1
|
Analysis of variable major protein antigenic variation in the relapsing fever spirochete, Borrelia miyamotoi, in response to polyclonal antibody selection pressure. PLoS One 2023; 18:e0281942. [PMID: 36827340 PMCID: PMC9955969 DOI: 10.1371/journal.pone.0281942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Borrelia miyamotoi is a tick-transmitted spirochete that is genetically grouped with relapsing fever Borrelia and possesses multiple archived pseudogenes that encode variable major proteins (Vmps). Vmps are divided into two groups based on molecular size; variable large proteins (Vlps) and variable small proteins (Vsps). Relapsing fever Borrelia undergo Vmp gene conversion at a single expression locus to generate new serotypes by antigenic switching which is the basis for immune evasion that causes relapsing fever in patients. This study focused on B. miyamotoi vmp expression when spirochetes were subjected to antibody killing selection pressure. We incubated a low passage parent strain with mouse anti-B. miyamotoi polyclonal antiserum which killed the majority population, however, antibody-resistant reisolates were recovered. PCR analysis of the gene expression locus in the reisolates showed vsp1 was replaced by Vlp-encoded genes. Gel electrophoresis protein profiles and immunoblots of the reisolates revealed additional Vlps indicating that new serotype populations were selected by antibody pressure. Sequencing of amplicons from the expression locus of the reisolates confirmed the presence of a predominant majority serotype population with minority variants. These findings confirm previous work demonstrating gene conversion in B. miyamotoi and that multiple serotype populations expressing different vmps arise when subjected to antibody selection. The findings also provide evidence for spontaneous serotype variation emerging from culture growth in the absence of antibody pressure. Validation and determination of the type, number, and frequency of serotype variants that arise during animal infections await further investigations.
Collapse
|
2
|
Trevisan G, Cinco M, Trevisini S, di Meo N, Ruscio M, Forgione P, Bonin S. Borreliae Part 2: Borrelia Relapsing Fever Group and Unclassified Borrelia. BIOLOGY 2021; 10:1117. [PMID: 34827110 PMCID: PMC8615063 DOI: 10.3390/biology10111117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Borreliae of the relapsing fever group (RFG) are heterogenous and can be divided mainly into three groups according to vectors, namely the soft-tick-borne relapsing fever (STBRF) Borreliae, the hard-tick-borne relapsing fever (HTBRF) Borreliae, the louse-borne relapsing fever (LBRF) Borreliae, and the avian relapsing fever ones. With respect to the geographical distribution, the STBRF Borreliae are further subdivided into Old World and New World strains. Except for the Avian relapsing fever group Borreliae, which cause avian spirochetosis, all the others share infectivity in humans. They are indeed the etiological agent of both endemic and epidemic forms of relapsing fever, causing high spirochaetemia and fever. Vectors are primarily soft ticks of Ornithodoros spp. in the STBRF group; hard ticks, notably Ixodes sp., Amblyomma sp., Dermacentor sp., and Rhipicephalus sp., in the HTBRF group; and the louse pediculus humanus humanus in the TBRF one. A recent hypothesis was supported for a common ancestor of RFG Borreliae, transmitted at the beginning by hard-body ticks. Accordingly, STBRF Borreliae switched to use soft-bodied ticks as a vector, which was followed by the use of lice by Borrelia recurrentis. There are also new candidate species of Borreliae, at present unclassified, which are also described in this review.
Collapse
Affiliation(s)
- Giusto Trevisan
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
| | - Marina Cinco
- DSV—Department of Life Sciences, University of Trieste, 34149 Trieste, Italy;
| | - Sara Trevisini
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (M.R.)
| | - Nicola di Meo
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (M.R.)
| | - Maurizio Ruscio
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (M.R.)
| | - Patrizia Forgione
- UOSD Dermatologia, Centro Rif. Regionale Malattia di Hansen e Lyme, P.O. dei Pellegrini, ASL Napoli 1 Centro, 80145 Naples, Italy;
| | - Serena Bonin
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
| |
Collapse
|
3
|
Talagrand-Reboul E, Boyer PH, Bergström S, Vial L, Boulanger N. Relapsing Fevers: Neglected Tick-Borne Diseases. Front Cell Infect Microbiol 2018; 8:98. [PMID: 29670860 PMCID: PMC5893795 DOI: 10.3389/fcimb.2018.00098] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/16/2018] [Indexed: 11/13/2022] Open
Abstract
Relapsing fever still remains a neglected disease and little is known on its reservoir, tick vector and physiopathology in the vertebrate host. The disease occurs in temperate as well as tropical countries. Relapsing fever borreliae are spirochaetes, members of the Borreliaceae family which also contain Lyme disease spirochaetes. They are mainly transmitted by Ornithodoros soft ticks, but some species are vectored by ixodid ticks. Traditionally a Borrelia species is associated with a specific vector in a particular geographical area. However, new species are regularly described, and taxonomical uncertainties deserve further investigations to better understand Borrelia vector/host adaptation. The medical importance of Borrelia miyamotoi, transmitted by Ixodes spp., has recently spawned new interest in this bacterial group. In this review, recent data on tick-host-pathogen interactions for tick-borne relapsing fevers is presented, with special focus on B. miyamotoi.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
| | - Pierre H. Boyer
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Laurence Vial
- CIRAD BIOS, UMR15 CIRAD/Institut National de la Recherche Agronomique “Contrôle des Maladies Animales Exotiques et Emergentes,” Equipe “Vecteurs,” Campus International de Baillarguet, Montpellier, France
| | - Nathalie Boulanger
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
- Centre National de Référence Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| |
Collapse
|
4
|
Hoelzle LE, Scherrer T, Muntwyler J, Wittenbrink MM, Philipp W, Hoelzle K. Differences in the antigen structures of Corynebacterium pseudotuberculosis and the induced humoral immune response in sheep and goats. Vet Microbiol 2013; 164:359-65. [DOI: 10.1016/j.vetmic.2013.02.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/24/2013] [Accepted: 02/26/2013] [Indexed: 11/29/2022]
|
5
|
Grosskinsky S, Schott M, Brenner C, Cutler SJ, Kraiczy P, Zipfel PF, Simon MM, Wallich R. Borrelia recurrentis employs a novel multifunctional surface protein with anti-complement, anti-opsonic and invasive potential to escape innate immunity. PLoS One 2009; 4:e4858. [PMID: 19308255 PMCID: PMC2654920 DOI: 10.1371/journal.pone.0004858] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/13/2009] [Indexed: 12/28/2022] Open
Abstract
Borrelia recurrentis, the etiologic agent of louse-borne relapsing fever in humans, has evolved strategies, including antigenic variation, to evade immune defence, thereby causing severe diseases with high mortality rates. Here we identify for the first time a multifunctional surface lipoprotein of B. recurrentis, termed HcpA, and demonstrate that it binds human complement regulators, Factor H, CFHR-1, and simultaneously, the host protease plasminogen. Cell surface bound factor H was found to retain its activity and to confer resistance to complement attack. Moreover, ectopic expression of HcpA in a B. burgdorferi B313 strain, deficient in Factor H binding proteins, protected the transformed spirochetes from complement-mediated killing. Furthermore, HcpA-bound plasminogen/plasmin endows B. recurrentis with the potential to resist opsonization and to degrade extracellular matrix components. Together, the present study underscores the high virulence potential of B. recurrentis. The elucidation of the molecular basis underlying the versatile strategies of B. recurrentis to escape innate immunity and to persist in human tissues, including the brain, may help to understand the pathological processes underlying louse-borne relapsing fever.
Collapse
Affiliation(s)
- Sonja Grosskinsky
- Infectious Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany
| | - Melanie Schott
- Infectious Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany
| | - Christiane Brenner
- Infectious Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany
| | - Sally J. Cutler
- School of Health and Bioscience, University of East London, Stratford, London, United Kingdom
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt/Main, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz-Institute for Natural Products Research, Jena, Germany
| | - Markus M. Simon
- Metschnikoff Laboratory, Max-Planck-Institute for Immunobiology, Freiburg, Germany
| | - Reinhard Wallich
- Infectious Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
6
|
Hovis KM, Schriefer ME, Bahlani S, Marconi RT. Immunological and molecular analyses of the Borrelia hermsii factor H and factor H-like protein 1 binding protein, FhbA: demonstration of its utility as a diagnostic marker and epidemiological tool for tick-borne relapsing fever. Infect Immun 2006; 74:4519-29. [PMID: 16861638 PMCID: PMC1539583 DOI: 10.1128/iai.00377-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been demonstrated that Borrelia hermsii, a causative agent of relapsing fever, produces a factor H (FH) and FH-like protein 1 (FHL-1) binding protein. The binding protein has been designated FhbA. To determine if FH/FHL-1 binding is widespread among B. hermsii isolates, a diverse panel of strains was tested for the FH/FHL-1 binding phenotype and FhbA production. Most isolates (23/24) produced FhbA and bound FH/FHL-1. Potential variation in FhbA among isolates was analyzed by DNA sequence analyses. Two genetically distinct FhbA types, designated fhbA1 and fhbA2, were delineated, and type-specific PCR primers were generated to allow for rapid differentiation. Pulsed-field gel electrophoresis and hybridization analyses demonstrated that all isolates that possess the gene carry it on a 200-kb linear plasmid (lp200), whereas isolates that lack the gene lack lp200 and instead carry an lp170. To determine if FhbA is antigenic during infection and to assess the specificity of the response, recombinant FhbA1 (rFhbA1) and rFhbA2 were screened with serum from infected mice and humans. FhbA was found to be expressed and antigenic and to elicit a potentially type-specific FhbA response. To localize the epitopes of FhbA1 and FhbA2, truncations were generated and screened with infection serum. The epitopes were determined to be conformationally defined. Collectively, these analyses indicate that FH/FHL-1 binding is a widespread virulence mechanism for B. hermsii and provide insight into the genetic and antigenic structure of FhbA. The data also have potential implications for understanding the epidemiology of relapsing fever in North America and can be applied to the future development of species-specific diagnostic tools.
Collapse
Affiliation(s)
- Kelley M Hovis
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, 1112 E. Clay St., McGuire Hall, Richmond, Virginia 23298-0678, USA
| | | | | | | |
Collapse
|
7
|
Meri T, Cutler SJ, Blom AM, Meri S, Jokiranta TS. Relapsing fever spirochetes Borrelia recurrentis and B. duttonii acquire complement regulators C4b-binding protein and factor H. Infect Immun 2006; 74:4157-63. [PMID: 16790790 PMCID: PMC1489703 DOI: 10.1128/iai.00007-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Relapsing fever is a rapidly progressive and severe septic disease caused by certain Borrelia spirochetes. The disease is divided into two forms, i.e., epidemic relapsing fever, caused by Borrelia recurrentis and transmitted by lice, and the endemic form, caused by several Borrelia species, such as B. duttonii, and transmitted by soft-bodied ticks. The spirochetes enter the bloodstream by the vector bite and live persistently in plasma even after the development of specific antibodies. This leads to fever relapses and high mortality and clearly indicates that the Borrelia organisms utilize effective immune evasion strategies. In this study, we show that the epidemic relapsing fever pathogen B. recurrentis and an endemic relapsing fever pathogen, B. duttonii, are serum resistant, i.e., resistant to complement in vitro. They acquire the host alternative complement pathway regulator factor H on their surfaces in a similar way to that of the less serum-resistant Lyme disease pathogen, B. burgdorferi sensu stricto. More importantly, the relapsing fever spirochetes specifically bind host C4b-binding protein, a major regulator of the antibody-mediated classical complement pathway. Both complement regulators retained their functional activities when bound to the surfaces of the spirochetes. In conclusion, this is the first report of complement evasion by Borrelia recurrentis and B. duttonii and the first report showing capture of C4b-binding protein by spirochetes.
Collapse
Affiliation(s)
- T Meri
- Haartman Institute, Department of Bacteriology and Immunology, P.O. Box 21, University of Helsinki, FIN-00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
8
|
Lawson CL, Yung BH, Barbour AG, Zückert WR. Crystal structure of neurotropism-associated variable surface protein 1 (Vsp1) of Borrelia turicatae. J Bacteriol 2006; 188:4522-30. [PMID: 16740958 PMCID: PMC1482977 DOI: 10.1128/jb.00028-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 03/26/2006] [Indexed: 11/20/2022] Open
Abstract
Vsp surface lipoproteins are serotype-defining antigens of relapsing fever spirochetes that undergo multiphasic antigenic variation to allow bacterial persistence in spite of an immune response. Two isogenic serotypes of Borrelia turicatae strain Oz1 differ in their Vsp sequences and in disease manifestations in infected mice: Vsp1 is associated with the selection of a neurological niche, while Vsp2 is associated with blood and skin infection. We report here crystal structures of the Vsp1 dimer at 2.7 and 2.2 A. The structures confirm that relapsing fever Vsp proteins share a common helical fold with OspCs of Lyme disease-causing Borrelia. The fold features an inner stem formed by highly conserved N and C termini and an outer "dome" formed by the variable central residues. Both Vsp1 and OspC structures possess small water-filled cavities, or pockets, that are lined largely by variable residues and are thus highly variable in shape. These features appear to signify tolerance of the Vsp-OspC fold for imperfect packing of residues at its antigenic surface. Structural comparison of Vsp1 with a homology model for Vsp2 suggests that observed differences in disease manifestation may arise in part from distinct differences in electrostatic surface properties; additional predicted positively charged surface patches on Vsp2 compared to Vsp1 may be sufficient to explain the relative propensity of Vsp2 to bind to acidic glycosaminoglycans.
Collapse
Affiliation(s)
- Catherine L Lawson
- Department of Chemistry and Chemical Biology, 610 Taylor Road, Piscataway, NJ 08854, USA.
| | | | | | | |
Collapse
|
9
|
Abstract
Sequencing distinguished relapsing fever from other borrelial species but not
B. duttonii from B.
recurrentis. Relapsing fever Borrelia spp. challenge microbiologic typing
because they possess segmented genomes that maintain essential genes on large
linear plasmids. Antigenic variation further complicates typing. Intergenic
spacer (IGS, between 16S–23S genes) heterogeneity provides resolution
among Lyme disease–associated and some relapsing fever spirochetes. We
used an IGS fragment for typing East African relapsing fever
Borrelia spp. Borrelia recurrentis and
their louse vectors showed 2 sequence types, while 4 B.
duttonii and their tick vectors had 4 types. IGS typing was unable
to discriminate between the tick- and louseborne forms of disease. B.
crocidurae, also present in Africa, was clearly resolved from the
B. recurrentis/B.
duttonii complex. IGS analysis of ticks showed relapsing
fever Borrelia spp. and a unique clade, distant from those
associated with relapsing fever, possibly equivalent to a novel species in ticks
from this region. Clinical significance of this spirochete is undetermined.
Collapse
Affiliation(s)
- Julie Christine Scott
- Department of Cellular and Molecular Biology, Imperial College of Science, Technology and Medicine, South Kensington, London, United Kingdom
| |
Collapse
|
10
|
Zuckert WR, Kerentseva TA, Lawson CL, Barbour AG. Structural conservation of neurotropism-associated VspA within the variable Borrelia Vsp-OspC lipoprotein family. J Biol Chem 2001; 276:457-63. [PMID: 11018048 DOI: 10.1074/jbc.m008449200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vsp surface lipoproteins are serotype-defining antigens of relapsing fever spirochetes that undergo multiphasic antigenic variation to avoid the immune response. One of these proteins, VspA of Borrelia turicatae, is also associated with neurotropism in infected mice. Vsp proteins are highly polymorphic in sequence, which may relate to their specific antibody reactivities and host cell interactions. To determine whether sequence variations affect protein structure, we compared B. turicatae VspA with three related proteins: VspB of B. turicatae, Vsp26 of the relapsing fever agent Borrelia hermsii, and OspC of the Lyme disease spirochete Borrelia burgdorferi. Recombinant non-lipidated proteins were purified by affinity or ion exchange chromatography. Circular dichroism spectra revealed similar, highly alpha-helical secondary structures for all four proteins. In vitro assays demonstrated protease-resistant, thermostable Vsp cores starting at a conserved serine at position 34 (Ser(34)). All proteins aggregate as dimers in solution. In situ trypsin treatment and surface protein cross-linking showed that the native lipoproteins also form protease-resistant dimers. These findings indicate that Vsp proteins have a common compact fold and that their established functions are based on localized polymorphisms. Two forms of VspA crystals suitable for structure determination by x-ray diffraction methods have been obtained.
Collapse
Affiliation(s)
- W R Zuckert
- Department of Microbiology & Molecular Genetics, University of California at Irvine, College of Medicine, Irvine, California 92697, USA.
| | | | | | | |
Collapse
|