1
|
Trirocco R, Pasqua M, Tramonti A, Grossi M, Colonna B, Paiardini A, Prosseda G. Fatty Acids Abolish Shigella Virulence by Inhibiting Its Master Regulator, VirF. Microbiol Spectr 2023; 11:e0077823. [PMID: 37140433 PMCID: PMC10269687 DOI: 10.1128/spectrum.00778-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023] Open
Abstract
The pathogenicity of Shigella, the intracellular pathogen responsible for human bacillary dysentery, depends on a coordinated and tightly regulated expression of its virulence determinants. This is the result of a cascade organization of its positive regulators, with VirF, a transcriptional activator belonging to the AraC-XylS family, in a pivotal position. VirF itself is submitted to several well-known regulations at the transcriptional level. In this work, we present evidence for a novel posttranslational regulatory mechanism of VirF mediated by the inhibitory interaction with specific fatty acids. By homology modeling and molecular docking analyses, we identify a jelly roll motif in the structure of ViF capable of interacting with medium-chain saturated and long-chain unsaturated fatty acids. In vitro and in vivo assays show that capric, lauric, myristoleic, palmitoleic, and sapienic acids interact effectively with the VirF protein, abolishing its transcription-promoting activity. This silences the virulence system of Shigella, leading to a drastic reduction in its ability to invade epithelial cells and proliferate in their cytoplasm. IMPORTANCE In the absence of a valid vaccine, the main therapeutic approach currently used to treat shigellosis is based on the use of antibiotics. The emergence of antibiotic resistance jeopardizes the future effectiveness of this approach. The importance of the present work resides both in the identification of a new level of posttranslational regulation of the Shigella virulence system and in the characterization of a mechanism offering new opportunities for the design of antivirulence compounds, which may change the treatment paradigm of Shigella infections by limiting the emergence of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Rita Trirocco
- Institute Pasteur Italia, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Martina Pasqua
- Institute Pasteur Italia, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Milena Grossi
- Institute Pasteur Italia, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Bianca Colonna
- Institute Pasteur Italia, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | | | - Gianni Prosseda
- Institute Pasteur Italia, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Epigenetic-Mediated Antimicrobial Resistance: Host versus Pathogen Epigenetic Alterations. Antibiotics (Basel) 2022; 11:antibiotics11060809. [PMID: 35740215 PMCID: PMC9220109 DOI: 10.3390/antibiotics11060809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Since the discovery of antibiotics, humans have been benefiting from them by decreasing the morbidity and mortality associated with bacterial infections. However, in the past few decades, misuse of antibiotics has led to the emergence of bacterial infections resistant to multiple drugs, a significant health concern. Bacteria exposed to inappropriate levels of antibiotics lead to several genetic changes, enabling them to survive in the host and become more resistant. Despite the understanding and targeting of genetic-based biochemical changes in the bacteria, the increasing levels of antibiotic resistance are not under control. Many reports hint at the role of epigenetic modifications in the bacterial genome and host epigenetic reprogramming due to interaction with resistant pathogens. Epigenetic changes, such as the DNA-methylation-based regulation of bacterial mutation rates or bacteria-induced histone modification in human epithelial cells, facilitate its long-term survival. In this review article, epigenetic changes leading to the development of antibiotic resistance in clinically relevant bacteria are discussed. Additionally, recent lines of evidence focusing on human host epigenetic changes due to the human–pathogen interactions are presented. As genetic mechanisms cannot explain the transient nature of antimicrobial resistance, we believe that epigenetics may provide new frontiers in antimicrobial discovery.
Collapse
|
3
|
|
4
|
Pasqua M, Michelacci V, Di Martino ML, Tozzoli R, Grossi M, Colonna B, Morabito S, Prosseda G. The Intriguing Evolutionary Journey of Enteroinvasive E. coli (EIEC) toward Pathogenicity. Front Microbiol 2017; 8:2390. [PMID: 29259590 PMCID: PMC5723341 DOI: 10.3389/fmicb.2017.02390] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/20/2017] [Indexed: 01/01/2023] Open
Abstract
Among the intestinal pathogenic Escherichia coli, enteroinvasive E. coli (EIEC) are a group of intracellular pathogens able to enter epithelial cells of colon, multiplicate within them, and move between adjacent cells with a mechanism similar to Shigella, the ethiological agent of bacillary dysentery. Despite EIEC belong to the same pathotype of Shigella, they neither have the full set of traits that define Shigella nor have undergone the extensive gene decay observed in Shigella. Molecular analysis confirms that EIEC are widely distributed among E. coli phylogenetic groups and correspond to bioserotypes found in many E. coli serogroups. Like Shigella, also in EIEC the critical event toward a pathogenic life-style consisted in the acquisition by horizontal gene transfer of a large F-type plasmid (pINV) containing the genes required for invasion, intracellular survival, and spreading through the intestinal mucosa. In Shigella, the ample gain in virulence determinants has been counteracted by a substantial loss of functions that, although important for the survival in the environment, are redundant or deleterious for the life inside the host. The pathoadaptation process that has led Shigella to modify its metabolic profile and increase its pathogenic potential is still in infancy in EIEC, although maintenance of some features typical of E. coli might favor their emerging relevance as intestinal pathogens worldwide, as documented by recent outbreaks in industrialized countries. In this review, we will discuss the evolution of EIEC toward Shigella-like invasive forms going through the epidemiology, including the emergence of new virulent strains, their genome organization, and the complex interactions they establish with the host.
Collapse
Affiliation(s)
- Martina Pasqua
- Istituto Pasteur Italia, Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - Valeria Michelacci
- European Union Reference Laboratory for Escherichia coli, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Letizia Di Martino
- Istituto Pasteur Italia, Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - Rosangela Tozzoli
- European Union Reference Laboratory for Escherichia coli, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Milena Grossi
- Istituto Pasteur Italia, Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - Bianca Colonna
- Istituto Pasteur Italia, Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - Stefano Morabito
- European Union Reference Laboratory for Escherichia coli, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Gianni Prosseda
- Istituto Pasteur Italia, Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
5
|
Giangrossi M, Giuliodori AM, Tran CN, Amici A, Marchini C, Falconi M. VirF Relieves the Transcriptional Attenuation of the Virulence Gene icsA of Shigella flexneri Affecting the icsA mRNA-RnaG Complex Formation. Front Microbiol 2017; 8:650. [PMID: 28458662 PMCID: PMC5394118 DOI: 10.3389/fmicb.2017.00650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022] Open
Abstract
VirF is the master activator of virulence genes of Shigella and its expression is required for the invasion of the human intestinal mucosa by pathogenic bacteria. VirF was shown to directly activate the transcription of virB and icsA, which encode two essential proteins involved in the pathogenicity process, by binding their promoter regions. In this study, we demonstrate by band shift, enzymatic probing and cross-linking experiments that VirF, in addition to DNA, can also bind the icsA transcript and RnaG, an antisense non-coding small RNA that promotes the premature termination of icsA mRNA through a transcriptional attenuation mechanism. Furthermore, we show that VirF binds in vitro also other species of RNAs, although with lower specificity. The existence of VirF–RnaG and VirF-icsA mRNA complexes is confirmed in a pulldown assay carried out under experimental conditions that very close reproduce the in vivo conditions and that allows immobilized VirF to “fish” out RnaG and icsA mRNA from a total RNA extract. The VirF binding sites identified on both icsA mRNA and RnaG contain a 13 nucleotides stretch (5′-UUUUaGYcUuUau-3′) that is the RNA-converted consensus sequence previously proposed for the VirF–DNA interaction. Band-shift assays with a synthetic RNA molecule whose sequence perfectly matches the consensus indicate that this signature plays a key role also in the VirF–RNA interaction, in particular when exposed in a stem–loop structure. To further explore the icsA-RnaG-VirF regulatory system, we developed an in vitro test (RNA–RNA Pairing Assay) in which pairing between icsA mRNA and synthetic RNAs that reproduce the individual stem–loop motifs of RnaG, was analyzed in the presence of VirF. This assay shows that this protein can prevent the formation of the kissing complex, defined as the initial nucleation points for RNA heteroduplex formation, between RnaG and icsA mRNA. Consistently, VirF alleviates the RnaG-mediated repression of icsA transcription in vitro. Therefore VirF, by hindering the icsA transcript-RnaG interaction, exhibits an activity opposed to that usually displayed by proteins, which generally assist the RNA–RNA interaction; this quite uncommon and new function and the regulatory implications of VirF as a potential RNA-binding protein are discussed.
Collapse
Affiliation(s)
- Mara Giangrossi
- School of Bioscience and Veterinary Medicine, University of CamerinoCamerino, Italy
| | - Anna M Giuliodori
- School of Bioscience and Veterinary Medicine, University of CamerinoCamerino, Italy
| | - Chi N Tran
- Food Science Department, Can Tho Technical - Economic CollegeCan Tho, Vietnam
| | - Augusto Amici
- School of Bioscience and Veterinary Medicine, University of CamerinoCamerino, Italy
| | - Cristina Marchini
- School of Bioscience and Veterinary Medicine, University of CamerinoCamerino, Italy
| | - Maurizio Falconi
- School of Bioscience and Veterinary Medicine, University of CamerinoCamerino, Italy
| |
Collapse
|
6
|
Di Martino ML, Falconi M, Micheli G, Colonna B, Prosseda G. The Multifaceted Activity of the VirF Regulatory Protein in the Shigella Lifestyle. Front Mol Biosci 2016; 3:61. [PMID: 27747215 PMCID: PMC5041530 DOI: 10.3389/fmolb.2016.00061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
Abstract
Shigella is a highly adapted human pathogen, mainly found in the developing world and causing a severe enteric syndrome. The highly sophisticated infectious strategy of Shigella banks on the capacity to invade the intestinal epithelial barrier and cause its inflammatory destruction. The cellular pathogenesis and clinical presentation of shigellosis are the sum of the complex action of a large number of bacterial virulence factors mainly located on a large virulence plasmid (pINV). The expression of pINV genes is controlled by multiple environmental stimuli through a regulatory cascade involving proteins and sRNAs encoded by both the pINV and the chromosome. The primary regulator of the virulence phenotype is VirF, a DNA-binding protein belonging to the AraC family of transcriptional regulators. The virF gene, located on the pINV, is expressed only within the host, mainly in response to the temperature transition occurring when the bacterium transits from the outer environment to the intestinal milieu. VirF then acts as anti-H-NS protein and directly activates the icsA and virB genes, triggering the full expression of the invasion program of Shigella. In this review we will focus on the structure of VirF, on its sophisticated regulation, and on its role as major player in the path leading from the non-invasive to the invasive phenotype of Shigella. We will address also the involvement of VirF in mechanisms aimed at withstanding adverse conditions inside the host, indicating that this protein is emerging as a global regulator whose action is not limited to virulence systems. Finally, we will discuss recent observations conferring VirF the potential of a novel antibacterial target for shigellosis.
Collapse
Affiliation(s)
- Maria Letizia Di Martino
- Dipartimento di Biologia e Biotecnologie C. Darwin, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy
| | - Maurizio Falconi
- Laboratorio di Genetica Molecolare e dei Microrganismi, Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino Camerino, Italy
| | - Gioacchino Micheli
- Istituto di Biologia e Patologia Molecolari, Consilglio Nazionale Delle Richerche Roma, Italy
| | - Bianca Colonna
- Dipartimento di Biologia e Biotecnologie C. Darwin, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy
| | - Gianni Prosseda
- Dipartimento di Biologia e Biotecnologie C. Darwin, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy
| |
Collapse
|
7
|
Abstract
Shigella species are the causative agents of bacillary dysentery in humans, an invasive disease in which the bacteria enter the cells of the epithelial layer of the large intestine, causing extensive tissue damage and inflammation. They rely on a plasmid-encoded type III secretion system (TTSS) to cause disease; this system and its regulation have been investigated intensively at the molecular level for decades. The lessons learned have not only deepened our knowledge of Shigella biology but also informed in important ways our understanding of the mechanisms used by other pathogenic bacteria to cause disease and to control virulence gene expression. In addition, the Shigella story has played a central role in the development of our appreciation of the contribution of horizontal DNA transfer to pathogen evolution.A 30-kilobase-pair "Entry Region" of the 230-kb virulence plasmid lies at the heart of the Shigella pathogenesis system. Here are located the virB and mxiE regulatory genes and most of the structural genes involved in the expression of the TTSS and its effector proteins. Expression of the virulence genes occurs in response to an array of environmental signals, including temperature, osmolarity, and pH.At the top of the regulatory hierarchy and lying on the plasmid outside the Entry Region isvirF, encoding an AraC-like transcription factor.Virulence gene expression is also controlled by chromosomal genes,such as those encoding the nucleoid-associated proteins H-NS, IHF, and Fis, the two-component regulators OmpR/EnvZ and CpxR/CpxA, the anaerobic regulator Fnr, the iron-responsive regulator Fur, and the topoisomerases of the cell that modulate DNA supercoiling. Small regulatory RNAs,the RNA chaperone Hfq,and translational modulation also affect the expression of the virulence phenotypetranscriptionally and/orposttranscriptionally.
Collapse
|
8
|
Leuzzi A, Di Martino ML, Campilongo R, Falconi M, Barbagallo M, Marcocci L, Pietrangeli P, Casalino M, Grossi M, Micheli G, Colonna B, Prosseda G. Multifactor Regulation of the MdtJI Polyamine Transporter in Shigella. PLoS One 2015; 10:e0136744. [PMID: 26313003 PMCID: PMC4636849 DOI: 10.1371/journal.pone.0136744] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/06/2015] [Indexed: 01/19/2023] Open
Abstract
The polyamine profile of Shigella, the etiological agent of bacillary dysentery in humans, differs markedly from that of E. coli, its innocuous commensal ancestor. Pathoadaptive mutations such as the loss of cadaverine and the increase of spermidine favour the full expression of the virulent phenotype of Shigella. Spermidine levels affect the expression of the MdtJI complex, a recently identified efflux pump belonging to the small multi-drug resistance family of transporters. In the present study, we have addressed the regulation of the mdtJI operon in Shigella by asking which factors influence its expression as compared to E. coli. In particular, after identifying the mdtJI promoter by primer extension analysis, in vivo transcription assays and gel-retardation experiments were carried out to get insight on the silencing of mdtJI in E. coli. The results indicate that H-NS, a major nucleoid protein, plays a key role in repressing the mdtJI operon by direct binding to the regulatory region. In the Shigella background mdtJI expression is increased by the high levels of spermidine typically found in this microorganism and by VirF, the plasmid-encoded regulator of the Shigella virulence regulatory cascade. We also show that the expression of mdtJI is stimulated by bile components. Functional analyses reveal that MdtJI is able to promote the excretion of putrescine, the spermidine precursor. This leads us to consider the MdtJI complex as a possible safety valve allowing Shigella to maintain spermidine to a level optimally suited to survival within infected macrophages and, at the same time, prevent toxicity due to spermidine over-accumulation.
Collapse
Affiliation(s)
- Adriano Leuzzi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Via dei Sardi 70, 00185, Roma, Italy
| | - Maria Letizia Di Martino
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Via dei Sardi 70, 00185, Roma, Italy
| | - Rosaria Campilongo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Via dei Sardi 70, 00185, Roma, Italy
| | - Maurizio Falconi
- Laboratorio di Genetica Molecolare e dei Microrganismi, Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Marialuisa Barbagallo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Via dei Sardi 70, 00185, Roma, Italy
| | - Lucia Marcocci
- Dipartimento di Biochimica, Sapienza Università di Roma, P.le A. Moro 5, 00185, Roma, Italy
| | - Paola Pietrangeli
- Dipartimento di Biochimica, Sapienza Università di Roma, P.le A. Moro 5, 00185, Roma, Italy
| | - Mariassunta Casalino
- Dipartimento di Scienze, Università Roma Tre, Viale G. Marconi 446, 00146, Roma, Italy
| | - Milena Grossi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Via dei Sardi 70, 00185, Roma, Italy
| | - Gioacchino Micheli
- Istituto di Biologia e Patologia molecolari CNR, P.le A. Moro 5, 00185, Roma, Italy
| | - Bianca Colonna
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Via dei Sardi 70, 00185, Roma, Italy
| | - Gianni Prosseda
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Via dei Sardi 70, 00185, Roma, Italy
- * E-mail:
| |
Collapse
|
9
|
Ulissi U, Fabbretti A, Sette M, Giuliodori AM, Spurio R. Time-resolved assembly of a nucleoprotein complex between Shigella flexneri virF promoter and its transcriptional repressor H-NS. Nucleic Acids Res 2014; 42:13039-50. [PMID: 25389261 PMCID: PMC4245942 DOI: 10.1093/nar/gku1052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The virF gene of Shigella, responsible for triggering the virulence cascade in this pathogenic bacterium, is transcriptionally repressed by the nucleoid-associated protein H-NS. The primary binding sites of H-NS within the promoter region of virF have been detected here by footprinting experiments in the presence of H-NS or its monomeric DNA-binding domain (H-NSctd), which displays the same specificity as intact H-NS. Of the 14 short DNA fragments identified, 10 overlap sequences similar to the H-NS binding motif. The ‘fast’, ‘intermediate’ and ‘slow’ H-NS binding events leading to the formation of the nucleoprotein complex responsible for transcription repression have been determined by time-resolved hydroxyl radical footprinting experiments in the presence of full-length H-NS. We demonstrate that this process is completed in ≤1 s and H-NS protections occur simultaneously on site I and site II of the virF promoter. Furthermore, all ‘fast’ protections have been identified in regions containing predicted H-NS binding motifs, in agreement with the hypothesis that H-NS nucleoprotein complex assembles from a few nucleation sites containing high-affinity binding sequences. Finally, data are presented showing that the 22-bp fragment corresponding to one of the HNS binding sites deviates from canonical B-DNA structure at three TpA steps.
Collapse
Affiliation(s)
- Ulisse Ulissi
- Laboratory of Genetics, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC) 62032, Italy
| | - Attilio Fabbretti
- Laboratory of Genetics, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC) 62032, Italy
| | - Marco Sette
- Department of Chemical Sciences and Technologies, University of Rome-Tor Vergata, 00133 Roma, Italy
| | - Anna Maria Giuliodori
- Laboratory of Genetics, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC) 62032, Italy
| | - Roberto Spurio
- Laboratory of Genetics, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC) 62032, Italy
| |
Collapse
|
10
|
Campilongo R, Di Martino ML, Marcocci L, Pietrangeli P, Leuzzi A, Grossi M, Casalino M, Nicoletti M, Micheli G, Colonna B, Prosseda G. Molecular and functional profiling of the polyamine content in enteroinvasive E. coli : looking into the gap between commensal E. coli and harmful Shigella. PLoS One 2014; 9:e106589. [PMID: 25192335 PMCID: PMC4156367 DOI: 10.1371/journal.pone.0106589] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/31/2014] [Indexed: 11/19/2022] Open
Abstract
Polyamines are small molecules associated with a wide variety of physiological functions. Bacterial pathogens have developed subtle strategies to exploit polyamines or manipulate polyamine-related processes to optimize fitness within the host. During the transition from its innocuous E. coli ancestor, Shigella, the aetiological agent of bacillary dysentery, has undergone drastic genomic rearrangements affecting the polyamine profile. A pathoadaptation process involving the speG gene and the cad operon has led to spermidine accumulation and loss of cadaverine. While a higher spermidine content promotes the survival of Shigella within infected macrophages, the lack of cadaverine boosts the pathogenic potential of the bacterium in host tissues. Enteroinvasive E. coli (EIEC) display the same pathogenicity process as Shigella, but have a higher infectious dose and a higher metabolic activity. Pathoadaption events affecting the cad locus have occurred also in EIEC, silencing cadaverine production. Since EIEC are commonly regarded as evolutionary intermediates between E. coli and Shigella, we investigated on their polyamine profile in order to better understand which changes have occurred along the path to pathogenicity. By functional and molecular analyses carried out in EIEC strains belonging to different serotypes, we show that speG has been silenced in one strain only, favouring resistance to oxidative stress conditions and survival within macrophages. At the same time, we observe that the content of spermidine and putrescine, a relevant intermediate in the synthesis of spermidine, is higher in all strains as compared to E. coli. This may represent an evolutionary response to the lack of cadaverine. Indeed, restoring cadaverine synthesis decreases the expression of the speC gene, whose product affects putrescine production. In the light of these results, we discuss the possible impact of pathoadaptation events on the evolutionary emergence of a polyamine profile favouring to the pathogenic lifestyle of Shigella and EIEC.
Collapse
Affiliation(s)
- Rosaria Campilongo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Roma, Italy
| | - Maria Letizia Di Martino
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Roma, Italy
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| | - Lucia Marcocci
- Dipartimento di Biochimica, Sapienza Università di Roma, Roma, Italy
| | - Paola Pietrangeli
- Dipartimento di Biochimica, Sapienza Università di Roma, Roma, Italy
| | - Adriano Leuzzi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Roma, Italy
| | - Milena Grossi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Roma, Italy
| | | | - Mauro Nicoletti
- Dipartimento di Scienze Sperimentali e Cliniche, Università G. D'Annunzio, Chieti, Italy
| | - Gioacchino Micheli
- Istituto di Biologia, Medicina Molecolare e NanoBiotecnologie, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Bianca Colonna
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Roma, Italy
| | - Gianni Prosseda
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
11
|
Shigella Species. Food Microbiol 2014. [DOI: 10.1128/9781555818463.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Di Martino ML, Fioravanti R, Barbabella G, Prosseda G, Colonna B, Casalino M. Molecular evolution of the nicotinic acid requirement within the Shigella/EIEC pathotype. Int J Med Microbiol 2013; 303:651-61. [DOI: 10.1016/j.ijmm.2013.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/05/2013] [Accepted: 09/08/2013] [Indexed: 11/27/2022] Open
|
13
|
Di Martino ML, Campilongo R, Casalino M, Micheli G, Colonna B, Prosseda G. Polyamines: emerging players in bacteria-host interactions. Int J Med Microbiol 2013; 303:484-91. [PMID: 23871215 DOI: 10.1016/j.ijmm.2013.06.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/13/2013] [Accepted: 06/16/2013] [Indexed: 12/17/2022] Open
Abstract
Polyamines are small polycationic molecules found in almost all cells and associated with a wide variety of physiological processes. In recent years it has become increasingly clear that, in addition to core physiological functions, polyamines play a crucial role in bacterial pathogenesis. Considerable evidence has built up that bacteria have evolved mechanisms to turn these molecules to their own advantage and a novel standpoint to look at host-bacterium interactions emerges from the interplay among polyamines, host cells and infecting bacteria. In this review, we highlight how human bacterial pathogens have developed their own resourceful strategies to exploit polyamines or manipulate polyamine-related processes to optimize their fitness within the host. Besides contributing to a better understanding of the complex relationship between a pathogen and its host, acquisitions in this field have a significant potential towards the development of novel antibacterial therapeutic approaches.
Collapse
Affiliation(s)
- Maria Letizia Di Martino
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Roma, Italy; Dipartimento di Biologia, Università Roma Tre, Viale G. Marconi 446, 00146 Roma, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Characterization of the ospZ promoter in Shigella flexneri and its regulation by VirB and H-NS. J Bacteriol 2013; 195:2562-72. [PMID: 23543709 DOI: 10.1128/jb.00212-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OspZ is an effector protein of the type III secretion system in Shigella spp. that downregulates the human inflammatory response during bacterial infection. The ospZ gene is located on the large virulence plasmid of Shigella. Many genes on this plasmid are transcriptionally repressed by the nucleoid structuring protein H-NS and derepressed by VirB, a DNA-binding protein that displays homology to the plasmid partitioning proteins ParB and SopB. In this study, we characterized the ospZ promoter and investigated its regulation by H-NS and VirB in Shigella flexneri. We show that H-NS represses and VirB partially derepresses the ospZ promoter. H-NS-mediated repression requires sequences located between -731 and -412 relative to the beginning of the ospZ gene. Notably, the VirB-dependent derepression of ospZ requires the same VirB binding sites as are required for the VirB-dependent derepression of the divergent icsP gene. These sites are centered 425 bp upstream of the ospZ gene but over 1 kb upstream of the icsP transcription start site. Although these VirB binding sites lie closer to ospZ than icsP, the VirB-dependent increase in ospZ promoter activity is lower than that observed at the icsP promoter. This indicates that the proximity of VirB binding sites to Shigella promoters does not necessarily correlate with the level of VirB-dependent derepression. These findings have implications for virulence gene regulation in Shigella and other pathogens that control gene expression using mechanisms of transcriptional repression and derepression.
Collapse
|
15
|
Prosseda G, Di Martino ML, Campilongo R, Fioravanti R, Micheli G, Casalino M, Colonna B. Shedding of genes that interfere with the pathogenic lifestyle: the Shigella model. Res Microbiol 2012; 163:399-406. [DOI: 10.1016/j.resmic.2012.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/08/2012] [Indexed: 12/31/2022]
|
16
|
A new piece of the Shigella Pathogenicity puzzle: spermidine accumulation by silencing of the speG gene [corrected]. PLoS One 2011; 6:e27226. [PMID: 22102881 PMCID: PMC3213128 DOI: 10.1371/journal.pone.0027226] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/12/2011] [Indexed: 11/19/2022] Open
Abstract
The genome of Shigella, a gram negative bacterium which is the causative agent of bacillary dysentery, shares strong homologies with that of its commensal ancestor, Escherichia coli. The acquisition, by lateral gene transfer, of a large plasmid carrying virulence determinants has been a crucial event in the evolution towards the pathogenic lifestyle and has been paralleled by the occurrence of mutations affecting genes, which negatively interfere with the expression of virulence factors. In this context, we have analysed to what extent the presence of the plasmid-encoded virF gene, the major activator of the Shigella regulon for invasive phenotype, has modified the transcriptional profile of E. coli. Combining results from transcriptome assays and comparative genome analyses we show that in E. coli VirF, besides being able to up-regulate several chromosomal genes, which potentially influence bacterial fitness within the host, also activates genes which have been lost by Shigella. We have focused our attention on the speG gene, which encodes spermidine acetyltransferase, an enzyme catalysing the conversion of spermidine into the physiologically inert acetylspermidine, since recent evidence stresses the involvement of polyamines in microbial pathogenesis. Through identification of diverse mutations, which prevent expression of a functional SpeG protein, we show that the speG gene has been silenced by convergent evolution and that its inactivation causes the marked increase of intracellular spermidine in all Shigella spp. This enhances the survival of Shigella under oxidative stress and allows it to better face the adverse conditions it encounters inside macrophage. This is supported by the outcome of infection assays performed in mouse peritoneal macrophages and of a competitive-infection assay on J774 macrophage cell culture. Our observations fully support the pathoadaptive nature of speG inactivation in Shigella and reveal that the accumulation of spermidine is a key determinant in the pathogenicity strategy adopted by this microrganism.
Collapse
|
17
|
Tran CN, Giangrossi M, Prosseda G, Brandi A, Di Martino ML, Colonna B, Falconi M. A multifactor regulatory circuit involving H-NS, VirF and an antisense RNA modulates transcription of the virulence gene icsA of Shigella flexneri. Nucleic Acids Res 2011; 39:8122-34. [PMID: 21724612 PMCID: PMC3185424 DOI: 10.1093/nar/gkr521] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The icsA gene of Shigella encodes a structural protein involved in colonization of the intestinal mucosa by bacteria. This gene is expressed upon invasion of the host and is controlled by a complex regulatory circuit involving the nucleoid protein H-NS, the AraC-like transcriptional activator VirF, and a 450 nt antisense RNA (RnaG) acting as transcriptional attenuator. We investigated on the interplay of these factors at the molecular level. DNase I footprints reveal that both H-NS and VirF bind to a region including the icsA and RnaG promoters. H-NS is shown to repress icsA transcription at 30°C but not at 37°C, suggesting a significant involvement of this protein in the temperature-regulated expression of icsA. We also demonstrate that VirF directly stimulates icsA transcription and is able to alleviate H-NS repression in vitro. According to these results, icsA expression is derepressed in hns- background and overexpressed when VirF is provided in trans. Moreover, we find that RnaG-mediated transcription attenuation depends on 80 nt at its 5′-end, a stretch carrying the antisense region. Bases engaged in the initial contact leading to sense–antisense pairing have been identified using synthetic RNA and DNA oligonucleotides designed to rebuild and mutagenize the two stem–loop motifs of the antisense region.
Collapse
Affiliation(s)
- Chi Nhan Tran
- Laboratory of Molecular Genetics, School of Bioscience and Biotechnology., University of Camerino, 62032 Camerino (MC), Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Casalino M, Prosseda G, Barbagallo M, Iacobino A, Ceccarini P, Carmela Latella M, Nicoletti M, Colonna B. Interference of the CadC regulator in the arginine-dependent acid resistance system of Shigella and enteroinvasive E. coli. Int J Med Microbiol 2010; 300:289-95. [DOI: 10.1016/j.ijmm.2009.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 09/30/2009] [Accepted: 10/01/2009] [Indexed: 10/20/2022] Open
|
19
|
Giangrossi M, Prosseda G, Tran CN, Brandi A, Colonna B, Falconi M. A novel antisense RNA regulates at transcriptional level the virulence gene icsA of Shigella flexneri. Nucleic Acids Res 2010; 38:3362-75. [PMID: 20129941 PMCID: PMC2879508 DOI: 10.1093/nar/gkq025] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 12/30/2009] [Accepted: 01/11/2010] [Indexed: 12/26/2022] Open
Abstract
The virulence gene icsA of Shigella flexneri encodes an invasion protein crucial for host colonization by pathogenic bacteria. Within the intergenic region virA-icsA, we have discovered a new gene that encodes a non-translated antisense RNA (named RnaG), transcribed in cis on the complementary strand of icsA. In vitro transcription assays show that RnaG promotes premature termination of transcription of icsA mRNA. Transcriptional inhibition is also observed in vivo by monitoring the expression profile in Shigella by real-time polymerase chain reaction and when RnaG is provided in trans. Chemical and enzymatic probing of the leader region of icsA mRNA either free or bound to RnaG indicate that upon hetero-duplex formation an intrinsic terminator, leading to transcription block, is generated on the nascent icsA mRNA. Mutations in the hairpin structure of the proposed terminator impair the RnaG mediated-regulation of icsA transcription. This study represents the first evidence of transcriptional attenuation mechanism caused by a small RNA in Gram-negative bacteria. We also present data on the secondary structure of the antisense region of RnaG. In addition, alternatively silencing icsA and RnaG promoters, we find that transcription from the strong RnaG promoter reduces the activity of the weak convergent icsA promoter through the transcriptional interference regulation.
Collapse
Affiliation(s)
- Mara Giangrossi
- Laboratory of Molecular Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino, MC, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Prosseda G, Mazzola A, Di Martino ML, Tielker D, Micheli G, Colonna B. A temperature-induced narrow DNA curvature range sustains the maximum activity of a bacterial promoter in vitro. Biochemistry 2010; 49:2778-85. [PMID: 20170130 DOI: 10.1021/bi902003g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Among the molecular strategies bacteria have set up to quickly match their transcriptional program to new environments, changes in sequence-mediated DNA curvature play a crucial role. Bacterial promoters, especially those of mesophilic bacteria, are in general preceded by a curved region. The marked thermosensitivity of curved DNA stretches allows bacteria to rapidly sense outer temperature variations and affects transcription by favoring the binding of activators or repressors. Curved DNA is also able to influence the transcriptional activity of a bacterial promoter directly, without the involvement of trans-acting regulators. This study attempts to quantitatively analyze the role of DNA curvature in thermoregulated gene expression using a real-time in vitro transcription model system based on a specific fluorescence molecular beacon. By analyzing the temperature-dependent expression of a reporter gene in a construct carrying a progressively decreasing bent sequence upstream from the promoter, we show that with a decrease in temperature a narrow curvature range accounts for a significant enhancement of promoter activity. This strengthens the view that DNA curvature-mediated regulation of gene expression is likely a strategy offering fine-tuning control possibilities and that, considering the widespread presence of curved sequences upstream from bacterial promoters, it may represent one of the most primitive forms of gene regulation.
Collapse
Affiliation(s)
- Gianni Prosseda
- Istituto Pasteur Fondazione Cenci Bolognetti, Dip. Biologia Cellulare e dello Sviluppo, Sapienza Univ. Roma, via dei Sardi 70, 00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Liu D, Yumoto H, Murakami K, Hirota K, Ono T, Nagamune H, Kayama S, Matsuo T, Miyake Y. The essentiality and involvement of Streptococcus intermedius histone-like DNA-binding protein in bacterial viability and normal growth. Mol Microbiol 2008; 68:1268-82. [PMID: 18410499 DOI: 10.1111/j.1365-2958.2008.06232.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Streptococcus intermedius histone-like DNA-binding protein (Si-HLP) is a homodimeric protein and, conserved with Escherichia coli HU, a well-documented nucleoid-associated protein (NAP). In E. coli, HU plays important roles as both structural and regulatory factors, but it is not essential for E. coli viability. Streptococcal HLP has been found to bind host cells and induce cytokine production, but its physiological role remains poorly defined. In the present study, using gene insertion knockout and tetracycline-regulated antisense RNA expression techniques, we determined whether Si-HLP is essential for bacterial viability and normal growth in S. intermedius. The Si-HLP-downregulated S. intermedius strain showed alterations in its morphology and surface properties. Downregulation of Si-HLP led to an expanded nucleoid to fill the intracellular space. Transcription levels of several genes, including virulence-associated factors, were found to be activated or repressed in the antisense Si-hlp RNA-expressing strain by real-time PCR and reverse-transcription PCR. Collectively, these data suggest that Si-HLP serves as an essential NAP governing the nucleoid architecture and controlling the gene transcription profile in S. intermedius.
Collapse
Affiliation(s)
- Dali Liu
- Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kumamoto-cho, Tokushima 770-8504, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 2008; 21:134-56. [PMID: 18202440 DOI: 10.1128/cmr.00032-07] [Citation(s) in RCA: 403] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Shigella spp. are gram-negative pathogenic bacteria that evolved from harmless enterobacterial relatives and may cause devastating diarrhea upon ingestion. Research performed over the last 25 years revealed that a type III secretion system (T3SS) encoded on a large plasmid is a key virulence factor of Shigella flexneri. The T3SS determines the interactions of S. flexneri with intestinal cells by consecutively translocating two sets of effector proteins into the target cells. Thus, S. flexneri controls invasion into EC, intra- and intercellular spread, macrophage cell death, as well as host inflammatory responses. Some of the translocated effector proteins show novel biochemical activities by which they intercept host cell signal transduction pathways. An understanding of the molecular mechanisms underlying Shigella pathogenesis will foster the development of a safe and efficient vaccine, which, in parallel with improved hygiene, should curb infections by this widespread pathogen.
Collapse
|
23
|
Abstract
Temperature is an important physical stress factor sensed by bacteria and used to regulate gene expression. Three different macromolecules have been identified being able to sense temperature: DNA, mRNA and proteins. Depending on the induction mechanism, two different pathways have to be distinguished, namely the heat shock response and the high temperature response. While the heat shock response is induced by temperature increments and is transient, the high temperature response needs a specific temperature to become induced and proceeds as long as cells are exposed to that temperature. The heat shock response is induced by denatured proteins and aimed to prevent formation of protein aggregates by refolding or degradation, and the high temperature response is mainly used by pathogenic bacteria to detect entry into a mammalian host followed by induction of their virulence genes. All known high temperature sensors are present in two alternative conformations depending on the temperature. Heat shock sensors are either molecular chaperones or proteases which keep either a positive transcriptional regulator inactive or a negative regulator active or do not attack the regulator, respectively, under physiological conditions. Denatured proteins either titrate the molecular chaperones or activate the protease. The evolution of the different temperature sensors is discussed.
Collapse
Affiliation(s)
- Wolfgang Schumann
- Institute of Genetics, University of Bayreuth, D-95440 Bayreuth, Germany.
| |
Collapse
|
24
|
Prosseda G, Carmela Latella M, Barbagallo M, Nicoletti M, Al Kassas R, Casalino M, Colonna B. The two-faced role of cad genes in the virulence of pathogenic Escherichia coli. Res Microbiol 2007; 158:487-93. [PMID: 17656072 DOI: 10.1016/j.resmic.2007.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 04/29/2007] [Accepted: 05/02/2007] [Indexed: 11/18/2022]
Abstract
In enterobacteria, acid stress induces expression of the cad system which is involved in maintaining intracellular pH at levels compatible with cell survival. Despite its crucial role, the cad operon is silenced in Shigella and in other pathogenic Escherichia coli. In the present review, we will address the question of why and how the cad locus has been sacrificed for the sake of optimal expression of virulence traits.
Collapse
Affiliation(s)
- Gianni Prosseda
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dip. Biologia Cellulare e dello Sviluppo, Sapienza-Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Liu C, Ghosh S, Searls DB, Saunders AM, Cossman J, Roses AD. Clusters of adjacent and similarly expressed genes across normal human tissues complicate comparative transcriptomic discovery. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2006; 9:351-63. [PMID: 16402893 DOI: 10.1089/omi.2005.9.351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Transcriptomic techniques are valuable tools with which to validate genetic and biological hypotheses and are now widely available for research. However, with the exception of tumor biology, comparative genomics analyses have been difficult to use as discovery engines to describe biologically relevant expression changes. We propose that physical proximity of human genes correlates with similar mRNA expression, so that increased expression might include a disease-relevant gene and many other genes in the adjacent region. To increase the efficiency of combining susceptibility gene mapping and interpretation of transcriptomics, we developed a method to identify clusters of adjacent and similarly expressed genes. Gene expression profiles for 28,945 genes across 101 normal human tissues were obtained from the Gene Logic BioExpress system. The expression similarity for genes in sliding-windows was measured using average pair-wise Pearson correlation coefficients. We identified 187 clusters (p < 10e-4) of co-regulated genes, including 2648 genes, or 9.1% of all genes considered and termed these "clusters of adjacent and similarly expressed genes" (CASEGs). Genes in 15 (8.2%) of these clusters demonstrate a significant co-expression enrichment (p < 10e-10). This study demonstrates the coordinate expression of neighboring genes and provides a comprehensive view of expression-based compartmentalization of the human genome, which can be overlaid on genetic susceptibility gene maps.
Collapse
Affiliation(s)
- Chang Liu
- Genetics Research, GlaxoSmithKline Pharmaceuticals, 5 Moore Drive 5.5616, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
26
|
Alonso G, Baptista K, Ngo T, Taylor DE. Transcriptional organization of the temperature-sensitive transfer system from the IncHI1 plasmid R27. Microbiology (Reading) 2005; 151:3563-3573. [PMID: 16272379 DOI: 10.1099/mic.0.28256-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
One of the characteristic features of IncHI1 plasmids is a thermosensitive process of conjugation, which is optimal between 22 °C and 30 °C but inhibited at 37 °C. R27, the prototypical IncHI1 plasmid, contains transfer genes clustered in two regions of the plasmid, Tra1 and Tra2. In the present study, transcriptional analyses of thetragenes were undertaken at both 30 °C and 37 °C. Screening of 38tragenes showed thattragenes are transcriptionally linked in six operons, three in each Tra region. RT-PCR analysis showed that gene expression was reduced at 37 °C relative to that observed at 30 °C. The transcription start sites of the six transcripts were identified, promoters and upstream regions were cloned, and transcription was tested at both temperatures. In cells grown at 37 °C, in the presence of R27, the promoters were inhibited, except for promoters of the H operon and AN operon. Conditions that influenced DNA topology, such as osmolarity, anaerobiosis, quorum sensing and acidity, showed no significant influence on transfer frequency. These results should facilitate future understanding of the basis of temperature-sensitive transfer in this large conjugative plasmid.
Collapse
Affiliation(s)
- Guillermina Alonso
- Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela. Caracas, Venezuela
| | - Kelly Baptista
- Department of Medical Microbiology and Immunology, 1-63 Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Trinh Ngo
- Department of Medical Microbiology and Immunology, 1-63 Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Diane E Taylor
- Department of Medical Microbiology and Immunology, 1-63 Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
27
|
Abstract
We report here that phased runs of adenines and thymines are very frequent in the neighborhood of 3' of the coding regions of Escherichia coli and Bacillus subtilis. These findings suggest that the DNA curvature could affect transcription termination either directly, through contacts with RNA polymerase, or indirectly, via contacts with some regulatory proteins.
Collapse
Affiliation(s)
- S Hosid
- Institute of Evolution, University of Haifa, Haifa 31905, Israel
| | | |
Collapse
|
28
|
Seputiene V, Suziedelis K, Normark S, Melefors O, Suziedeliene E. Transcriptional analysis of the acid-inducible asr gene in enterobacteria. Res Microbiol 2004; 155:535-42. [PMID: 15313253 DOI: 10.1016/j.resmic.2004.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 03/03/2004] [Indexed: 11/18/2022]
Abstract
We show here that transcription of the asr gene in Escherichia coli, Salmonella enterica serovar Typhimurium, Klebsiella pneumoniae and Enterobacter cloacae is strongly dependent on the acidification level of the growth medium, with maximal induction at pH 4.0-4.5 as determined by Northern hybridization analysis. Previous gene array analyses have also shown that asr is the most acid-induced gene in the E. coli genome. Sequence alignment of the asr promoters from different enterobacterial species identified a highly conserved region located at position -70 to -30 relative to the asr transcriptional start site. By deletion of various segments of this region in the E. coli asr promoter it was shown that sequences upstream from the -40 position were important for induction. Transcription from the E. coli asr promoter was demonstrated to be growth-phase-dependent and to require the alternative sigma factor RpoS (sigma(S)) in stationary phase. Transcription of the asr gene was also found to be subject to negative control by the nucleoid protein H-NS.
Collapse
Affiliation(s)
- Vaida Seputiene
- Department of Biochemistry and Biophysics, Faculty of Natural Sciences, Vilnius University, Vilnius 2009, Lithuania
| | | | | | | | | |
Collapse
|
29
|
Prosseda G, Falconi M, Giangrossi M, Gualerzi CO, Micheli G, Colonna B. The virF promoter in Shigella: more than just a curved DNA stretch. Mol Microbiol 2004; 51:523-37. [PMID: 14756791 DOI: 10.1046/j.1365-2958.2003.03848.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the human enteropathogen Shigella transcription of virF, the primary regulator of the invasion functions, is strictly temperature-dependent and is antagonistically mediated by H-NS and FIS, which bind to specific sites on the virF promoter. Here we report on the relevance of DNA geometry to the thermoregulation of virF and demonstrate that the virF promoter hosts a major DNA bend halfway between two H-NS sites. The bent region has been mutagenized in vitro to mimic temperature-induced changes of DNA curvature. Functional analysis of curvature mutants and of promoter constructs in which the two H-NS sites are phased-out by a half-helix turn reveals that modifying the spatial relationships between these sites severely affects the interaction of H-NS with the virF promoter, as well as its in vivo and in vitro temperature-dependent activity. The role of promoter curvature as thermosensor is also compatible with the present observation that, with increasing temperature, the virF bending centre moves downstream at a rate having its maximum around the transition temperature, abruptly unmasking a binding site for the transcriptional activator FIS.
Collapse
Affiliation(s)
- Gianni Prosseda
- Dip. Biologia Cellulare e dello Sviluppo, University La Sapienza, 00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Casalino M, Latella MC, Prosseda G, Colonna B. CadC is the preferential target of a convergent evolution driving enteroinvasive Escherichia coli toward a lysine decarboxylase-defective phenotype. Infect Immun 2003; 71:5472-9. [PMID: 14500464 PMCID: PMC201042 DOI: 10.1128/iai.71.10.5472-5479.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteroinvasive E. coli (EIEC), like Shigella, is the etiological agent of bacillary dysentery, a particularly severe syndrome in children in developing countries. All EIEC strains share with Shigella the inability to synthesize lysine decarboxylase (the LDC phenotype). The lack of this function is considered a pathoadaptive mutation whose emergence was necessary to obtain the full expression of invasiveness. Cadaverine, the product of lysine decarboxylation, is a small polyamine which interferes mainly with the inflammatory process induced by dysenteric bacteria. Genes coding for lysine decarboxylase and its transporter constitute a single operon (cadBA) and are expressed at low pH under the positive control of CadC. This regulator is an inner membrane protein that is able to sense pH variation and to respond by transcriptionally activating the cadBA genes. In this study we show that, unlike in Shigella, mutations affecting the cad locus in the EIEC strains we have analyzed are not followed by a novel gene arrangement and that the LCD(-) phenotype is dependent mainly on inactivation of the cadC gene. Introduction of a functional CadC restores cadaverine expression in all EIEC strains harboring either an IS2 element or a defective cadC promoter. Comparative analysis between the cad regions of S. flexneri and EIEC suggests that the LDC(-) phenotype has been attained by different strategies within the E. coli species.
Collapse
|