1
|
Elmaghrabi MM, Alharbi NS, Alobaidi AS, Abdulmanea AA, Kadaikunnan S, Ramadan AA, Khaled JM. Iron-tannic acid nano-coating: A promising treatment approach for enhancing Lactococcus lactis antibiotic resistance. Saudi Pharm J 2024; 32:102052. [PMID: 38590610 PMCID: PMC10999874 DOI: 10.1016/j.jsps.2024.102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
The objective of this study was to explore a novel methodology for the synthesis of nanocoated probiotics following their collection and cultivation under optimized conditions, in light of their significant contribution to human health. Probiotics are instrumental in sustaining immune health by modulating the gastrointestinal microbiota and facilitating digestion. However, the equilibrium they maintain can be adversely affected by antibiotic treatments. It is critical to investigate the vulnerability of probiotics to antibiotics, considering the potential implications. This research aimed to assess whether nanoparticle coating could augment the probiotics' resistance to antibiotic influence. A strain of Lactococcus lactis (L. lactis) was isolated, cultured, and comprehensively characterized utilizing state-of-the-art methodologies, including the VITEK® 2 compact system, VITEK® MS, and 16S rRNA gene sequencing. The nanoparticle coating was performed using iron (III) chloride hexahydrate and tannic acid, followed by an evaluation of the probiotics' resistance to a range of antibiotics. The analysis through scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrated a partial nanoparticle coating of the probiotics, which was further supported by UV/Vis spectroscopy findings, suggesting enhanced resistance to standard antibiotics. The results revealed that this strain possesses a unique protein profile and is genetically similar to strains identified in various other countries. Moreover, nano-encapsulation notably increased the strain's resistance to a spectrum of standard antibiotics, including Benzylpenicillin, Teicoplanin, Oxacillin, Vancomycin, Tetracycline, Rifampicin, Erythromycin, and Clindamycin. These findings imply that nanoparticle-coated probiotics may effectively counteract the detrimental effects of extended antibiotic therapy, thus preserving their viability and beneficial influence on gastrointestinal health.
Collapse
Affiliation(s)
- Marwa M. Elmaghrabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naiyf S. Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed S. Alobaidi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Adel A. Abdulmanea
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Jamal M. Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Solopova A, Kok J, Kuipers OP. Disruption of a Transcriptional Repressor by an Insertion Sequence Element Integration Leads to Activation of a Novel Silent Cellobiose Transporter in Lactococcus lactis MG1363. Appl Environ Microbiol 2017; 83:e01279-17. [PMID: 28970222 PMCID: PMC5691405 DOI: 10.1128/aem.01279-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/21/2017] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis subsp. cremoris strains typically carry many dairy niche-specific adaptations. During adaptation to the milk environment these former plant strains have acquired various pseudogenes and insertion sequence elements indicative of ongoing genome decay and frequent transposition events in their genomes. Here we describe the reactivation of a silenced plant sugar utilization cluster in an L. lactis MG1363 derivative lacking the two main cellobiose transporters, PtcBA-CelB and PtcBAC, upon applying selection pressure to utilize cellobiose. A disruption of the transcriptional repressor gene llmg_1239 by an insertion sequence (IS) element allows expression of the otherwise silent novel cellobiose transporter Llmg_1244 and leads to growth of mutant strains on cellobiose. Llmg_1239 was labeled CclR, for cellobiose cluster repressor.IMPORTANCE Insertion sequences (ISs) play an important role in the evolution of lactococci and other bacteria. They facilitate DNA rearrangements and are responsible for creation of new genetic variants with selective advantages under certain environmental conditions. L. lactis MG1363 possesses 71 copies in a total of 11 different types of IS elements. This study describes yet another example of an IS-mediated adaptive evolution. An integration of IS981 or IS905 into a gene coding for a transcriptional repressor led to activation of the repressed gene cluster coding for a plant sugar utilization pathway. The expression of the gene cluster allowed assembly of a novel cellobiose-specific transporter and led to cell growth on cellobiose.
Collapse
Affiliation(s)
- Ana Solopova
- Department of Molecular Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, the Netherlands
| | - Jan Kok
- Department of Molecular Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, the Netherlands
| |
Collapse
|
3
|
Unleashing Natural Competence in Lactococcus lactis by Induction of the Competence Regulator ComX. Appl Environ Microbiol 2017; 83:AEM.01320-17. [PMID: 28778888 DOI: 10.1128/aem.01320-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/01/2017] [Indexed: 11/20/2022] Open
Abstract
In biotechnological workhorses like Streptococcus thermophilus and Bacillus subtilis, natural competence can be induced, which facilitates genetic manipulation of these microbes. However, in strains of the important dairy starter Lactococcus lactis, natural competence has not been established to date. However, in silico analysis of the complete genome sequences of 43 L. lactis strains revealed complete late competence gene sets in 2 L. lactis subsp. cremoris strains (KW2 and KW10) and at least 10 L. lactis subsp. lactis strains, including the model strain IL1403 and the plant-derived strain KF147. The remainder of the strains, including all dairy isolates, displayed genomic decay in one or more of the late competence genes. Nisin-controlled expression of the competence regulator comX in L. lactis subsp. lactis KF147 resulted in the induction of expression of the canonical competence regulon and elicited a state of natural competence in this strain. In contrast, comX expression in L. lactis NZ9000, which was predicted to encode an incomplete competence gene set, failed to induce natural competence. Moreover, mutagenesis of the comEA-EC operon in strain KF147 abolished the comX-driven natural competence, underlining the involvement of the competence machinery. Finally, introduction of nisin-inducible comX expression into nisRK-harboring derivatives of strains IL1403 and KW2 allowed the induction of natural competence in these strains also, expanding this phenotype to other L. lactis strains of both subspecies.IMPORTANCE Specific bacterial species are able to enter a state of natural competence in which DNA is taken up from the environment, allowing the introduction of novel traits. Strains of the species Lactococcus lactis are very important starter cultures for the fermentation of milk in the cheese production process, where these bacteria contribute to the flavor and texture of the end product. The activation of natural competence in this industrially relevant organism can accelerate research aiming to understand industrially relevant traits of these bacteria and can facilitate engineering strategies to harness the natural biodiversity of the species in optimized starter strains.
Collapse
|
4
|
Siezen RJ, Bayjanov JR, Felis GE, van der Sijde MR, Starrenburg M, Molenaar D, Wels M, van Hijum SAFT, van Hylckama Vlieg JET. Genome-scale diversity and niche adaptation analysis of Lactococcus lactis by comparative genome hybridization using multi-strain arrays. Microb Biotechnol 2011; 4:383-402. [PMID: 21338475 PMCID: PMC3818997 DOI: 10.1111/j.1751-7915.2011.00247.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Lactococcus lactis produces lactic acid and is widely used in the manufacturing of various fermented dairy products. However, the species is also frequently isolated from non-dairy niches, such as fermented plant material. Recently, these non-dairy strains have gained increasing interest, as they have been described to possess flavour-forming activities that are rarely found in dairy isolates and have diverse metabolic properties. We performed an extensive whole-genome diversity analysis on 39 L. lactis strains, isolated from dairy and plant sources. Comparative genome hybridization analysis with multi-strain microarrays was used to assess presence or absence of genes and gene clusters in these strains, relative to all L. lactis sequences in public databases, whereby chromosomal and plasmid-encoded genes were computationally analysed separately. Nearly 3900 chromosomal orthologous groups (chrOGs) were defined on basis of four sequenced chromosomes of L. lactis strains (IL1403, KF147, SK11, MG1363). Of these, 1268 chrOGs are present in at least 35 strains and represent the presently known core genome of L. lactis, and 72 chrOGs appear to be unique for L. lactis. Nearly 600 and 400 chrOGs were found to be specific for either the subspecies lactis or subspecies cremoris respectively. Strain variability was found in presence or absence of gene clusters related to growth on plant substrates, such as genes involved in the consumption of arabinose, xylan, α-galactosides and galacturonate. Further niche-specific differences were found in gene clusters for exopolysaccharides biosynthesis, stress response (iron transport, osmotolerance) and bacterial defence mechanisms (nisin biosynthesis). Strain variability of functions encoded on known plasmids included proteolysis, lactose fermentation, citrate uptake, metal ion resistance and exopolysaccharides biosynthesis. The present study supports the view of L. lactis as a species with a very flexible genome.
Collapse
Affiliation(s)
- Roland J Siezen
- Kluyver Centre for Genomics of Industrial Fermentation, NIZO food research, P.O. Box 20, 6710 BA Ede, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Yeeles JTP, Dillingham MS. The processing of double-stranded DNA breaks for recombinational repair by helicase-nuclease complexes. DNA Repair (Amst) 2010; 9:276-85. [PMID: 20116346 DOI: 10.1016/j.dnarep.2009.12.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Double-stranded DNA breaks are prepared for recombinational repair by nucleolytic digestion to form single-stranded DNA overhangs that are substrates for RecA/Rad51-mediated strand exchange. This processing can be achieved through the activities of multiple helicases and nucleases. In bacteria, the function is mainly provided by a stable multi-protein complex of which there are two structural classes; AddAB- and RecBCD-type enzymes. These helicase-nucleases are of special interest with respect to DNA helicase mechanism because they are exceptionally powerful DNA translocation motors, and because they serve as model systems for both single molecule studies and for understanding how DNA helicases can be coupled to other protein machinery. This review discusses recent developments in our understanding of the AddAB and RecBCD complexes, focussing on their distinctive strategies for processing DNA ends. We also discuss the extent to which bacterial DNA end resection mechanisms may parallel those used in eukaryotic cells.
Collapse
Affiliation(s)
- Joseph T P Yeeles
- DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | | |
Collapse
|
6
|
RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol Mol Biol Rev 2009; 72:642-71, Table of Contents. [PMID: 19052323 DOI: 10.1128/mmbr.00020-08] [Citation(s) in RCA: 409] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The RecBCD enzyme of Escherichia coli is a helicase-nuclease that initiates the repair of double-stranded DNA breaks by homologous recombination. It also degrades linear double-stranded DNA, protecting the bacteria from phages and extraneous chromosomal DNA. The RecBCD enzyme is, however, regulated by a cis-acting DNA sequence known as Chi (crossover hotspot instigator) that activates its recombination-promoting functions. Interaction with Chi causes an attenuation of the RecBCD enzyme's vigorous nuclease activity, switches the polarity of the attenuated nuclease activity to the 5' strand, changes the operation of its motor subunits, and instructs the enzyme to begin loading the RecA protein onto the resultant Chi-containing single-stranded DNA. This enzyme is a prototypical example of a molecular machine: the protein architecture incorporates several autonomous functional domains that interact with each other to produce a complex, sequence-regulated, DNA-processing machine. In this review, we discuss the biochemical mechanism of the RecBCD enzyme with particular emphasis on new developments relating to the enzyme's structure and DNA translocation mechanism.
Collapse
|
7
|
Bore E, Langsrud S, Langsrud Ø, Rode TM, Holck A. Acid-shock responses in Staphylococcus aureus investigated by global gene expression analysis. MICROBIOLOGY-SGM 2007; 153:2289-2303. [PMID: 17600073 DOI: 10.1099/mic.0.2007/005942-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A general overview is presented of the changes in the genetic expression along a time curve through the first 20 min after acidification to pH 4.5 of exponentially growing cultures of the food pathogenic strain Staphylococcus aureus 50583. A newly developed method for statistical significance testing was used to detect significant gene expression responses. Most responses showed an increase or decrease from time zero to 10 min after acidification, and then generally a stabilization in expression level from 10 to 20 min. Increased urease activity appeared to be an important factor in the acid defence, along with proton excretion by NADH dehydrogenase and macromolecule repair mechanisms. Oxidative-stress responses, such as increased expression of thioredoxin genes and upregulation of pentose phosphate pathway genes to generate more reducing power, were also induced. A general reduction in the expression of genes encoding ribosomal proteins and genes involved in nucleotide synthesis, as well as fatty acid and lipoprotein metabolism, reflected the lowered growth rate after acidification. The pH shock did not appear to trigger major virulence responses or biofilm formation. Metal ion regulation and transport were affected by the acid shock, and production of several cofactors such as molybdopterin was increased. Many of the presented observations could be explained, while some represent still-unknown mechanisms. The patterns of regulation were confirmed by quantitative reverse transcriptase PCR (QRT-PCR). Together, these results showed the main responses of S. aureus and will be a good starting point for future, more specific, in-depth studies of specific gene responses that occur in conjunction with the acid-stress defence of S. aureus.
Collapse
Affiliation(s)
- Erlend Bore
- The Norwegian University of Life Sciences (UMB), PO Box 5003, N-1432 Ås, Norway
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| | - Solveig Langsrud
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| | - Øyvind Langsrud
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| | - Tone Mari Rode
- The Norwegian University of Life Sciences (UMB), PO Box 5003, N-1432 Ås, Norway
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| | - Askild Holck
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| |
Collapse
|
8
|
Yeeles JTP, Dillingham MS. A dual-nuclease mechanism for DNA break processing by AddAB-type helicase-nucleases. J Mol Biol 2007; 371:66-78. [PMID: 17570399 DOI: 10.1016/j.jmb.2007.05.053] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/14/2007] [Accepted: 05/17/2007] [Indexed: 11/19/2022]
Abstract
Nature has devised many strategies for repairing DNA breaks. In homology-dependent pathways, the break is first processed to a 3'-ssDNA overhang that serves as a substrate for DNA strand exchange. Here, we demonstrate a distinct biochemical mechanism for DNA break processing employed by the AddAB class of helicase-nuclease. We show that this enzyme complex contains two active nuclease domains, each of which is dedicated to cleavage of one specific DNA strand. The nuclease activity responsible for cleavage in the 3'-->5' direction is attenuated when the enzyme encounters a recombination hotspot sequence, whereas cleavage in the 5'-->3' direction is unaffected, resulting in the production of recombinogenic 3'-terminated ssDNA tails. Finally, we show that the molecular events that underlie the recognition and response to recombination hotspots can be uncoupled: mutant proteins that are unable to cleave at recombination hotspots retain the ability to form stable complexes with the hotspot sequence.
Collapse
Affiliation(s)
- Joseph T P Yeeles
- DNA, Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol, UK
| | | |
Collapse
|
9
|
Abstract
There are clear theoretical reasons and many well-documented examples which show that repetitive, DNA is essential for genome function. Generic repeated signals in the DNA are necessary to format expression of unique coding sequence files and to organise additional functions essential for genome replication and accurate transmission to progeny cells. Repetitive DNA sequence elements are also fundamental to the cooperative molecular interactions forming nucleoprotein complexes. Here, we review the surprising abundance of repetitive DNA in many genomes, describe its structural diversity, and discuss dozens of cases where the functional importance of repetitive elements has been studied in molecular detail. In particular, the fact that repeat elements serve either as initiators or boundaries for heterochromatin domains and provide a significant fraction of scaffolding/matrix attachment regions (S/MARs) suggests that the repetitive component of the genome plays a major architectonic role in higher order physical structuring. Employing an information science model, the 'functionalist' perspective on repetitive DNA leads to new ways of thinking about the systemic organisation of cellular genomes and provides several novel possibilities involving repeat elements in evolutionarily significant genome reorganisation. These ideas may facilitate the interpretation of comparisons between sequenced genomes, where the repetitive DNA component is often greater than the coding sequence component.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 E. 58th Street, Chicago, IL 60637, USA.
| | | |
Collapse
|
10
|
Zuñiga-Castillo J, Romero D, Martínez-Salazar JM. The recombination genes addAB are not restricted to gram-positive bacteria: genetic analysis of the recombination initiation enzymes RecF and AddAB in Rhizobium etli. J Bacteriol 2004; 186:7905-13. [PMID: 15547262 PMCID: PMC529079 DOI: 10.1128/jb.186.23.7905-7913.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Single-strand gaps (SSGs) and double-strand breaks (DSBs) are the major initiation sites for recombination. In bacteria, the SSGs are repaired by RecFOR, while the DSBs are processed by RecBCD in gram-negative bacteria and AddAB in gram-positive bacteria. Unexpectedly, instead of recBCD genes, the addAB genes were found in members of the alpha-proteobacteria group (gram negative). Taking Rhizobium etli as a model, the role of recF and addAB genes in homologous recombination and repair of damaged DNA was evaluated. Inactivation of either recF or addA provoked strong sensitivity to UV radiation and mitomycin C, while an additive effect was observed in the recF-addA mutant. The DSBs generated by nalidixic acid caused low viability only in the addA mutant. The recombination frequency of large and small plasmids was reduced in the recF mutant (24- and 36-fold, respectively), whereas a slight decrease (threefold) in the addA mutant was observed. Moreover, an additive effect (47- and 90-fold, respectively) was observed in the double mutant, but it was not as dramatic as that in a recA mutant. Interestingly, the frequency of deletion and Campbell-type recombination was slightly affected in either single or double mutants. These results suggest that another pathway exists that allows plasmid and Campbell-type recombination in the absence of recF and addA genes.
Collapse
Affiliation(s)
- Jacobo Zuñiga-Castillo
- Programa de Genética Molecular de Plásmidos Bacterianos, Centro de Investigación sobre Fijación de Nitrógeno-UNAM, 62210 Cuernavaca, Morelos, México
| | | | | |
Collapse
|
11
|
Halpern D, Gruss A, Claverys JP, Karoui ME. rexAB mutants in Streptococcus pneumoniae. MICROBIOLOGY-SGM 2004; 150:2409-2414. [PMID: 15256582 DOI: 10.1099/mic.0.27106-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus pneumoniae is a human pathogen that is naturally transformable. In this study a major component of the homologous recombination pathway, the RexAB exonuclease/helicase, was characterized. rexA and rexB insertional mutants were constructed using mariner mutagenesis and found to have identical phenotypes. Both rexAB mutants displayed poor cell viability, reduced double-strand exonuclease activity, UV sensitivity and a reduced level of gene conversion compared to the wild-type strain. No effect was observed on plasmid and chromosomal transformation efficiencies. These results indicate that in S. pneumoniae, RexAB is required for DNA repair, but not for chromosomal transformation and plasmid establishment.
Collapse
Affiliation(s)
- David Halpern
- Unité de Recherches Laitières et Génétique Appliquée, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas, France
| | - Alexandra Gruss
- Unité de Recherches Laitières et Génétique Appliquée, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas, France
| | - Jean-Pierre Claverys
- Laboratoire de Microbiologie et Génétique Moléculaires UMR 5100, CNRS Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse cedex, France
| | - Meriem El Karoui
- Unité de Recherches Laitières et Génétique Appliquée, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas, France
| |
Collapse
|