1
|
Al-Mamoori ZZ, Embaby AM, Hussein A, Mahmoud HE. A molecular study on recombinant pullulanase type I from Metabacillus indicus. AMB Express 2023; 13:40. [PMID: 37119334 PMCID: PMC10148936 DOI: 10.1186/s13568-023-01545-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/15/2023] [Indexed: 05/01/2023] Open
Abstract
Despite the great potential of cold-adapted pullulanase type I in tremendous industrial applications, the majority of commercialized pullulnases type I are of mesophilic and thermophilic origin so far. Hence, the present study underlines cloning, heterologous expression in Escherichia coli, characterization, and in silico structural modeling of Metabacillus indicus open reading frame of cold-adapted pullulanase type I (Pull_Met: 2133 bp & 710 a.a) for the first time ever. The predicted Pull_Met tertiary structure by I-TASSER, was structurally similar to PDB 2E9B pullulanase of Bacillus subtilis. Purified to homogeneity Pull_Met showed specific activity (667.6 U/mg), fold purification (31.7), molecular mass (79.1 kDa), monomeric subunit and Km (2.63 mg/mL) on pullulan. Pull_Met had optimal pH (6.0) and temperature (40 oC). After 10 h pre-incubation at pH 2.6-6.0, Pull_Met maintained 47.12 ± 0.0-35.28 ± 1.64% of its activity. After 120 min pre-incubation at 30 oC, the retained activity was 51.11 ± 0.29%. At 10 mM Mn2+, Na2+, Ca2+, Mg2+, and Cu2+ after 30 min preincubation, retained activity was 155.89 ± 8.97, 134.71 ± 1.82, 97.64 ± 7.06, 92.25 ± 4.18, and 71.28 ± 1.10%, respectively. After 30 min pre-incubation with Tween-80, Tween-20, Triton X-100, and commercially laundry detergents at 0.1% (v/v), the retained activity was 141.15 ± 3.50, 145.45 ± 0.20, 118.12 ± 11.00, and 90%, respectively. Maltotriose was the only end product of pullulan hydrolysis. Synergistic action of CA-AM21 (α-amylase) and Pull_Met on starch liberated 16.51 g reducing sugars /g starch after 1 h at 40 oC. Present data (cold-adeptness, detergent stability, and ability to exhibit starch saccharification of Pull_Met) underpins it as a promising pullulanase type I for industrial exploitation.
Collapse
Affiliation(s)
- Zahraa Z Al-Mamoori
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amira M Embaby
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Ahmed Hussein
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hoda E Mahmoud
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Chen M, Zhang J, Wang J, Lin L, Wei W, Shen Y, Wei D. A type I pullulanase from
Geobacillus subterraneus
: Functional expression in
Escherichia coli
, enzyme characterization, truncation, and application. STARCH-STARKE 2022. [DOI: 10.1002/star.202200044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mianhui Chen
- State Key Laboratory of Bioreactor Engineering Newworld Institute of Biotechnology East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Jin Zhang
- State Key Laboratory of Bioreactor Engineering Newworld Institute of Biotechnology East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Jingjing Wang
- State Key Laboratory of Bioreactor Engineering Newworld Institute of Biotechnology East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Lin Lin
- School of Chemical and Environmental Engineering Shanghai Institute of Technology Shanghai 201418 People's Republic of China
- Research Laboratory for Functional Nanomaterial National Engineering Research Center for Nanotechnology Shanghai 200241 People's Republic of China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering Newworld Institute of Biotechnology East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering Newworld Institute of Biotechnology East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering Newworld Institute of Biotechnology East China University of Science and Technology Shanghai 200237 People's Republic of China
| |
Collapse
|
3
|
Sadeghian Motahar SF, Salami M, Ariaeenejad S, Emam‐Djomeh Z, Sheykh Abdollahzadeh Mamaghani A, Kavousi K, Moghadam M, Hosseini Salekdeh G. Synergistic Effect of Metagenome‐Derived Starch‐Degrading Enzymes on Quality of Functional Bread with Antioxidant Activity. STARCH-STARKE 2021. [DOI: 10.1002/star.202100098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Maryam Salami
- Department of Food Science and Engineering University College of Agriculture & Natural Resources University of Tehran Karaj Iran
| | - Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology Agricultural Biotechnology Research Institute of Iran (ABRII) Agricultural Research Education and Extension Organization (AREEO) Karaj Iran
| | - Zahra Emam‐Djomeh
- Department of Food Science and Engineering University College of Agriculture & Natural Resources University of Tehran Karaj Iran
| | - Atefeh Sheykh Abdollahzadeh Mamaghani
- Department of Systems and Synthetic Biology Agricultural Biotechnology Research Institute of Iran (ABRII) Agricultural Research Education and Extension Organization (AREEO) Karaj Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB) Institute of Biochemistry and Biophysics (IBB) University of Tehran Tehran Iran
| | - Maryam Moghadam
- Department of Food Science and Engineering University College of Agriculture & Natural Resources University of Tehran Karaj Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology Agricultural Biotechnology Research Institute of Iran (ABRII) Agricultural Research Education and Extension Organization (AREEO) Karaj Iran
| |
Collapse
|
4
|
Li X, Bai Y, Ji H, Wang Y, Jin Z. Phenylalanine476 mutation of pullulanase from Bacillus subtilis str. 168 improves the starch substrate utilization by weakening the product β-cyclodextrin inhibition. Int J Biol Macromol 2020; 155:490-497. [DOI: 10.1016/j.ijbiomac.2020.03.239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/16/2020] [Accepted: 03/28/2020] [Indexed: 01/14/2023]
|
5
|
Huang P, Wu S, Yang S, Yan Q, Jiang Z. Structural basis of carbohydrate binding in domain C of a type I pullulanase fromPaenibacillus barengoltzii. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:447-457. [DOI: 10.1107/s205979832000409x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/24/2020] [Indexed: 11/10/2022]
Abstract
Pullulanase (EC 3.2.1.41) is a well known starch-debranching enzyme that catalyzes the cleavage of α-1,6-glycosidic linkages in α-glucans such as starch and pullulan. Crystal structures of a type I pullulanase fromPaenibacillus barengoltzii(PbPulA) and ofPbPulA in complex with maltopentaose (G5), maltohexaose (G6)/α-cyclodextrin (α-CD) and β-cyclodextrin (β-CD) were determined in order to better understand substrate binding to this enzyme.PbPulA belongs to glycoside hydrolase (GH) family 13 subfamily 14 and is composed of three domains (CBM48, A and C). Three carbohydrate-binding sites identified inPbPulA were located in CBM48, near the active site and in domain C, respectively. The binding site in CBM48 was specific for β-CD, while that in domain C has not been reported for other pullulanases. The domain C binding site had higher affinity for α-CD than for G6; a small motif (FGGEH) seemed to be one of the major determinants for carbohydrate binding in this domain. Structure-based mutations of several surface-exposed aromatic residues in CBM48 and domain C had a debilitating effect on the activity of the enzyme. These results suggest that both CBM48 and domain C play a role in binding substrates. The crystal forms described contribute to the understanding of pullulanase domain–carbohydrate interactions.
Collapse
|
6
|
Zhang SY, Guo ZW, Wu XL, Ou XY, Zong MH, Lou WY. Recombinant expression and characterization of a novel cold-adapted type I pullulanase for efficient amylopectin hydrolysis. J Biotechnol 2020; 313:39-47. [DOI: 10.1016/j.jbiotec.2020.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 01/01/2023]
|
7
|
Yang Y, Zhu Y, Obaroakpo JU, Zhang S, Lu J, Yang L, Ni D, Pang X, Lv J. Identification of a novel type I pullulanase from Fervidobacterium nodosum Rt17-B1, with high thermostability and suitable optimal pH. Int J Biol Macromol 2020; 143:424-433. [DOI: 10.1016/j.ijbiomac.2019.10.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 01/06/2023]
|
8
|
Saka N, Malle D, Iwamoto H, Takahashi N, Mizutani K, Mikami B. Relationship between the induced-fit loop and the activity of Klebsiella pneumoniae pullulanase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:792-803. [DOI: 10.1107/s2059798319010660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/30/2019] [Indexed: 11/10/2022]
Abstract
Klebsiella pneumoniae pullulanase (KPP) belongs to glycoside hydrolase family 13 subfamily 13 (GH13_13) and is the only enzyme that is reported to perform an induced-fit motion of the active-site loop (residues 706–710). Comparison of pullulanase structures indicated that only KPP has Leu680 present behind the loop, in contrast to the glycine found in other GH13_13 members. Analysis of the structure and activity of recombinant pullulanase from K. pneumoniae ATCC 9621 (rKPP) and its mutant (rKPP-G680L) indicated that the side chain of residue 680 is important for the induced-fit motion of the loop 706–710 and alters the binding affinity of the substrate.
Collapse
|
9
|
Li X, Bai Y, Ji H, Wang J, Cui Y, Jin Z. Functional characterization of tryptophan437 at subsite +2 in pullulanase from Bacillus subtilis str. 168. Int J Biol Macromol 2019; 133:920-928. [DOI: 10.1016/j.ijbiomac.2019.04.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/30/2019] [Accepted: 04/13/2019] [Indexed: 01/05/2023]
|
10
|
Li L, Dong F, Lin L, He D, Wei W, Wei D. N-Terminal Domain Truncation and Domain Insertion-Based Engineering of a Novel Thermostable Type I Pullulanase from Geobacillus thermocatenulatus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10788-10798. [PMID: 30222339 DOI: 10.1021/acs.jafc.8b03331] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel thermostable type I pullulanase gene ( pul GT) from Geobacillus thermocatenulatus DSMZ730 was cloned. It has an open reading frame of 2154 bp encoding 718 amino acids. G. thermocatenulatus pullulanase (PulGT) was found to be optimally active at pH 6.5 and 70 °C. It exhibited stable activity in the pH range of 5.5-7.0. PulGT lacked three domains (CBM41 domain, X25 domain, and X45 domain) compared with the pullulanase from Bacillus acidopullulyticus ( 2WAN ). Different N-terminally domain truncated (730T) or spliced (730T-U1 and 730T-U2) mutants were constructed. Truncating the N-terminal 85 amino acids decreased the Km value and did not change its optimum pH, an advantageous biochemical property in some applications. Compared with 2WAN , PulGT can be used directly for maize starch saccharification without adjusting the pH, which reduces cost and improves efficiency.
Collapse
Affiliation(s)
- Lingmeng Li
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Fengying Dong
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Lin Lin
- Shanghai University of Medicine and Health Sciences , Shanghai 200093 , People's Republic of China
- Research Laboratory for Functional Nanomaterial , National Engineering Research Center for Nanotechnology , Shanghai 200241 , People's Republic of China
| | - Dannong He
- Research Laboratory for Functional Nanomaterial , National Engineering Research Center for Nanotechnology , Shanghai 200241 , People's Republic of China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| |
Collapse
|
11
|
Lu Z, Hu X, Shen P, Wang Q, Zhou Y, Zhang G, Ma Y. A pH-stable, detergent and chelator resistant type I pullulanase from Bacillus pseudofirmus 703 with high catalytic efficiency. Int J Biol Macromol 2018; 109:1302-1310. [DOI: 10.1016/j.ijbiomac.2017.11.139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/27/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
|
12
|
Møller MS, Henriksen A, Svensson B. Structure and function of α-glucan debranching enzymes. Cell Mol Life Sci 2016; 73:2619-41. [PMID: 27137180 PMCID: PMC11108273 DOI: 10.1007/s00018-016-2241-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
Abstract
α-Glucan debranching enzymes hydrolyse α-1,6-linkages in starch/glycogen, thereby, playing a central role in energy metabolism in all living organisms. They belong to glycoside hydrolase families GH13 and GH57 and several of these enzymes are industrially important. Nine GH13 subfamilies include α-glucan debranching enzymes; isoamylase and glycogen debranching enzymes (GH13_11); pullulanase type I/limit dextrinase (GH13_12-14); pullulan hydrolase (GH13_20); bifunctional glycogen debranching enzyme (GH13_25); oligo-1 and glucan-1,6-α-glucosidases (GH13_31); pullulanase type II (GH13_39); and α-amylase domains (GH13_41) in two-domain amylase-pullulanases. GH57 harbours type II pullulanases. Specificity differences, domain organisation, carbohydrate binding modules, sequence motifs, three-dimensional structures and specificity determinants are discussed. The phylogenetic analysis indicated that GH13_39 enzymes could represent a "missing link" between the strictly α-1,6-specific debranching enzymes and the enzymes with dual specificity and α-1,4-linkage preference.
Collapse
Affiliation(s)
- Marie Sofie Møller
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
- Center for Molecular Protein Science, Department of Chemistry, Lund University, 221 00, Lund, Sweden.
| | - Anette Henriksen
- Global Research Unit, Department of Large Protein Biophysics and Formulation, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
13
|
Chen SQ, Cai XH, Xie JL, Wei W, Wei DZ. Structural and biochemical properties of a novel pullulanase ofPaenibacillus lautusDSM 3035. STARCH-STARKE 2016. [DOI: 10.1002/star.201500333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Si-Qi Chen
- State Key Laboratory of Bioreactor Engineering; Newworld Institute of Biotechnology; East China University of Science and Technology; Shanghai P. R. China
| | - Xiang-Hai Cai
- State Key Laboratory of Bioreactor Engineering; Newworld Institute of Biotechnology; East China University of Science and Technology; Shanghai P. R. China
| | - Jing-Li Xie
- State Key Laboratory of Bioreactor Engineering; Newworld Institute of Biotechnology; East China University of Science and Technology; Shanghai P. R. China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering; Newworld Institute of Biotechnology; East China University of Science and Technology; Shanghai P. R. China
| | - Dong-Zhi Wei
- State Key Laboratory of Bioreactor Engineering; Newworld Institute of Biotechnology; East China University of Science and Technology; Shanghai P. R. China
| |
Collapse
|
14
|
Wei W, Ma J, Chen SQ, Cai XH, Wei DZ. A novel cold-adapted type I pullulanase of Paenibacillus polymyxa Nws-pp2: in vivo functional expression and biochemical characterization of glucans hydrolyzates analysis. BMC Biotechnol 2015; 15:96. [PMID: 26481143 PMCID: PMC4615870 DOI: 10.1186/s12896-015-0215-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/08/2015] [Indexed: 11/25/2022] Open
Abstract
Background Pullulanase is an important debranching enzyme and has been widely utilized to hydrolyse the α-1,6 glucosidic linkages in starch/sugar industry. Selecting new bacterial strains or improving bacterial strains is a prerequisite and effective solution in industrial applications. Although many pullulanase genes have been cloned and sequenced, there is no report of P. polymyxa type I pullulanase gene or the recombinant strain. Meanwhile most of the type I pullulanase investigated exhibit thermophilic or mesophilic properties. There are just few reports of cold-adapted pullulanases, which have optimum activity at moderate temperature and exhibit rather high catalytic activity at cold. Previously, six strains showing distinct pullulan degradation ability were isolated using enrichment procedures. As containing novel bacterium resource and significant pullulanase activity, strain Nws-pp2 was selected for in-depth study. Methods In this study, a type I pullulanase gene (pulN) was obtained from the strain P. polymyxa Nws-pp2 by degenerate primers. Through optimization of induced conditions, the recombinant PulN achieved functional soluble expression by low temperature induction. The enzyme characterizations including the enzyme activity/stability, optimum temperature, optimum pH and substrate specificity were also described through protein purification. Results The pullulanase gene (named pulN), encoding a novel cold-adapted type I pullulanase (named PulN), was obtained from isolated strain Paenibacillus polymyxa Nws-pp2. The gene had an open reading frame of 2532-bp and was functionally expressed in Escherichia coli through optimization of induced conditions. The level of functional PulN-like protein reached the maximum after induction for 16 h at 20 °C and reached about 0.34 mg/ml (about 20 % of total protein) with an activity of 6.49 U/ml. The purified recombinant enzyme with an apparent molecular mass of about 96 kDa was able to attack specifically the α-1,6 linkages in pullulan to generate maltotriose as the major product. The purified PulN showed optimal activity at pH 6.0 and 35 °C, and retained more than 40 % of the maximum activity at 10 °C (showing cold-adapted). The pullulanase activity was significantly enhanced by Co2+ and Mn2+, meanwhile Cu2+ and SDS inhibited pullulanase activity completely. The Km and Vmax values of purified PulN were 15.25 mg/ml and 20.1 U/mg, respectively. The PulN hydrolyzed pullulan, amylopectin, starch, and glycogen, but not amylose. Substrate specificity and products analysis proved that the purified pullulanase from Paenibacillus polymyxa Nws-pp2 belong to a type I pullulanase. Conclusions This report of the novel type I pullulanase in Paenibacillus polymyxa would contribute to pullulanase research from Paenibacillus spp. significantly. Also, the cold-adapted pullulanase produced in recombinant strain shows the potential application. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0215-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Wei
- Newworld Institute of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China.
| | - Jing Ma
- Newworld Institute of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China
| | - Si-Qi Chen
- Newworld Institute of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China
| | - Xiang-Hai Cai
- Newworld Institute of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China
| | - Dong-Zhi Wei
- Newworld Institute of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China.
| |
Collapse
|
15
|
Ali G, Dulong V, Gasmi SN, Rihouey C, Picton L, Le Cerf D. Covalent immobilization of pullulanase on alginate and study of its hydrolysis of pullulan. Biotechnol Prog 2015; 31:883-9. [DOI: 10.1002/btpr.2093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/21/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Ghina Ali
- Normandie Université; France
- Laboratoire Polymères Biopolymères Surfaces; Université De Rouen; Mont Saint Aignan F 76821 France
- CNRS UMR 6270 & Fr3038; Mont Saint Aignan F 76821 France
| | - Virginie Dulong
- Normandie Université; France
- Laboratoire Polymères Biopolymères Surfaces; Université De Rouen; Mont Saint Aignan F 76821 France
- CNRS UMR 6270 & Fr3038; Mont Saint Aignan F 76821 France
| | - Sarah N. Gasmi
- Normandie Université; France
- Laboratoire Polymères Biopolymères Surfaces; Université De Rouen; Mont Saint Aignan F 76821 France
- CNRS UMR 6270 & Fr3038; Mont Saint Aignan F 76821 France
| | - Christophe Rihouey
- Normandie Université; France
- Laboratoire Polymères Biopolymères Surfaces; Université De Rouen; Mont Saint Aignan F 76821 France
- CNRS UMR 6270 & Fr3038; Mont Saint Aignan F 76821 France
| | - Luc Picton
- Normandie Université; France
- Laboratoire Polymères Biopolymères Surfaces; Université De Rouen; Mont Saint Aignan F 76821 France
- CNRS UMR 6270 & Fr3038; Mont Saint Aignan F 76821 France
| | - Didier Le Cerf
- Normandie Université; France
- Laboratoire Polymères Biopolymères Surfaces; Université De Rouen; Mont Saint Aignan F 76821 France
- CNRS UMR 6270 & Fr3038; Mont Saint Aignan F 76821 France
| |
Collapse
|
16
|
Oligosaccharide and Substrate Binding in the Starch Debranching Enzyme Barley Limit Dextrinase. J Mol Biol 2015; 427:1263-1277. [DOI: 10.1016/j.jmb.2014.12.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/20/2014] [Accepted: 12/27/2014] [Indexed: 11/21/2022]
|
17
|
The role of N1 domain on the activity, stability, substrate specificity and raw starch binding of amylopullulanase of the extreme thermophile Geobacillus thermoleovorans. Appl Microbiol Biotechnol 2015; 99:5461-74. [DOI: 10.1007/s00253-014-6345-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 11/25/2022]
|
18
|
Xu J, Ren F, Huang CH, Zheng Y, Zhen J, Sun H, Ko TP, He M, Chen CC, Chan HC, Guo RT, Song H, Ma Y. Functional and structural studies of pullulanase from Anoxybacillus
sp. LM18-11. Proteins 2014; 82:1685-93. [DOI: 10.1002/prot.24498] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/18/2013] [Accepted: 12/09/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Jianyong Xu
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Feifei Ren
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Chun-Hsiang Huang
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Yingying Zheng
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Jie Zhen
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Hong Sun
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica; Taipei 11529 Taiwan
| | - Miao He
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Chun-Chi Chen
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Hsiu-Chien Chan
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Rey-Ting Guo
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Hui Song
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Yanhe Ma
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| |
Collapse
|
19
|
Paramo T, East A, Garzón D, Ulmschneider MB, Bond PJ. Efficient Characterization of Protein Cavities within Molecular Simulation Trajectories: trj_cavity. J Chem Theory Comput 2014; 10:2151-64. [DOI: 10.1021/ct401098b] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Teresa Paramo
- Unilever
Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Alexandra East
- Unilever
Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Diana Garzón
- Unilever
Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Martin B. Ulmschneider
- Department
of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Peter J. Bond
- Unilever
Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Bioinformatics Institute (A*STAR), 30
Biopolis Str, #07-01 Matrix, Singapore 138671
- Department
of Biological Sciences, National University of Singapore, 14 Science
Drive 4, 117543 Singapore
| |
Collapse
|
20
|
Li Y, Zhang L, Niu D, Wang Z, Shi G. Cloning, expression, characterization, and biocatalytic investigation of a novel bacilli thermostable type I pullulanase from Bacillus sp. CICIM 263. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:11164-11172. [PMID: 23072450 DOI: 10.1021/jf303109u] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The pulA1 gene, encoding a novel thermostable type I pullulanase PulA1 from Bacillus sp. CICIM 263, was identified from genomic DNA. The open reading frame of the pulA1 gene was 2655 base pairs long and encoded a polypeptide (PulA1) of 885 amino acids with a calculated molecular mass of 100,887 Da. The pulA1 gene was expressed in Escherichia coli and Bacillus subtilis. Recombinant PuLA1 showed optimal activity at pH 6.5 and 70 °C. The enzyme demonstrated moderate thermostability as PuLA1 maintained more than 88% of its acitivity when incubated at 70 °C for 1 h. The enzyme could completely hydrolyze pullulan to maltotriose, and hydrolytic activity was also detected with glycogen, starch and amylopection, but not with amylose, which is consistent with the property of type I pullulanase. PulA1 may be suitable for industrial applications to improve the yields of fermentable sugars for bioethanol production.
Collapse
Affiliation(s)
- Youran Li
- Research Center of Bioresource & Bioenergy, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
Ali G, Rihouey C, Le Cerf D, Picton L. Effect of carboxymethyl groups on degradation of modified pullulan by pullulanase from Klebsiella pneumoniae. Carbohydr Polym 2012; 93:109-15. [PMID: 23465908 DOI: 10.1016/j.carbpol.2012.07.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 07/09/2012] [Accepted: 07/11/2012] [Indexed: 11/30/2022]
Abstract
Pullulanase is an enzyme that hydrolyses the α-1,6 linkages of pullulan (Pull) to produce maltotriose units. We studied the capacity of pullulanase to cleave its modified substrate: carboxymethylpullulan (CMPull), synthesized with two different degrees of substitution (DS=0.16 and 0.8). Size exclusion chromatography with on line multi angle light scattering and differential refractive index detection (SEC/MALS/DRI) was used to estimate both number and weight average molar masses, respectively, Mn and Mw, of pullulan and CMPulls together with the percentage of maltotriose formed during hydrolysis. Determination of reduced sugars gave also a Mn that is compared to data obtained by SEC. It revealed that CMPull is partially degraded by pullulanase and the rate of hydrolysis decreased with increased DS. At the end of the hydrolysis, Mn is decreased by a factor of 23 and 1.7 for CMPull with a DS of 0.16 and 0.8 respectively. The percentage of produced maltotriose decreased also when increasing DS (24% and 7% for CMPull DS 0.16 and 0.8 respectively). The kinetic properties of pullulanase were also investigated with Pull and CMPulls by isothermal titration calorimetry (ITC) using simple injection method. Based on Michaelis-Menten kinetics, Vmax (maximal velocity) decreased and KM (Michaelis constant) increased when DS of modified pullulan CMPull increased.
Collapse
Affiliation(s)
- Ghina Ali
- Université de Rouen, Laboratoire Polymères Biopolymères Surfaces, UMR 6270 & FR 3038 CNRS, 76821 Mont Saint Aignan, France
| | | | | | | |
Collapse
|
22
|
Molecular cloning and biochemical characterization of a heat-stable type I pullulanase from Thermotoga neapolitana. Enzyme Microb Technol 2010; 48:260-6. [PMID: 22112909 DOI: 10.1016/j.enzmictec.2010.11.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 11/12/2010] [Accepted: 11/15/2010] [Indexed: 11/23/2022]
Abstract
The gene encoding a type I pullulanase from the hyperthermophilic anaerobic bacterium Thermotoga neapolitana (pulA) was cloned in Escherichia coli and sequenced. The pulA gene from T. neapolitana showed 91.5% pairwise amino acid identity with pulA from Thermotoga maritima and contained the four regions conserved in all amylolytic enzymes. pulA encodes a protein of 843 amino acids with a 19-residue signal peptide. The pulA gene was subcloned and overexpressed in E. coli under the control of the T7 promoter. The purified recombinant enzyme (rPulA) produced a 93-kDa protein with pullulanase activity. rPulA was optimally active at pH 5-7 and 80°C and had a half-life of 88 min at 80°C. rPulA hydrolyzed pullulan, producing maltotriose, and hydrolytic activities were also detected with amylopectin, starch, and glycogen, but not with amylose. This substrate specificity is typical of a type I pullulanase. Thin layer chromatography of the reaction products in the reaction with pullulan and aesculin showed that the enzyme had transglycosylation activity. Analysis of the transfer product using NMR and isoamylase treatment revealed it to be α-maltotriosyl-(1,6)-aesculin, suggesting that the enzyme transferred the maltotriosyl residue of pullulan to aesculin by forming α-1,6-glucosidic linkages. Our findings suggest that the pullulanase from T. neapolitana is the first thermostable type I pullulanase which has α-1,6-transferring activity.
Collapse
|
23
|
Crystal Structure of an Essential Enzyme in Seed Starch Degradation: Barley Limit Dextrinase in Complex with Cyclodextrins. J Mol Biol 2010; 403:739-50. [DOI: 10.1016/j.jmb.2010.09.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/08/2010] [Accepted: 09/15/2010] [Indexed: 11/21/2022]
|
24
|
Characterization of a novel debranching enzyme from Nostoc punctiforme possessing a high specificity for long branched chains. Biochem Biophys Res Commun 2009; 378:224-9. [DOI: 10.1016/j.bbrc.2008.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 11/07/2008] [Indexed: 11/22/2022]
|
25
|
Mikami B, Iwamoto H, Malle D, Yoon HJ, Demirkan-Sarikaya E, Mezaki Y, Katsuya Y. Crystal structure of pullulanase: evidence for parallel binding of oligosaccharides in the active site. J Mol Biol 2006; 359:690-707. [PMID: 16650854 DOI: 10.1016/j.jmb.2006.03.058] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2005] [Revised: 03/24/2006] [Accepted: 03/29/2006] [Indexed: 11/28/2022]
Abstract
The crystal structures of Klebsiella pneumoniae pullulanase and its complex with glucose (G1), maltose (G2), isomaltose (isoG2), maltotriose (G3), or maltotetraose (G4), have been refined at around 1.7-1.9A resolution by using a synchrotron radiation source at SPring-8. The refined models contained 920-1052 amino acid residues, 942-1212 water molecules, four or five calcium ions, and the bound sugar moieties. The enzyme is composed of five domains (N1, N2, N3, A, and C). The N1 domain was clearly visible only in the structure of the complex with G3 or G4. The N1 and N2 domains are characteristic of pullulanase, while the N3, A, and C domains have weak similarity with those of Pseudomonas isoamylase. The N1 domain was found to be a new type of carbohydrate-binding domain with one calcium site (CBM41). One G1 bound at subsite -2, while two G2 bound at -1 approximately -2 and +2 approximately +1, two G3, -1 approximately -3 and +2 approximately 0', and two G4, -1 approximately -4 and +2 approximately -1'. The two bound G3 and G4 molecules in the active cleft are almost parallel and interact with each other. The subsites -1 approximately -4 and +1 approximately +2, including catalytic residues Glu706 and Asp677, are conserved between pullulanase and alpha-amylase, indicating that pullulanase strongly recognizes branched point and branched sugar residues, while subsites 0' and -1', which recognize the non-reducing end of main-chain alpha-1,4 glucan, are specific to pullulanase and isoamylase. The comparison suggested that the conformational difference around the active cleft, together with the domain organization, determines the different substrate specificities between pullulanase and isoamylase.
Collapse
Affiliation(s)
- Bunzo Mikami
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Bertoldo C, Armbrecht M, Becker F, Schäfer T, Antranikian G, Liebl W. Cloning, sequencing, and characterization of a heat- and alkali-stable type I pullulanase from Anaerobranca gottschalkii. Appl Environ Microbiol 2004; 70:3407-16. [PMID: 15184138 PMCID: PMC427762 DOI: 10.1128/aem.70.6.3407-3416.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding a type I pullulanase was identified from the genome sequence of the anaerobic thermoalkaliphilic bacterium Anaerobranca gottschalkii. In addition, the homologous gene was isolated from a gene library of Anaerobranca horikoshii and sequenced. The proteins encoded by these two genes showed 39% amino acid sequence identity to the pullulanases from the thermophilic anaerobic bacteria Fervidobacterium pennivorans and Thermotoga maritima. The pullulanase gene from A. gottschalkii (encoding 865 amino acids with a predicted molecular mass of 98 kDa) was cloned and expressed in Escherichia coli strain BL21(DE3) so that the protein did not have the signal peptide. Accordingly, the molecular mass of the purified recombinant pullulanase (rPulAg) was 96 kDa. Pullulan hydrolysis activity was optimal at pH 8.0 and 70 degrees C, and under these physicochemical conditions the half-life of rPulAg was 22 h. By using an alternative expression strategy in E. coli Tuner(DE3)(pLysS), the pullulanase gene from A. gottschalkii, including its signal peptide-encoding sequence, was cloned. In this case, the purified recombinant enzyme was a truncated 70-kDa form (rPulAg'). The N-terminal sequence of purified rPulAg' was found 252 amino acids downstream from the start site, presumably indicating that there was alternative translation initiation or N-terminal protease cleavage by E. coli. Interestingly, most of the physicochemical properties of rPulAg' were identical to those of rPulAg. Both enzymes degraded pullulan via an endo-type mechanism, yielding maltotriose as the final product, and hydrolytic activity was also detected with amylopectin, starch, beta-limited dextrins, and glycogen but not with amylose. This substrate specificity is typical of type I pullulanases. rPulAg was inhibited by cyclodextrins, whereas addition of mono- or bivalent cations did not have a stimulating effect. In addition, rPulAg' was stable in the presence of 0.5% sodium dodecyl sulfate, 20% Tween, and 50% Triton X-100. The pullulanase from A. gottschalkii is the first thermoalkalistable type I pullulanase that has been described.
Collapse
Affiliation(s)
- Costanzo Bertoldo
- Technical Microbiology, Technical University of Hamburg-Harburg, D-21073 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Pullulan degrading enzymes belong to a group of glycosylhydrolases that are widely distributed in nature and are produced by an extremely wide variety of species. Among them the thermophilic and mesophilic bacteria are a rich source of these enzymes. There are many biotechnological applications for these enzymes and a rapidly growing amount of information about their diversity, genetic as well as biochemical and biophysical characteristics. The properties of these enzymes vary and are somewhat linked to the natural environment inhabited by the producing organisms. Genes for these enzymes have been cloned from several strains and their amino acid sequences show highly conserved regions common to the enzymes of the amylase family. Molecular studies have greatly extended our knowledge on pullulan degrading enzymes and their biosynthesis. However, enzyme production levels have usually not been as high as had been assumed possible, and the properties of some enzymes are less than optimal for their industrial applications. Some of these problems can be overcome with the use of good producer organisms, optimized expression/secretion vectors, and site-directed mutagenesis. The molecular biology of pullulan degrading enzymes has been and continues to be a valuable system for studying basic questions of cell biology, such as mechanisms of gene regulation and secretion, and the structure-function relationships of proteins.
Collapse
|
28
|
Ben Messaoud E, Ben Ammar Y, Mellouli L, Bejar S. Thermostable pullulanase type I from new isolated Bacillus thermoleovorans US105: cloning, sequencing and expression of the gene in E. coli. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(02)00185-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Bertoldo C, Duffner F, Jorgensen PL, Antranikian G. Pullulanase type I from Fervidobacterium pennavorans Ven5: cloning, sequencing, and expression of the gene and biochemical characterization of the recombinant enzyme. Appl Environ Microbiol 1999; 65:2084-91. [PMID: 10224005 PMCID: PMC91302 DOI: 10.1128/aem.65.5.2084-2091.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding the type I pullulanase from the extremely thermophilic anaerobic bacterium Fervidobacterium pennavorans Ven5 was cloned and sequenced in Escherichia coli. The pulA gene from F. pennavorans Ven5 had 50.1% pairwise amino acid identity with pulA from the anaerobic hyperthermophile Thermotoga maritima and contained the four regions conserved among all amylolytic enzymes. The pullulanase gene (pulA) encodes a protein of 849 amino acids with a 28-residue signal peptide. The pulA gene was subcloned without its signal sequence and overexpressed in E. coli under the control of the trc promoter. This clone, E. coli FD748, produced two proteins (93 and 83 kDa) with pullulanase activity. A second start site, identified 118 amino acids downstream from the ATG start site, with a Shine-Dalgarno-like sequence (GGAGG) and TTG translation initiation codon was mutated to produce only the 93-kDa protein. The recombinant purified pullulanases (rPulAs) were optimally active at pH 6 and 80 degrees C and had a half-life of 2 h at 80 degrees C. The rPulAs hydrolyzed alpha-1,6 glycosidic linkages of pullulan, starch, amylopectin, glycogen, alpha-beta-limited dextrin. Interestingly, amylose, which contains only alpha-1,4 glycosidic linkages, was not hydrolyzed by rPulAs. According to these results, the enzyme is classified as a debranching enzyme, pullulanase type I. The extraordinary high substrate specificity of rPulA together with its thermal stability makes this enzyme a good candidate for biotechnological applications in the starch-processing industry.
Collapse
Affiliation(s)
- C Bertoldo
- Department of Technical Microbiology, Institute of Biotechnology, Technical University Hamburg-Harburg, 21071 Hamburg, Germany
| | | | | | | |
Collapse
|