydrogenase, in addition to alcohol oxidase and catalase, were detected in the cells grown on pectin. Alcohol oxidase was alkali resistant (pH 7 to 11), and was comparatively heat stable (55 degrees C).
Collapse
Affiliation(s)
- Hee-Sun Ko
- Department of Bioresources Science, Graduate School of Science and Technology, Chiba University, 648 Matsudo, Matsudo-city, Chiba 271-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Ko HS, Yokoyama Y, Ohno N, Okadome M, Amachi S, Shinoyama H, Fujii T. Purification and characterization of intracellular and extracellular, thermostable and alkali-tolerant alcohol oxidases produced by a thermophilic fungus, Thermoascus aurantiacus NBRC 31693. J Biosci Bioeng 2005; 99:348-53. [PMID: 16233800 DOI: 10.1263/jbb.99.348] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 12/22/2004] [Indexed: 11/17/2022]
Abstract
Intracellular and extracellular alcohol oxidases (AO int and AO ext) were purified from the liquid and solid cultures of a thermophilic fungus, Thermoascus aurantiacus NBRC 31693, as electrophoretically and isoelectrophoretically homogeneous proteins, respectively. Both enzymes contained a flavin adenine dinucleotide (FAD) cofactor and were stained with Schiff's reagent. The molecular weight of AO int was estimated to be about 320 kDa and its subunit was 75 kDa. The molecular weight of AO ext was about 560 kDa, and it was composed of two types of subunits (75 kDa and 59 kDa). The pIs of AO int and AO ext were 5.88 and 6.08, respectively. AO int and AO ext were stable up to 60 degrees C and 55 degrees C, respectively. The enzymes were stable over a wide range of pH from 6 to 11. AO int oxidized short straight-chain alcohols (K(m) for methanol, 13.5 mM and K(m) for ethanol, 15.8 mM). On the other hand, AO ext could oxidize secondary alcohols and aromatic alcohols (veratryl alcohol and benzyl alcohol) in addition to straight-chain alcohols (K(m) for methanol, 0.5 mM and K(m) for ethanol, 10.2 mM).
Collapse
Affiliation(s)
- Hee-Sun Ko
- Department of Bioresources Science, Graduate School of Science and Technology, Chiba University, 648 Matsudo, Matsudo-city, Chiba 271-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Thompson VS, Schaller KD, Apel WA. Purification and characterization of a novel thermo-alkali-stable catalase from Thermus brockianus. Biotechnol Prog 2003; 19:1292-9. [PMID: 12892493 DOI: 10.1021/bp034040t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel thermo-alkali-stable catalase from Thermus brockianus was purified and characterized. The protein was purified from a T. brockianus cell extract in a three-step procedure that resulted in 65-fold purification to a specific activity of 5300 U/mg. The enzyme consisted of four identical subunits of 42.5 kDa as determined by SDS-PAGE and a total molecular mass measured by gel filtration of 178 kDa. The catalase was active over a temperature range from 30 to 94 degrees C and a pH range from 6 to 10, with optimum activity occurring at 90 degrees C and pH 8. At pH 8, the enzyme was extremely stable at elevated temperatures with half-lives of 330 h at 80 degrees C and 3 h at 90 degrees C. The enzyme also demonstrated excellent stability at 70 degrees C and alkaline pH with measured half-lives of 510 h and 360 h at pHs of 9 and 10, respectively. The enzyme had an unusual pyridine hemochrome spectrum and appears to utilize eight molecules of heme c per tetramer rather than protoheme IX present in the majority of catalases studied to date. The absorption spectrum suggested that the heme iron of the catalase was in a 6-coordinate low spin state rather than the typical 5-coordinate high spin state. A K(m) of 35.5 mM and a V(max) of 20.3 mM/min.mg protein for hydrogen peroxide was measured, and the enzyme was not inhibited by hydrogen peroxide at concentrations up to 450 mM. The enzyme was strongly inhibited by cyanide and the traditional catalase inhibitor 3-amino-1,2,4-triazole. The enzyme also showed no peroxidase activity to peroxidase substrates o-dianisidine and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), a trait of typical monofunctional catalases. However, unlike traditional monofunctional catalases, the T. brockianus catalase was easily reduced by dithionite, a characteristic of catalase-peroxidases. The above properties indicate that this catalase has potential for applications in industrial bleaching processes to remove residual hydrogen peroxide from process streams.
Collapse
Affiliation(s)
- Vicki S Thompson
- Idaho National Engineering and Environmental Laboratory, Consortium for Extremophile Research, Biotechnology Department, P.O. Box 1625, Idaho Falls, Idaho 83415-2203, USA.
| | | | | |
Collapse
|
21
|
Yumoto I, Ichihashi D, Iwata H, Istokovics A, Ichise N, Matsuyama H, Okuyama H, Kawasaki K. Purification and characterization of a catalase from the facultatively psychrophilic bacterium Vibrio rumoiensis S-1(T) exhibiting high catalase activity. J Bacteriol 2000; 182:1903-9. [PMID: 10714995 PMCID: PMC101873 DOI: 10.1128/jb.182.7.1903-1909.2000] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Catalase from the facultatively psychrophilic bacterium Vibrio rumoiensis S-1(T), which was isolated from an environment exposed to H(2)O(2) and exhibited high catalase activity, was purified and characterized, and its localization in the cell was determined. Its molecular mass was 230 kDa, and the molecule consisted of four identical subunits. The enzyme, which was not apparently reduced by dithionite, showed a Soret peak at 406 nm in a resting state. The catalytic activity was 527,500 U. mg of protein(-1) under standard reaction conditions at 40 degrees C, 1.5 and 4.3 times faster, respectively, than those of the Micrococcus luteus and bovine catalases examined under the same reaction conditions, and showed a broad optimum pH range (pH 6 to 10). The catalase from strain S-1(T) is located not only in the cytoplasmic space but also in the periplasmic space. There is little difference in the activation energy for the activity between strain S-1(T) catalase and M. luteus and bovine liver catalases. The thermoinstability of the activity of the former catalase were significantly higher than those of the latter catalases. The thermoinstability suggests that the catalase from strain S-1(T) should be categorized as a psychrophilic enzyme. Although the catalase from strain S-1(T) is classified as a mammal type catalase, it exhibits the unique enzymatic properties of high intensity of enzymatic activity and thermoinstability. The results obtained suggest that these unique properties of the enzyme are in accordance with the environmental conditions under which the microorganism lives.
Collapse
Affiliation(s)
- I Yumoto
- Bioscience and Chemistry Division, Hokkaido National Industrial Research Institute, Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Characterization of a facultatively psychrophilic bacterium, vibrio rumoiensis sp. nov., that exhibits high catalase activity. Appl Environ Microbiol 1999; 65:67-72. [PMID: 9872761 PMCID: PMC90984 DOI: 10.1128/aem.65.1.67-72.1999] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel facultatively psychrophilic bacterium, strain S-1, which exhibits extraordinarily high catalase activity was isolated from the drain pool of a fish product processing plant that uses H2O2 as a bleaching and microbicidal agent. The catalase activity of the isolate was 1 or 2 orders of magnitude higher than those of Corynebacterium glutamicum, Staphylococcus aureus, Pseudomonas fluorescens, and five other species tested in this study. The strain seemed to possess only one kind of catalase, according to the results of polyacrylamide gel electrophoresis of the cell extract. The optimum temperature for catalase activity was about 30 degreesC, which was about 20 degreesC lower than that for bovine catalase activity. Electron microscopic observation revealed that the surface of the microorganism was covered by blebs. Although the isolate was nonflagellated, its taxonomic position on the basis of physiological and biochemical characteristics and analysis of 16S rRNA sequence and DNA-DNA relatedness data indicated that strain S-1 is a new species belonging to the genus Vibrio. Accordingly, we propose the name Vibrio rumoiensis. The type strain is S-1 (FERM P-14531).
Collapse
|