1
|
Sun Y, Shi Y, Li J, Qian A, Shi H. New Hypothesis on Enhancing β-Sheet Formation during the Tau Fragment Dimer Transition from a Flexible Monomer: Insights into Primary Nucleation Processes by Histidine Behaviors. J Phys Chem Lett 2024; 15:10763-10768. [PMID: 39422640 DOI: 10.1021/acs.jpclett.4c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Slight perturbations in pH can have significant effects on the primary nucleation processes of the tau protein. The behaviors of histidine due to its pivotal role in modulating H-bonding network interactions and electrostatic interactions have garnered considerable attention, as it can influence the structural characteristics and aggregation properties. However, the nucleation mechanisms and related intermediates are still unclear. In the current study, we performed nine independent replica exchange molecular dynamics simulations to investigate dimer formation involving R3(εδ) in conjunction with the R1, R2, and R4 monomers. Our findings substantiate that, in comparison to R1-R3(εδ) and R4-R3(εδ) systems, the R2-R3(εδ) systems consistently manifest the highest averaged β-sheet content, with the fundamental feature of R3(εδ) promoting R2 rearrangement. Our comprehensive analysis reveals that high-β-sheet-rich systems exhibit a conserved three/five β-strand structure. In these β-strand-rich systems, one chain [R1/R2/R4 or R3(εδ)] with robust intrachain H-bonding interactions coordinates with another chain through interchain H-bonding interactions, contributing to the overall stability. Furthermore, we discuss distinct histidine behaviors, including backbone/side chain interactions and donor/acceptor roles. This study provides a comprehensive understanding of the aggregation propensities of soluble tau oligomers and sheds light on the primary nucleation mechanism. It contributes to a new perspective for understanding protein folding and misfolding.
Collapse
Affiliation(s)
- Yue Sun
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Yaru Shi
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Aniu Qian
- Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|
2
|
Paul S, Biswas P. Molecular Dynamics Simulation Study of the Self-Assembly of Tau-Derived PHF6 and Its Inhibition by Oleuropein Aglycone from Extra Virgin Olive Oil. J Phys Chem B 2024; 128:5630-5641. [PMID: 38814052 DOI: 10.1021/acs.jpcb.4c02393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Alzheimer's disease (AD) and other taupathies are neurodegenerative disorders associated with the amyloid deposition of the Tau protein in the brain. This amyloid formation may be inhibited by small molecules, which is recognized as one of the best therapeutic strategies to stop the progression of the disease. This work focuses on the small nucleating segment, hexapeptide-paired helical filament 6 (PHF6), responsible for Tau aggregation. Using computational modeling and classical molecular dynamics simulations, we show that PHF6 monomers collapse in water to form β-sheet rich structures, and the main olive oil polyphenol oleuropein aglycone (OleA) prevents peptide aggregation significantly. We gradually increase the ratio of the PHF6-OleA from 1:1 to 1:3 and find that for the 1:1 ratio, the peptide monomers are prone to form aggregated structures, while for the 1:2 ratio, the formation of the extended β-sheet structure is significantly less. For a 1:3 ratio of protein/OleA, the peptide residues are sufficiently crowded by OleA molecules through hydrogen bonding, hydrophobic interactions, and π-π stacking; hence, the peptide chains prefer to exist in a monomeric random coil conformation.
Collapse
Affiliation(s)
- Srijita Paul
- Department of Chemistry, University of Delhi, New Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, New Delhi 110007, India
| |
Collapse
|
3
|
Smith ED, Vo Q, Giasson BI, Borchelt DR, Prokop S, Chakrabarty P. Human tauopathy strains defined by phosphorylation in R1-R2 repeat domains of tau. Acta Neuropathol Commun 2023; 11:172. [PMID: 37891635 PMCID: PMC10612232 DOI: 10.1186/s40478-023-01664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Distinctive post-translational modifications (PTM) characterize tau inclusions found in tauopathy patients. Using detergent-insoluble tau isolated from Alzheimer's disease (AD-tau) or Progressive Supranuclear Palsy (PSP-tau) patients, we provide insights into whether phosphorylation of critical residues determine templated tau seeding. Our initial data with phosphorylation-ablating mutations (Ser/Thr → Ala) on select sites of P301L tau showed no changes in seeding efficacy by AD-tau or PSP-tau. Interestingly, when specific sites in the R1-R2 repeat domains (Ser262/Thr263/Ser289/Ser305) were mutated to phosphorylation-mimicking amino acid Glu, it substantially reduced the seeding efficiency of AD-tau, but not PSP-tau seeds. The resultant detergent-insoluble tau shows deficient phosphorylation on AT8, AT100, AT180 and PHF1 epitopes, indicating inter-domain cooperativity. We further identify Ser305 as a critical determinant of AD-tau-specific seeding, whereby the phospho-mimicking Ser305Glu tau abrogates seeding by AD-tau but not PSP-tau. This suggests that phosphorylation on Ser305 could be related to the formation of disease-specific tau strains. Our results highlight the existence of a phospho-PTM code in tau seeding and further demonstrate the distinctive nature of this code in 4R tauopathies.
Collapse
Affiliation(s)
- Ethan D Smith
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, BMS J484, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Quan Vo
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, BMS J484, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Benoit I Giasson
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, BMS J484, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - David R Borchelt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, BMS J484, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, BMS J484, Gainesville, FL, 32610, USA
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32610, USA
| | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, BMS J484, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
4
|
Solorzano A, Brady M, Bhatt N, Johnson A, Burgess B, Leyva H, Puangmalai N, Jerez C, Wood R, Kayed R, Deane R. Central and peripheral tau retention modulated by an anti-tau antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553682. [PMID: 37645819 PMCID: PMC10462070 DOI: 10.1101/2023.08.17.553682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tau protein blood levels dependent on its distribution to peripheral organs and possible elimination from the body. Thus, the peripheral distribution of CSF-derived tau protein was explored, especially since there is a transition to blood-based biomarkers and the emerging idea that tau pathology may spread beyond brain. Near infrared fluorescence (NIRF) was mainly used to analyze tau (tau-NIRF) distribution after its intracisternal or intravenous injection. There was a striking uptake of blood- or CSF-derived tau-NIRF protein by the skeletal structures, liver, small intestine (duodenum), gall bladder, kidneys, urinary bladder, lymph nodes, heart, and spleen. In aging and in older APP/PS1 mice, tau uptake in regions, such as the brain, liver, and skeleton, was increased. In bone (femur) injected tau protein was associated with integrin-binding sialoprotein (IBSP), a major non-collagenous glycoprotein that is associated with mineralization. Tau-NIRF was cleared slowly from CSF via mainly across the cribriform plate, and cervical lymph nodes. In brain, some of the CSF injected tau protein was associated with NeuN-positive and PDGFRý-positive cells, which may explain its retention. The presence of tau in the bladders suggested excretion routes of tau. CSF anti-tau antibody increased CSF tau clearance, while blood anti-tau antibody decreased tau accumulation in the femur but not in liver, kidney, and spleen. Thus, the data show a body-wide distribution and retention of CSF-derived tau protein, which increased with aging and in older APP/PS1 mice. Further work is needed to elucidate the relevance of tau accumulation in each organ to tauopathy.
Collapse
|
5
|
Seitkazina A, Kim KH, Fagan E, Sung Y, Kim YK, Lim S. The Fate of Tau Aggregates Between Clearance and Transmission. Front Aging Neurosci 2022; 14:932541. [PMID: 35923541 PMCID: PMC9339952 DOI: 10.3389/fnagi.2022.932541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Neuronal accumulation of mis-folded tau is the pathological hallmark of multiple neurodegenerative disorders, including Alzheimer’s disease. Distinct from amyloid plaques, which appear simultaneously throughout the brain, tau pathology develops first in a specific brain region and then propagates to neuroanatomically connected brain regions, exacerbating the disease. Due to the implication in disease progression, prevention of tau transmission is recognized as an important therapeutic strategy that can halt disease progression in the brain. Recently, accumulating studies have demonstrated diverse cellular mechanisms associated with cell-to-cell transmission of tau. Once transmitted, mis-folded tau species act as a prion-like seed for native tau aggregation in the recipient neuron. In this review, we summarize the diverse cellular mechanisms associated with the secretion and uptake of tau, and highlight tau-trafficking receptors, which mediate tau clearance or cell-to-cell tau transmission.
Collapse
Affiliation(s)
- Assel Seitkazina
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology (UST), Seoul, South Korea
| | - Kyu Hyeon Kim
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology (UST), Seoul, South Korea
| | - Erin Fagan
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States
| | - Yoonsik Sung
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology (UST), Seoul, South Korea
| | - Yun Kyung Kim
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology (UST), Seoul, South Korea
- *Correspondence: Yun Kyung Kim,
| | - Sungsu Lim
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Sungsu Lim,
| |
Collapse
|
6
|
Moeini Z, Seraj Z, Zohoorian Abootorabi T, Ashrafi-Kooshk M, Riazi G, Saboury AA, Seyedarabi A. Unravelling the Novel Effects of Three Volatile Compounds in Preventing Fibril Formation of Disease Related Tau and α-Synuclein Proteins- Towards Identifying Candidate Aromatic Substances for Treating Neurodegenerative Diseases. Front Pharmacol 2022; 13:793727. [PMID: 35392564 PMCID: PMC8980687 DOI: 10.3389/fphar.2022.793727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/28/2022] [Indexed: 11/15/2022] Open
Abstract
Background: The aggregation of tau and α-synuclein into fibrillary assemblies in nerve cells is the molecular hallmark of Alzheimer’s and Parkinson’s diseases, respectively. In our previous studies, we investigated the anti-amyloidogenic effects of three different aroma-producing (volatile) compounds including cinnamaldehyde, phenyl ethyl alcohol, and TEMED on the fibrillation process of HEWL, as a model protein. Our previous results showed that while TEMED was able to completely stop the process of fibril formation, cinnamaldehyde and phenyl ethyl alcohol gave rise to oligomeric/protofibrillar forms and were involved in the entrapment of intermediate species of HEWL. In this study, we investigated the anti-amyloidogenic effect of the same three volatile compounds on recombinantly produced tau and α-synuclein proteins. Methods: The thioflavin T fluorescence assay, circular dichroism, SDS-PAGE/native-PAGE, dynamic light scattering, and atomic force microscopy were used, where necessary, to further our understanding of the inhibitory effects of the three volatile compounds on the fibril formation of tau and α-synuclein proteins and allow for a comparison with previous data obtained for HEWL. Results: Our results revealed that contrary to the results obtained for HEWL (a globular protein), the volatile compound TEMED was no longer able to prevent fibril formation in either of the natively unstructured tau or α-synuclein proteins, and instead, cinnamaldehye and phenyl ethyl alcohol, in particular, had the role of preventing fibril formation of tau or α-synuclein. Conclusion: The results of this study further emphasized the exclusion of HEWL as a model protein for fibrillation studies and highlighted the importance of studying brain-related proteins such as tau or α-synuclein and the need to assess the effects of volatile compounds such as cinnamaldehye and phenyl ethyl alcohol as potential substances in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zahra Moeini
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Zahra Seraj
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | | | - Gholamhossein Riazi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Akbar Saboury
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Arefeh Seyedarabi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
De Luigi A, Colombo L, Russo L, Ricci C, Bastone A, Cimini S, Tagliavini F, Rossi G, Cantù L, Del Favero E, Salmona M. Biochemical and biophysical features of disease-associated tau mutants V363A and V363I. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140755. [PMID: 34999006 DOI: 10.1016/j.bbapap.2022.140755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/07/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
The comprehension of pathogenetic mechanisms in tauopathy-associated neurodegenerative diseases can be improved by the knowledge of the biochemical and biophysical features of mutated tau proteins. Here, we used the full-length, wild-type tau, the V363A and V363I mutated species, associated with pathology, and the P301L mutated tau as a benchmark. Using several techniques, including small-angle X-ray scattering, atomic force microscopy, thioflavin T binding, and electrophoretic separation, we compared their course from intrinsically disordered monomers in solution to early-stage recruitment in complexes and then aggregates of increasing size over long periods up to the asymptotic aggregative behavior of full-length tau proteins. We showed that diversity in the kinetics of recruitment and aggregate structure occurs from the beginning and spreads all over their pathway to very large objects. The different extents of conformational changes and types of molecular assemblies among the proteins were also reflected in their in vitro toxicity; this variation could correlate with physiopathology in humans, considering that the P301L mutation is more aggressive than V363A, especially V363I. This study identified the presence of aggregation intermediates and corroborated the oligomeric hypothesis of tauopathies.
Collapse
Affiliation(s)
- Ada De Luigi
- Department of Molecular Biochemistry and Pharmacology, Mario Negri Institute of Pharmacological Research IRCCS, Milano, Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, Mario Negri Institute of Pharmacological Research IRCCS, Milano, Italy
| | - Luca Russo
- Department of Molecular Biochemistry and Pharmacology, Mario Negri Institute of Pharmacological Research IRCCS, Milano, Italy
| | - Caterina Ricci
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Antonio Bastone
- Department of Molecular Biochemistry and Pharmacology, Mario Negri Institute of Pharmacological Research IRCCS, Milano, Italy
| | - Sara Cimini
- Unit of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Fabrizio Tagliavini
- Unit of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giacomina Rossi
- Unit of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Laura Cantù
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy.
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Mario Negri Institute of Pharmacological Research IRCCS, Milano, Italy.
| |
Collapse
|
8
|
Limorenko G, Lashuel HA. To target Tau pathologies, we must embrace and reconstruct their complexities. Neurobiol Dis 2021; 161:105536. [PMID: 34718129 DOI: 10.1016/j.nbd.2021.105536] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022] Open
Abstract
The accumulation of hyperphosphorylated fibrillar Tau aggregates in the brain is one of the defining hallmarks of Tauopathy diseases, including Alzheimer's disease. However, the primary events or molecules responsible for initiation of the pathological Tau aggregation and spreading remain unknown. The discovery of heparin as an effective inducer of Tau aggregation in vitro was instrumental to enabling different lines of research into the role of Tau aggregation in the pathogenesis of Tauopathies. However, recent proteomics and cryogenic electron microscopy (cryo-EM) studies have revealed that heparin-induced Tau fibrils generated in vitro do not reproduce the biochemical and ultrastructural properties of disease-associated brain-derived Tau fibrils. These observations demand that we reassess our current approaches for investigating the mechanisms underpinning Tau aggregation and pathology formation. Our review article presents an up-to-date survey and analyses of 1) the evolution of our understanding of the interactions between Tau and heparin, 2) the various structural and mechanistic models of the heparin-induced Tau aggregation, 3) the similarities and differences between brain-derived and heparin-induced Tau fibrils; and 4) emerging concepts on the biochemical and structural determinants underpinning Tau pathological heterogeneity in Tauopathies. Our analyses identify specific knowledge gaps and call for 1) embracing the complexities of Tau pathologies; 2) reassessment of current approaches to investigate, model and reproduce pathological Tau aggregation as it occurs in the brain; 3) more research towards a better understanding of the naturally-occurring cofactor molecules that are associated with Tau brain pathology initiation and propagation; and 4) developing improved approaches for in vitro production of the Tau aggregates and fibrils that recapitulate and/or amplify the biochemical and structural complexity and diversity of pathological Tau in Tauopathies. This will result in better and more relevant tools, assays, and mechanistic models, which could significantly improve translational research and the development of drugs and antibodies that have higher chances for success in the clinic.
Collapse
Affiliation(s)
- Galina Limorenko
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
9
|
Azouz M, Feuillie C, Lafleur M, Molinari M, Lecomte S. Interaction of Tau construct K18 with model lipid membranes. NANOSCALE ADVANCES 2021; 3:4244-4253. [PMID: 36132846 PMCID: PMC9417262 DOI: 10.1039/d1na00055a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/16/2021] [Indexed: 06/12/2023]
Abstract
One of the hallmarks of Alzheimer's disease (AD) is the formation of neurofibrillary tangles, resulting from the aggregation of the tubulin associated unit protein (Tau), which holds a vital role in maintaining neuron integrity in a healthy brain. The development of such aggregates and their deposition in the brain seem to correlate with the onset of neurodegeneration processes. The misfolding and subsequent aggregation of the protein into paired helical filaments that further form the tangles, lead to dysfunction of the protein with neuronal loss and cognitive decline. The aggregation of the protein then seems to be a causative factor of the neurodegeneration associated with AD. The hypothesis of an involvement of the membrane in modulating the misfolding and assembly of Tau into paired helical filaments attracts increasing interests. To provide more insight about how lipids can modulate the interactions with Tau, we have conducted a comprehensive Atomic Force Microscopy (AFM) study involving supported lipid bilayers of controlled compositions with the Tau microtubule-binding construct K18. Particularly, the effects of zwitterionic and negatively charged phospholipids on the interaction have been investigated. Deleterious solubilization effects have been evidenced on fluid zwitterionic membranes as well as an inability of K18 to fragment gel phases. The role of negative lipids in the aggregation of the peptide and the particular ability of phosphatidylinositol-4,5-bisphosphate (PIP2) in inducing K18 fibrillization on membranes are also reported.
Collapse
Affiliation(s)
- Mehdi Azouz
- Institute of Chemistry and Biology of Membranes and Nano-Objects, CNRS, Université de Bordeaux, INP Bordeaux, UMR5248 allée Geoffroy Saint Hilaire 33600 Pessac France
- Department of Chemistry, Université de Montréal Succursale Centre-Ville Montréal C.P. 6128 Québec Canada H3C 3J7
| | - Cécile Feuillie
- Institute of Chemistry and Biology of Membranes and Nano-Objects, CNRS, Université de Bordeaux, INP Bordeaux, UMR5248 allée Geoffroy Saint Hilaire 33600 Pessac France
| | - Michel Lafleur
- Department of Chemistry, Université de Montréal Succursale Centre-Ville Montréal C.P. 6128 Québec Canada H3C 3J7
| | - Michaël Molinari
- Institute of Chemistry and Biology of Membranes and Nano-Objects, CNRS, Université de Bordeaux, INP Bordeaux, UMR5248 allée Geoffroy Saint Hilaire 33600 Pessac France
| | - Sophie Lecomte
- Institute of Chemistry and Biology of Membranes and Nano-Objects, CNRS, Université de Bordeaux, INP Bordeaux, UMR5248 allée Geoffroy Saint Hilaire 33600 Pessac France
| |
Collapse
|
10
|
Kanaan NM, Grabinski T. Neuronal and Glial Distribution of Tau Protein in the Adult Rat and Monkey. Front Mol Neurosci 2021; 14:607303. [PMID: 33986642 PMCID: PMC8112591 DOI: 10.3389/fnmol.2021.607303] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
Tau is a microtubule-associated protein for which the physiological functions remain a topic of vigorous investigation. Additionally, tau is a central player in the pathogenesis of several diseases such as Alzheimer's disease and several frontotemporal dementias. A critical variable to understanding tau in physiological and disease contexts is its normal localization within cells of the adult CNS. Tau is often described as an axon-specific (or enriched) and neuron-specific protein with little to no expression in glial cells, all of which are untrue. Understanding normal tau distribution also impacts interpretation of experimental results and hypotheses regarding its role in disease. Thus, we set out to help clarify the normal localization of tau in the adult CNS of middle-aged rats and rhesus macaque using the hippocampus as a representative brain structure. The physiological concentration of tau in the rat hippocampus was 6.6 μM and in white matter was 3.6 μM as determined by quantitative sandwich ELISAs. We evaluated the cellular localization of tau using multiple tau-specific antibodies with epitopes to different regions, including Tau1, Tau5, Tau7, R1, and two novel primate-specific antibodies NT9 and NT15. In the rat and monkey, tau was localized within the somatodendritic and axonal compartments, as well as a subset of neuronal nuclei. Semi-quantitative fluorescence intensity measurements revealed that depending on the specific reagent used the somatodendritic tau is relatively equal to, higher than, or lower than axonal tau, highlighting differential labeling of tau with various antibodies despite its distribution throughout the neuron. Tau was strongly expressed in mature oligodendrocytes and displayed little to no expression in oligodendrocyte precursor cells, astrocytes or microglia. Collectively, the data indicate tau is ∼3 - 7 μM under physiological conditions, is not specifically enriched in axons, and is normally found in both neurons and mature oligodendrocytes in the adult CNS. The full landscape of tau distribution is not revealed by all antibodies suggesting availability of the epitopes is different within specific neuronal compartments. These findings set the stage for better understanding normal tau distributions and interpreting data regarding the presence of tau in different compartments or cell types within disease conditions.
Collapse
Affiliation(s)
- Nicholas M. Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
- Mercy Health Hauenstein Neuroscience Center, Grand Rapids, MI, United States
| | - Tessa Grabinski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| |
Collapse
|
11
|
Campese N, Palermo G, Del Gamba C, Beatino MF, Galgani A, Belli E, Del Prete E, Della Vecchia A, Vergallo A, Siciliano G, Ceravolo R, Hampel H, Baldacci F. Progress regarding the context-of-use of tau as biomarker of Alzheimer's disease and other neurodegenerative diseases. Expert Rev Proteomics 2021; 18:27-48. [PMID: 33545008 DOI: 10.1080/14789450.2021.1886929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Tau protein misfolding and accumulation in toxic species is a critical pathophysiological process of Alzheimer's disease (AD) and other neurodegenerative disorders (NDDs). Tau biomarkers, namely cerebrospinal fluid (CSF) total-tau (t-tau), 181-phosphorylated tau (p-tau), and tau-PET tracers, have been recently embedded in the diagnostic criteria for AD. Nevertheless, the role of tau as a diagnostic and prognostic biomarker for other NDDs remains controversial.Areas covered: We performed a systematical PubMed-based review of the most recent advances in tau-related biomarkers for NDDs. We focused on papers published from 2015 to 2020 assessing the diagnostic or prognostic value of each biomarker.Expert opinion: The assessment of tau biomarkers in alternative easily accessible matrices, through the development of ultrasensitive techniques, represents the most significant perspective for AD-biomarker research. In NDDs, novel tau isoforms (e.g. p-tau217) or proteolytic fragments (e.g. N-terminal fragments) may represent candidate diagnostic and prognostic biomarkers and may help monitoring disease progression. Protein misfolding amplification assays, allowing the identification of different tau strains (e.g. 3 R- vs. 4 R-tau) in CSF, may constitute a breakthrough for the in vivo stratification of NDDs. Tau-PET may help tracking the spatial-temporal evolution of tau pathophysiology in AD but its application outside the AD-spectrum deserves further studies.
Collapse
Affiliation(s)
- Nicole Campese
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Palermo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudia Del Gamba
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisabetta Belli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Andrea Vergallo
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Harald Hampel
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| |
Collapse
|
12
|
Campora M, Francesconi V, Schenone S, Tasso B, Tonelli M. Journey on Naphthoquinone and Anthraquinone Derivatives: New Insights in Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:33. [PMID: 33466332 PMCID: PMC7824805 DOI: 10.3390/ph14010033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is characterized by memory loss, cognitive impairment, and functional decline leading to dementia and death. AD imposes neuronal death by the intricate interplay of different neurochemical factors, which continue to inspire the medicinal chemist as molecular targets for the development of new agents for the treatment of AD with diverse mechanisms of action, but also depict a more complex AD scenario. Within the wide variety of reported molecules, this review summarizes and offers a global overview of recent advancements on naphthoquinone (NQ) and anthraquinone (AQ) derivatives whose more relevant chemical features and structure-activity relationship studies will be discussed with a view to providing the perspective for the design of viable drugs for the treatment of AD. In particular, cholinesterases (ChEs), β-amyloid (Aβ) and tau proteins have been identified as key targets of these classes of compounds, where the NQ or AQ scaffold may contribute to the biological effect against AD as main unit or significant substructure. The multitarget directed ligand (MTDL) strategy will be described, as a chance for these molecules to exhibit significant potential on the road to therapeutics for AD.
Collapse
Affiliation(s)
| | | | | | | | - Michele Tonelli
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; (M.C.); (V.F.); (S.S.); (B.T.)
| |
Collapse
|
13
|
Ashrafian H, Zadeh EH, Khan RH. Review on Alzheimer's disease: Inhibition of amyloid beta and tau tangle formation. Int J Biol Macromol 2020; 167:382-394. [PMID: 33278431 DOI: 10.1016/j.ijbiomac.2020.11.192] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/18/2020] [Accepted: 11/28/2020] [Indexed: 12/19/2022]
Abstract
It is reported that approximately 40 million people are suffering from dementia, globally. Dementia is a group of symptoms that affect neurons and cause some mental disorders, such as losing memory. Alzheimer's disease (AD) which is known as the most common cause of dementia, is one of the top medical care concerns across the world. Although the exact sources of the disease are not understood, is it believed that aggregation of amyloid-beta (Aβ) outside of neuron cells and tau aggregation or neurofibrillary tangles (NFTs) formation inside the cell may play crucial roles. In this paper, we are going to review studies that targeted inhibition of amyloid plaque and tau protein tangle formation, to suppress or postpone AD.
Collapse
Affiliation(s)
- Hossein Ashrafian
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA; Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | | | | |
Collapse
|
14
|
Insights into Disease-Associated Tau Impact on Mitochondria. Int J Mol Sci 2020; 21:ijms21176344. [PMID: 32882957 PMCID: PMC7503371 DOI: 10.3390/ijms21176344] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022] Open
Abstract
Abnormal tau protein aggregation in the brain is a hallmark of tauopathies, such as frontotemporal lobar degeneration and Alzheimer’s disease. Substantial evidence has been linking tau to neurodegeneration, but the underlying mechanisms have yet to be clearly identified. Mitochondria are paramount organelles in neurons, as they provide the main source of energy (adenosine triphosphate) to these highly energetic cells. Mitochondrial dysfunction was identified as an early event of neurodegenerative diseases occurring even before the cognitive deficits. Tau protein was shown to interact with mitochondrial proteins and to impair mitochondrial bioenergetics and dynamics, leading to neurotoxicity. In this review, we discuss in detail the different impacts of disease-associated tau protein on mitochondrial functions, including mitochondrial transport, network dynamics, mitophagy and bioenergetics. We also give new insights about the effects of abnormal tau protein on mitochondrial neurosteroidogenesis, as well as on the endoplasmic reticulum-mitochondria coupling. A better understanding of the pathomechanisms of abnormal tau-induced mitochondrial failure may help to identify new targets for therapeutic interventions.
Collapse
|
15
|
Kawasaki R, Tate SI. Impact of the Hereditary P301L Mutation on the Correlated Conformational Dynamics of Human Tau Protein Revealed by the Paramagnetic Relaxation Enhancement NMR Experiments. Int J Mol Sci 2020; 21:ijms21113920. [PMID: 32486218 PMCID: PMC7313075 DOI: 10.3390/ijms21113920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022] Open
Abstract
Tau forms intracellular insoluble aggregates as a neuropathological hallmark of Alzheimer’s disease. Tau is largely unstructured, which complicates the characterization of the tau aggregation process. Recent studies have demonstrated that tau samples two distinct conformational ensembles, each of which contains the soluble and aggregation-prone states of tau. A shift to populate the aggregation-prone ensemble may promote tau fibrillization. However, the mechanism of this ensemble transition remains elusive. In this study, we explored the conformational dynamics of a tau fragment by using paramagnetic relaxation enhancement (PRE) and interference (PRI) NMR experiments. The PRE correlation map showed that tau is composed of segments consisting of residues in correlated motions. Intriguingly, residues forming the β-structures in the heparin-induced tau filament coincide with residues in these segments, suggesting that each segment behaves as a structural unit in fibrillization. PRI data demonstrated that the P301L mutation exclusively alters the transiently formed tau structures by changing the short- and long-range correlated motions among residues. The transient conformations of P301L tau expose the amyloid motif PHF6 to promote tau self-aggregation. We propose the correlated motions among residues within tau determine the population sizes of the conformational ensembles, and perturbing the correlated motions populates the aggregation-prone form.
Collapse
Affiliation(s)
- Ryosuke Kawasaki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan;
| | - Shin-ichi Tate
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan;
- Department of Mathematical and Life Sciences, Graduate School of the Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Correspondence: ; Tel.: +81-82-424-7387
| |
Collapse
|
16
|
Penke B, Szűcs M, Bogár F. Oligomerization and Conformational Change Turn Monomeric β-Amyloid and Tau Proteins Toxic: Their Role in Alzheimer's Pathogenesis. Molecules 2020; 25:molecules25071659. [PMID: 32260279 PMCID: PMC7180792 DOI: 10.3390/molecules25071659] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
The structural polymorphism and the physiological and pathophysiological roles of two important proteins, β-amyloid (Aβ) and tau, that play a key role in Alzheimer's disease (AD) are reviewed. Recent results demonstrate that monomeric Aβ has important physiological functions. Toxic oligomeric Aβ assemblies (AβOs) may play a decisive role in AD pathogenesis. The polymorph fibrillar Aβ (fAβ) form has a very ordered cross-β structure and is assumed to be non-toxic. Tau monomers also have several important physiological actions; however, their oligomerization leads to toxic oligomers (TauOs). Further polymerization results in probably non-toxic fibrillar structures, among others neurofibrillary tangles (NFTs). Their structure was determined by cryo-electron microscopy at atomic level. Both AβOs and TauOs may initiate neurodegenerative processes, and their interactions and crosstalk determine the pathophysiological changes in AD. TauOs (perhaps also AβO) have prionoid character, and they may be responsible for cell-to-cell spreading of the disease. Both extra- and intracellular AβOs and TauOs (and not the previously hypothesized amyloid plaques and NFTs) may represent the novel targets of AD drug research.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
- Correspondence:
| | - Mária Szűcs
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
17
|
Chae MK, Kim Y, Johner A, Lee NK. Adsorption of a Helical Filament Subject to Thermal Fluctuations. Polymers (Basel) 2020; 12:polym12010192. [PMID: 31936860 PMCID: PMC7023455 DOI: 10.3390/polym12010192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
We consider semiflexible chains governed by preferred curvature and twist and their flexural and twist moduli. These filaments possess a helical rather than straight three-dimensional (3D) ground state and we call them helical filaments (H-filament). Depending on the moduli, the helical shape may be smeared by thermal fluctuations. Secondary superhelical structures are expected to form on top of the specific local structure of biofilaments, as is documented for vimentin. We study confinement and adsorption of helical filaments utilizing both a combination of numerical simulations and analytical theory. We investigate overall chain shapes, transverse chain fluctuations, loop and tail distributions, and energy distributions along the chain together with the mean square average height of the monomers 〈 z 2 〉 . The number fraction of adsorbed monomers serves as an order parameter for adsorption. Signatures of adsorbed helical polymers are the occurrence of 3D helical loops/tails and spiral or wavy quasi-flat shapes. None of these arise for the Worm-Like-Chain, whose straight ground state can be embedded in a plane.
Collapse
Affiliation(s)
- M.-K. Chae
- Department of Physics and Astronomy, Sejong University, Seoul 05006, Korea
| | - Y. Kim
- Department of Physics and Astronomy, Sejong University, Seoul 05006, Korea
| | - A. Johner
- Institute Charles Sadron, CNRS 23 Rue du Loess, 67034 Strasbourg CEDEX 2, France
- Correspondence: or (A.J.); (N.-K.L.)
| | - N.-K. Lee
- Department of Physics and Astronomy, Sejong University, Seoul 05006, Korea
- Institute Charles Sadron, CNRS 23 Rue du Loess, 67034 Strasbourg CEDEX 2, France
- Correspondence: or (A.J.); (N.-K.L.)
| |
Collapse
|
18
|
Abstract
The microtubule-associated protein tau has been extensively studied as a culprit in Alzheimer's disease and other neurodegenerative diseases known as tauopathies. Challenges in structurally defining tau protein emerge from its disordered nature, which makes it difficult to crystallize, and hinder efforts to interpret tau protein's true function. The complexity of intrinsically disordered proteins (IDPs) necessitates a multifaceted approach to study their interactions including multiple spectroscopic methods that can report on local protein environment and structure at individual residue positions. We and others have shown that in addition to binding to microtubules, tau binds to lipid membranes. Tau-membrane interactions may be relevant both to normal tau function and to tau aggregation and pathology. Here we describe the use of fluorescence spectroscopy as a probe of protein-membrane interactions to determine whether there is an interaction, which residues participate, and the extent/nature of the interface between the protein and the membrane. We provide a protocol for how the membrane interactions of tau protein, as an example, can be probed by fluorescence spectroscopy, including details of how the samples should be prepared and guidelines on how to interpret the results.
Collapse
Affiliation(s)
- Diana Acosta
- Department of Biochemistry, Weill Cornell Medical College of Cornell University, New York, NY, USA
- Brain and Mind Research Institute, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Tapojyoti Das
- Department of Biochemistry, Weill Cornell Medical College of Cornell University, New York, NY, USA
- Brain and Mind Research Institute, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College of Cornell University, New York, NY, USA.
- Brain and Mind Research Institute, Weill Cornell Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
19
|
Dangi A, Balmik AA, Ghorpade AK, Gorantla NV, Sonawane SK, Chinnathambi S, Marelli UK. Residue-based propensity of aggregation in the Tau amyloidogenic hexapeptides AcPHF6* and AcPHF6. RSC Adv 2020; 10:27331-27335. [PMID: 35516938 PMCID: PMC9055513 DOI: 10.1039/d0ra03809a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/09/2020] [Indexed: 11/21/2022] Open
Abstract
In Alzheimer's disease and related tauopathies, the aggregation of microtubule-associated protein, Tau, into fibrils occurs via the interaction of two hexapeptide motifs PHF* 275VQIINK280 and PHF 306VQIVYK311 as β-sheets. To understand the role of the constituent amino acids of PHF and PHF* in the aggregation, a set of 12 alanine mutant peptides was synthesized by replacing each amino acid in PHF and PHF* with alanine and they were characterized by nuclear magnetic resonance (NMR) spectroscopy, circular dichroism (CD), transmission electron microscopy (TEM) and ThS/ANS fluorescence assay. Our studies show that while the aggregation was suppressed in most of the alanine mutant peptides, replacement of glutamine by alanine in both PHF and PHF* enhanced the fibrillization. In the alanine mutant peptides of AcPHF6* and AcPHF6, only the peptides with glutamine to alanine substitution show aggregation akin to that of the parent peptides.![]()
Collapse
Affiliation(s)
- Abha Dangi
- Central NMR Facility
- CSIR-National Chemical Laboratory
- 411008 Pune
- India
- Division of Organic Chemistry
| | - Abhishek Ankur Balmik
- Academy of Scientific and Innovative Research (AcSIR)
- 110025 New Delhi
- India
- Neurobiology Group
- Division of Biochemical Sciences
| | - Archana Kisan Ghorpade
- Central NMR Facility
- CSIR-National Chemical Laboratory
- 411008 Pune
- India
- Division of Organic Chemistry
| | - Nalini Vijay Gorantla
- Academy of Scientific and Innovative Research (AcSIR)
- 110025 New Delhi
- India
- Neurobiology Group
- Division of Biochemical Sciences
| | - Shweta Kishor Sonawane
- Academy of Scientific and Innovative Research (AcSIR)
- 110025 New Delhi
- India
- Neurobiology Group
- Division of Biochemical Sciences
| | - Subashchandrabose Chinnathambi
- Academy of Scientific and Innovative Research (AcSIR)
- 110025 New Delhi
- India
- Neurobiology Group
- Division of Biochemical Sciences
| | - Udaya Kiran Marelli
- Central NMR Facility
- CSIR-National Chemical Laboratory
- 411008 Pune
- India
- Division of Organic Chemistry
| |
Collapse
|
20
|
Mroczko B, Groblewska M, Litman-Zawadzka A. The Role of Protein Misfolding and Tau Oligomers (TauOs) in Alzheimer's Disease (AD). Int J Mol Sci 2019; 20:E4661. [PMID: 31547024 PMCID: PMC6802364 DOI: 10.3390/ijms20194661] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/25/2022] Open
Abstract
Although the causative role of the accumulation of amyloid β 1-42 (Aβ42) deposits in the pathogenesis of Alzheimer's disease (AD) has been under debate for many years, it is supposed that the toxicity soluble oligomers of Tau protein (TauOs) might be also the pathogenic factor acting on the initial stages of this disease. Therefore, we performed a thorough search for literature pertaining to our investigation via the MEDLINE/PubMed database. It was shown that soluble TauOs, especially granular forms, may be the most toxic form of this protein. Hyperphosphorylated TauOs can reduce the number of synapses by missorting into axonal compartments of neurons other than axon. Furthermore, soluble TauOs may be also responsible for seeding Tau pathology within AD brains, with probable link to AβOs toxicity. Additionally, the concentrations of TauOs in the cerebrospinal fluid (CSF) and plasma of AD patients were higher than in non-demented controls, and revealed a negative correlation with mini-mental state examination (MMSE) scores. It was postulated that adding the measurements of TauOs to the panel of CSF biomarkers could improve the diagnosis of AD.
Collapse
Affiliation(s)
- Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland.
- Department of Biochemical Diagnostics, University Hospital of Białystok, 15-269 Białystok, Poland.
| | - Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital of Białystok, 15-269 Białystok, Poland.
| | - Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland.
| |
Collapse
|
21
|
AD molecular: Imaging tau aggregates with positron emissions tomography. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:107-138. [PMID: 31481160 DOI: 10.1016/bs.pmbts.2019.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pathologic aggregates of tau protein are observed in several neurodegenerative diseases and are used to diagnose and stage disease postmortem. Recent advances in positron emission tomography radioligands allow for the detection of aggregated tau proteins in living persons. This chapter describes the development and characterization of several positron emission tomography radioligands used to detect tau pathophysiology in vivo, and how these ligands are being used in clinical aging and neurodegenerative disease research with a focus on imaging tau aggregates in Alzheimer's disease.
Collapse
|
22
|
Olczak M, Poniatowski ŁA, Niderla-Bielińska J, Kwiatkowska M, Chutorański D, Tarka S, Wierzba-Bobrowicz T. Concentration of microtubule associated protein tau (MAPT) in urine and saliva as a potential biomarker of traumatic brain injury in relationship with blood–brain barrier disruption in postmortem examination. Forensic Sci Int 2019; 301:28-36. [DOI: 10.1016/j.forsciint.2019.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/23/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
|
23
|
Bhandare VV, Kumbhar BV, Kunwar A. Differential binding affinity of tau repeat region R2 with neuronal-specific β-tubulin isotypes. Sci Rep 2019; 9:10795. [PMID: 31346240 PMCID: PMC6658543 DOI: 10.1038/s41598-019-47249-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022] Open
Abstract
Tau is a microtubule-associated protein whose C-terminal domain consisting of four repeat regions R1, R2, R3 and R4 binds to microtubules to stabilize them. In several neurodegenerative diseases, tau detaches from microtubules to form insoluble aggregates leading to tauopathy. Microtubules are made up of αβ tubulin subunits. Seven α-tubulin and nine β-tubulin isotypes have been reported to be present in humans till date. These tubulin isotypes show residue composition variations mainly at C-terminal region and bind to motor proteins and anti-mitotic drugs differently. These tubulin isotypes show tissue specific expression as their relative proportion varies significantly in different type of cells. It is also known that tau binds differently to different cell lines and can either promote or demote microtubule polymerization. However, the relative binding affinity of tau to the different β-tubulin isotypes present in different cell lines is completely unknown. Here, we study relative binding affinity of Tau repeat region R2 to neuronal specific tubulin isotypes βI, βIIb, and βIII using molecular modelling approach. The order of binding energy of tau with tubulin is βIII > βIIb > βI. Our strategy can be potentially adapted to understand differential binding affinity of tau towards β-tubulin isotypes present in other cell lines.
Collapse
Affiliation(s)
- Vishwambhar Vishnu Bhandare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| | - Bajarang Vasant Kumbhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India.
| |
Collapse
|
24
|
Areche C, Zapata F, González M, Díaz E, Montecinos R, Hernández M, Melo F, Cornejo A. Anthraquinone Derivative Reduces Tau Oligomer Progression by Inhibiting Cysteine-Cysteine Interaction. ChemistryOpen 2019; 8:554-559. [PMID: 31065505 PMCID: PMC6496470 DOI: 10.1002/open.201800222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 01/05/2023] Open
Abstract
Tau protein is a natively unfolded protein whose primary role is to participate in axonal transport closely associated with microtubules. Neurodegenerative disorders including Alzheimer's disease and Tauopathies involved tau protein that is found hyperphosphorylated in vivo; then, tau is detached from microtubules to form toxic aggregates or oligomers, which have a deleterious effect on membranes, triggering an inflammatory response. Considering finding tau inhibitors, we isolated two compounds in the ethyl acetate extract from Xanthoria ectaneoides (Nyl.) Zahlbr; ergosterol peroxide (1) and a new anthraquinone (2). We established the structure through spectroscopic data and biogenic considerations, and we named it "2-hydroxy-3-((8-hydroxy-3-methoxy-6-methylanthraquinonyl)oxy)propanoic acid". This new anthraquinone was evaluated as a tau inhibitor by ThT fluorescence, dot blot assays and total internal reflection fluorescence microscopy. Our results strongly suggest that this anthraquinone remodels soluble oligomers and diminishes β-sheet content. Moreover, through the fluorescence labeling of cysteine inside of the microtubule-binding domain (4R), we showed that this anthraquinone could reduce the oligomers progression by inhibiting cysteine interactions.
Collapse
Affiliation(s)
- Carlos Areche
- Departamento de Química, Facultad de CienciasUniversidad de ChileLas Palmeras 34257800003Santiago-Chile
| | - Francisca Zapata
- Escuela Tecnología MédicaFacultad de MedicinaSazie 23158370092Santiago-Chile
| | - Mathias González
- Escuela Tecnología MédicaFacultad de MedicinaSazie 23158370092Santiago-Chile
| | - Esteban Díaz
- Escuela Tecnología MédicaFacultad de MedicinaSazie 23158370092Santiago-Chile
| | | | - Marcos Hernández
- Departamento de Química, Facultad de CienciasUniversidad de ChileLas Palmeras 34257800003Santiago-Chile
| | - Francisco Melo
- Departamento de FísicaAvenida Ecuador 34939170124Santiago-Chile
| | - Alberto Cornejo
- Escuela Tecnología MédicaFacultad de MedicinaSazie 23158370092Santiago-Chile
| |
Collapse
|
25
|
Martinho M, Allegro D, Huvent I, Chabaud C, Etienne E, Kovacic H, Guigliarelli B, Peyrot V, Landrieu I, Belle V, Barbier P. Two Tau binding sites on tubulin revealed by thiol-disulfide exchanges. Sci Rep 2018; 8:13846. [PMID: 30218010 PMCID: PMC6138654 DOI: 10.1038/s41598-018-32096-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/14/2018] [Indexed: 01/25/2023] Open
Abstract
Tau is a Microtubule-associated protein that induces and stabilizes the formation of the Microtubule cytoskeleton and plays an important role in neurodegenerative diseases. The Microtubules binding region of Tau has been determined for a long time but where and how Tau binds to its partner still remain a topic of debate. We used Site Directed Spin Labeling combined with EPR spectroscopy to monitor Tau upon binding to either Taxol-stabilized MTs or to αβ-tubulin when Tau is directly used as an inducer of MTs formation. Using maleimide-functionalized labels grafted on the two natural cysteine residues of Tau, we found in both cases that Tau remains highly flexible in these regions confirming the fuzziness of Tau:MTs complexes. More interestingly, using labels linked by a disulfide bridge, we evidenced for the first time thiol disulfide exchanges between αβ-tubulin or MTs and Tau. Additionally, Tau fragments having the two natural cysteines or variants containing only one of them were used to determine the role of each cysteine individually. The difference observed in the label release kinetics between preformed MTs or Tau-induced MTs, associated to a comparison of structural data, led us to propose two putative binding sites of Tau on αβ-tubulin.
Collapse
Affiliation(s)
- Marlène Martinho
- Aix-Marseille Univ, CNRS, UMR 7281 BIP, Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Diane Allegro
- Aix-Marseille Univ, CNRS, UMR 7051, INP, Institut de Neurophysiopathologie, Marseille, France
| | | | - Charlotte Chabaud
- Aix-Marseille Univ, CNRS, UMR 7281 BIP, Bioénergétique et Ingénierie des Protéines, Marseille, France.,Aix-Marseille Univ, CNRS, UMR 7051, INP, Institut de Neurophysiopathologie, Marseille, France
| | - Emilien Etienne
- Aix-Marseille Univ, CNRS, UMR 7281 BIP, Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Hervé Kovacic
- Aix-Marseille Univ, CNRS, UMR 7051, INP, Institut de Neurophysiopathologie, Marseille, France
| | - Bruno Guigliarelli
- Aix-Marseille Univ, CNRS, UMR 7281 BIP, Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Vincent Peyrot
- Aix-Marseille Univ, CNRS, UMR 7051, INP, Institut de Neurophysiopathologie, Marseille, France
| | | | - Valérie Belle
- Aix-Marseille Univ, CNRS, UMR 7281 BIP, Bioénergétique et Ingénierie des Protéines, Marseille, France.
| | - Pascale Barbier
- Aix-Marseille Univ, CNRS, UMR 7051, INP, Institut de Neurophysiopathologie, Marseille, France.
| |
Collapse
|
26
|
Conformational heterogeneity of tau: Implication on intrinsic disorder, acid stability and fibrillation in Alzheimer's disease. Biophys Chem 2018; 241:27-37. [PMID: 30081240 DOI: 10.1016/j.bpc.2018.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 11/20/2022]
Abstract
The self-assembly of intrinsically disordered protein tau into paired helical filament forms one of the hallmarks of Alzheimer's disease. However, the facets of innately disordered structure of tau and its conversion to a β-sheet-rich fibril during several tauopathies are poorly understood. Here, we provide a direct insight into the ensemble of highly heterogeneous conformational families of tau at physiological pH, by nano-electrospray mass spectrometry coupled with ion mobility. The average collision cross section of the most unfolded conformer was higher by >2 fold than that of the most folded one. Acidic pH largely induced unfolding in tau, obliterating the compact conformers completely. The highly unfolded conformers were the key species bestowing the unusual solubility to tau at low pH, with limited contribution from intramolecular long-range interfaces giving rise to ordered conformers. Contrarily, alkaline pH shifted tau towards folded conformations due to charge neutralization, keeping the overall random coil architecture intact. Intriguingly, the heparin-induced in vitro aggregation propensity of the protein attenuated at both acidic and alkaline pH, illustrating the significance of altered conformations in pathological functions of tau. Our observations at low pH indicate that a reorganization of the intricate network of momentary long-range contacts in tau might have implication in its aggregation pathology. Disease-modifying therapies for Alzheimer's disease targeting either to disrupt the essential fibril-forming interaction at third microtubule-binding repeat of tau or to perturb specific binding interaction of tau with endogenous polyanionic species might be of high benefit.
Collapse
|
27
|
Mukherjee M, Jana J, Chatterjee S. A Small Molecule Impedes Insulin Fibrillation: Another New Role of Phenothiazine Derivatives. ChemistryOpen 2018; 7:68-79. [PMID: 29318099 PMCID: PMC5754551 DOI: 10.1002/open.201700131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/24/2017] [Indexed: 11/16/2022] Open
Abstract
Protein misfolding is interrelated to several diseases, including neurodegenerative diseases and type II diabetes. Misfolded/unfolded proteins produce soluble oligomers that accumulate into "amyloid plaques". Inhibition of amyloid-plaque formation by those misfolded/unfolded proteins will lead to the invention of new therapeutic approaches for amyloid-related diseases. Herein, methylene blue (MB), a well-defined drug against multiple diseases and disorders, is used to impede insulin fibrillation. In this study, we perform an array of in vitro experiments to monitor the effects of MB on the fibrillation of bovine insulin. Our results confirm that MB distresses the kinetics of insulin fibrillation by interacting with insulin in its monomeric form. A thioflavin T assay indicates that insulin fibrillation is interrupted upon the addition of MB. The same results are confirmed by circular dichroism, dynamic light scattering (DLS), and size-exclusion chromatography (SEC). According to the DLS data, the insulin fibrils are 800 nm in diameter, and the addition of MB reduces the size of the fibrils, which remain 23 nm in size, and this indicates that no fibrillation of insulin occurs in the presence of MB. This data is also supported by SEC. Saturation transfer difference NMR spectroscopy and molecular dynamics simulations demonstrate the interactions between insulin and MB at the atomic level.
Collapse
Affiliation(s)
- Meghomukta Mukherjee
- Department of BiophysicsBose Institute, P 1/12 CIT, Scheme VII MKankurgachiKolkata700054India
| | - Jagannath Jana
- Department of BiophysicsBose Institute, P 1/12 CIT, Scheme VII MKankurgachiKolkata700054India
| | - Subhrangsu Chatterjee
- Department of BiophysicsBose Institute, P 1/12 CIT, Scheme VII MKankurgachiKolkata700054India
| |
Collapse
|
28
|
Ma W, Xu L, de Moura AF, Wu X, Kuang H, Xu C, Kotov NA. Chiral Inorganic Nanostructures. Chem Rev 2017; 117:8041-8093. [DOI: 10.1021/acs.chemrev.6b00755] [Citation(s) in RCA: 485] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - André F. de Moura
- Department
of Chemistry, Federal University of São Carlos, CP 676, CEP 13.565-905, São Carlos, SP, Brazil
| | | | | | | | | |
Collapse
|
29
|
Hu JY, Zhang DL, Liu XL, Li XS, Cheng XQ, Chen J, Du HN, Liang Y. Pathological concentration of zinc dramatically accelerates abnormal aggregation of full-length human Tau and thereby significantly increases Tau toxicity in neuronal cells. Biochim Biophys Acta Mol Basis Dis 2017; 1863:414-427. [DOI: 10.1016/j.bbadis.2016.11.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/01/2016] [Accepted: 11/22/2016] [Indexed: 01/07/2023]
|
30
|
Burns LH, Wang HY. Altered filamin A enables amyloid beta-induced tau hyperphosphorylation and neuroinflammation in Alzheimer's disease. NEUROIMMUNOLOGY AND NEUROINFLAMMATION 2017; 4:263-271. [PMID: 34295950 PMCID: PMC8294116 DOI: 10.20517/2347-8659.2017.50] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with proteopathy characterized by abnormalities in amyloid beta (Aβ) and tau proteins. Defective amyloid and tau propagate and aggregate, leading to eventual amyloid plaques and neurofibrillary tangles. New data show that a third proteopathy, an altered conformation of the scaffolding protein filamin A (FLNA), is critically linked to the amyloid and tau pathologies in AD. Altered FLNA is pervasive in AD brain and without apparent aggregation. In a striking interdependence, altered FLNA is both induced by Aβ and required for two prominent pathogenic signaling pathways of Aβ. Aβ monomers or small oligomers signal via the α7 nicotinic acetylcholine receptor (α7nAChR) to activate kinases that hyperphosphorylate tau to cause neurofibrillary lesions and formation of neurofibrillary tangles. Altered FLNA also enables a persistent activation of toll-like-receptor 4 (TLR4) by Aβ, leading to excessive inflammatory cytokine release and neuroinflammation. The novel AD therapeutic candidate PTI-125 binds and reverses the altered FLNA conformation to prevent Aβ’s signaling via α7nAChR and aberrant activation of TLR4, thus reducing multiple AD-related neuropathologies. As a regulator of Aβ’s signaling via α7nAChR and TLR4, altered FLNA represents a novel AD therapeutic target.
Collapse
Affiliation(s)
| | - Hoau-Yan Wang
- Department of Physiology, Pharmacology and Neuroscience, City University of New York School of Medicine, New York, NY 10031, USA.,Department of Biology and Neuroscience, Graduate School of the City University of New York, New York, NY 10031, USA
| |
Collapse
|
31
|
Frenkel-Pinter M, Tal S, Scherzer-Attali R, Abu-Hussien M, Alyagor I, Eisenbaum T, Gazit E, Segal D. Naphthoquinone-Tryptophan Hybrid Inhibits Aggregation of the Tau-Derived Peptide PHF6 and Reduces Neurotoxicity. J Alzheimers Dis 2016; 51:165-78. [PMID: 26836184 DOI: 10.3233/jad-150927] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tauopathies, such as Alzheimer's disease (AD), are a group of disorders characterized neuropathologically by intracellular toxic accumulations of abnormal protein aggregates formed by misfolding of the microtubule-associated protein tau. Since protein self-assembly appears to be an initial key step in the pathology of this group of diseases, intervening in this process can be both a prophylactic measure and a means for modifying the course of the disease for therapeutic purposes. We and others have shown that aromatic small molecules can be effective inhibitors of aggregation of various protein assemblies, by binding to the aromatic core in aggregation-prone motifs and preventing their self-assembly. Specifically, we have designed a series of small aromatic naphthoquinone-tryptophan hybrid molecules as candidate aggregation inhibitors of β -sheet based assembly and demonstrated their efficacy toward inhibiting aggregation of the amyloid-β peptide, another culprit of AD, as well as of various other aggregative proteins involved in other protein misfolding diseases. Here we tested whether a leading naphthoquinone-tryptophan hybrid molecule, namely NQTrp, can be repurposed as an inhibitor of the aggregation of the tau protein in vitro and in vivo. We show that the molecule inhibits the in vitro assembly of PHF6, the aggregation-prone fragment of tau protein, reduces hyperphosphorylated tau deposits and ameliorates tauopathy-related behavioral defect in an established transgenic Drosophila model expressing human tau. We suggest that NQTrp, or optimized versions of it, could act as novel disease modifying drugs for AD and other tauopathies.
Collapse
|
32
|
Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 2015; 9:124. [PMID: 25914621 PMCID: PMC4392704 DOI: 10.3389/fncel.2015.00124] [Citation(s) in RCA: 369] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases including Alzheimer (AD) and Parkinson (PD) have attracted attention in last decades due to their high incidence worldwide. The etiology of these diseases is still unclear; however the role of the environment as a putative risk factor has gained importance. More worryingly is the evidence that pre- and post-natal exposures to environmental factors predispose to the onset of neurodegenerative diseases in later life. Neurotoxic metals such as lead, mercury, aluminum, cadmium and arsenic, as well as some pesticides and metal-based nanoparticles have been involved in AD due to their ability to increase beta-amyloid (Aβ) peptide and the phosphorylation of Tau protein (P-Tau), causing senile/amyloid plaques and neurofibrillary tangles (NFTs) characteristic of AD. The exposure to lead, manganese, solvents and some pesticides has been related to hallmarks of PD such as mitochondrial dysfunction, alterations in metal homeostasis and aggregation of proteins such as α-synuclein (α-syn), which is a key constituent of Lewy bodies (LB), a crucial factor in PD pathogenesis. Common mechanisms of environmental pollutants to increase Aβ, P-Tau, α-syn and neuronal death have been reported, including the oxidative stress mainly involved in the increase of Aβ and α-syn, and the reduced activity/protein levels of Aβ degrading enzyme (IDE)s such as neprilysin or insulin IDE. In addition, epigenetic mechanisms by maternal nutrient supplementation and exposure to heavy metals and pesticides have been proposed to lead phenotypic diversity and susceptibility to neurodegenerative diseases. This review discusses data from epidemiological and experimental studies about the role of environmental factors in the development of idiopathic AD and PD, and their mechanisms of action.
Collapse
|
33
|
Selenica MLB, Davtyan H, Housley SB, Blair LJ, Gillies A, Nordhues BA, Zhang B, Liu J, Gestwicki JE, Lee DC, Gordon MN, Morgan D, Dickey CA. Epitope analysis following active immunization with tau proteins reveals immunogens implicated in tau pathogenesis. J Neuroinflammation 2014; 11:152. [PMID: 25183004 PMCID: PMC4167523 DOI: 10.1186/s12974-014-0152-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/14/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Abnormal tau hyperphosphorylation and its accumulation into intra-neuronal neurofibrillary tangles are linked to neurodegeneration in Alzheimer's disease and similar tauopathies. One strategy to reduce accumulation is through immunization, but the most immunogenic tau epitopes have so far remained unknown. To fill this gap, we immunized mice with recombinant tau to build a map of the most immunogenic tau epitopes. METHODS Non-transgenic and rTg4510 tau transgenic mice aged 5 months were immunized with either human wild-type tau (Wt, 4R0N) or P301L tau (4R0N). Each protein was formulated in Quil A adjuvant. Sera and splenocytes of vaccinated mice were collected to assess the humoral and cellular immune responses to tau. We employed a peptide array assay to identify the most effective epitopes. Brain histology was utilized to measure the effects of vaccination on tau pathology and inflammation. RESULTS Humoral immune responses following immunization demonstrated robust antibody titers (up to 1:80,000 endpoint titers) to each tau species in both mice models. The number of IFN-γ producing T cells and their proliferation were also increased in splenocytes from immunized mice, indicating an increased cellular immune response, and tau levels and neuroinflammation were both reduced. We identified five immunogenic motifs within either the N-terminal (9-15 and 21-27 amino acids), proline rich (168-174 and 220-228 amino acids), or the C-terminal regions (427-438 amino acids) of the wild-type and P301L tau protein sequence. CONCLUSIONS Our study identifies five previously unknown immunogenic motifs of wild-type and mutated (P301L) tau protein. Immunization with both proteins resulted in reduced tau pathology and neuroinflammation in a tau transgenic model, supporting the efficacy of tau immunotherapy in tauopathy.
Collapse
Affiliation(s)
- Maj-Linda B Selenica
- />Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612 USA
- />USF Health, Byrd Alzheimer Institute, 4001 E. Fowler Avenue, MDC 36, Tampa, FL 33613 USA
| | - Hayk Davtyan
- />Department of Molecular Immunology, Institute for Molecular Medicine, 16371 Gothard Street, H, Huntington Beach, CA 92647 USA
- />Institute for Memory Impairments and Neurological Disorders, University of California, 2642 Biological Sciences III, Irvine, CA 92697 USA
| | - Steven B Housley
- />USF Health, Byrd Alzheimer Institute, 4001 E. Fowler Avenue, MDC 36, Tampa, FL 33613 USA
- />Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612 USA
| | - Laura J Blair
- />USF Health, Byrd Alzheimer Institute, 4001 E. Fowler Avenue, MDC 36, Tampa, FL 33613 USA
- />Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 4001 E. Fowler Avenue, MDC 36, Tampa, FL 33613 USA
| | - Anne Gillies
- />Life Sciences Institute, University of Michigan, Ann Arbor, MI USA
| | - Bryce A Nordhues
- />USF Health, Byrd Alzheimer Institute, 4001 E. Fowler Avenue, MDC 36, Tampa, FL 33613 USA
- />Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 4001 E. Fowler Avenue, MDC 36, Tampa, FL 33613 USA
| | - Bo Zhang
- />USF Health, Byrd Alzheimer Institute, 4001 E. Fowler Avenue, MDC 36, Tampa, FL 33613 USA
- />Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 4001 E. Fowler Avenue, MDC 36, Tampa, FL 33613 USA
| | - Joseph Liu
- />Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612 USA
- />USF Health, Byrd Alzheimer Institute, 4001 E. Fowler Avenue, MDC 36, Tampa, FL 33613 USA
| | - Jason E Gestwicki
- />Life Sciences Institute, University of Michigan, Ann Arbor, MI USA
| | - Daniel C Lee
- />Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612 USA
- />USF Health, Byrd Alzheimer Institute, 4001 E. Fowler Avenue, MDC 36, Tampa, FL 33613 USA
| | - Marcia N Gordon
- />USF Health, Byrd Alzheimer Institute, 4001 E. Fowler Avenue, MDC 36, Tampa, FL 33613 USA
- />Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612 USA
| | - Dave Morgan
- />USF Health, Byrd Alzheimer Institute, 4001 E. Fowler Avenue, MDC 36, Tampa, FL 33613 USA
- />Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612 USA
| | - Chad A Dickey
- />USF Health, Byrd Alzheimer Institute, 4001 E. Fowler Avenue, MDC 36, Tampa, FL 33613 USA
- />Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 4001 E. Fowler Avenue, MDC 36, Tampa, FL 33613 USA
| |
Collapse
|
34
|
Alzheimer's disease--a panorama glimpse. Int J Mol Sci 2014; 15:12631-50. [PMID: 25032844 PMCID: PMC4139864 DOI: 10.3390/ijms150712631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/26/2014] [Accepted: 07/10/2014] [Indexed: 01/05/2023] Open
Abstract
The single-mutation of genes associated with Alzheimer's disease (AD) increases the production of Aβ peptides. An elevated concentration of Aβ peptides is prone to aggregation into oligomers and further deposition as plaque. Aβ plaques and neurofibrillary tangles are two hallmarks of AD. In this review, we provide a broad overview of the diverses sources that could lead to AD, which include genetic origins, Aβ peptides and tau protein. We shall discuss on tau protein and tau accumulation, which result in neurofibrillary tangles. We detail the mechanisms of Aβ aggregation, fibril formation and its polymorphism. We then show the possible links between Aβ and tau pathology. Furthermore, we summarize the structural data of Aβ and its precursor protein obtained via Nuclear Magnetic Resonance (NMR) or X-ray crystallography. At the end, we go through the C-terminal and N-terminal truncated Aβ variants. We wish to draw reader's attention to two predominant and toxic Aβ species, namely Aβ4-42 and pyroglutamate amyloid-beta peptides, which have been neglected for more than a decade and may be crucial in Aβ pathogenesis due to their dominant presence in the AD brain.
Collapse
|
35
|
Early-onset cognitive deficits and axonal transport dysfunction in P301S mutant tau transgenic mice. Neurosci Res 2014; 80:76-85. [PMID: 24406748 DOI: 10.1016/j.neures.2013.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) are neurodegenerative "tauopathies" characterized by hyperphosphorylated tau accumulation and neurofibrillary tangles. The P301S mutation of tau, a causal mutation of a familial type of FTLD, is believed to be involved in neurodegenerative progression. We developed a transgenic mouse, named TPR50, harboring human P301S tau. Tau phosphorylation in the hippocampus of TPR50 mice increased with age, particularly at S202/T205. Insolubilization and intracellular accumulation of tau were detected in the hippocampus by 9 months of age. Expression of calbindin was significantly reduced in 6- and 9-month-old TPR50 mice but not in 3-month-old mice. TPR50 mice demonstrated cognitive dysfunction at 5 months. At this age or earlier, although no intracellular tau accumulation was observed in the hippocampus, abnormally increased microtubule (MT)-related proteins and MT hyperdynamics in the hippocampus, and impaired axonal transport in the septo-hippocampal pathway were already observed. Therefore, cognitive dysfunction in TPR50 mice may result from early MT dysfunction and impaired axonal transport rather than accumulation of insoluble tau and neurodegeneration. TPR50 mice are a valuable new model to study progression of tauopathies at both the behavioral and neurocellular levels and may also prove useful for testing new therapies for neurodegenerative diseases.
Collapse
|
36
|
Tompa P. Multisteric Regulation by Structural Disorder in Modular Signaling Proteins: An Extension of the Concept of Allostery. Chem Rev 2013; 114:6715-32. [DOI: 10.1021/cr4005082] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Peter Tompa
- VIB Department of Structural
Biology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Institute of Enzymology, Biological Research Center, Hungarian Academy
of Sciences, Budapest H-1113, Hungary
| |
Collapse
|
37
|
2-(2-Phenylmorpholin-4-yl)pyrimidin-4(3H)-ones; A new class of potent, selective and orally active glycogen synthase kinase-3β inhibitors. Bioorg Med Chem Lett 2013; 23:6933-7. [DOI: 10.1016/j.bmcl.2013.09.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/19/2013] [Accepted: 09/05/2013] [Indexed: 02/06/2023]
|
38
|
6-(4-Pyridyl)pyrimidin-4(3H)-ones as CNS penetrant glycogen synthase kinase-3β inhibitors. Bioorg Med Chem Lett 2013; 23:6928-32. [DOI: 10.1016/j.bmcl.2013.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/19/2013] [Accepted: 09/05/2013] [Indexed: 12/30/2022]
|
39
|
Investigation on the aggregation behaviors and filament morphology of tau protein by a simple 90° angle light-scattering assay. ScientificWorldJournal 2013; 2013:354730. [PMID: 24163620 PMCID: PMC3791826 DOI: 10.1155/2013/354730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/06/2013] [Indexed: 11/24/2022] Open
Abstract
The in vitro aggregation of tau constructs was monitored by a simple 90° angle light-scattering (LS) approach which was conducted directly on fluorescence instrument. At the optimum incident wavelength (550 nm, unpolarized), the sensitivity of LS was high enough to detect tau aggregation at micromolar range. The nucleation and elongation, different events in the aggregation process of 4RMBD construct (corresponding with the four repeated units of tau Microtubule Binding Domain) could be observed by this approach, as compared with ThS fluorescence assay. The validity of this technique was demonstrated over a range of tau concentrations with different tau filaments. Linear regression of scattering light against concentration yielded the x-intercept, the critical concentrations of tau constructs. The critical concentrations of 4RMBD and its S305N mutant are 5.26 μM and 4.04 μM respectively, indicating point mutation S305N, which is associated with FTDP-17, appear to enhance the heparin-induced tau aggregation in vitro. Furthermore, the slopes of concentration dependence curves, as well as the angle dependence, were discussed based on the filaments morphology examined by electron microscopy and ultrasonication experiment.
Collapse
|
40
|
Xu LR, Liu XL, Chen J, Liang Y. Protein disulfide isomerase interacts with tau protein and inhibits its fibrillization. PLoS One 2013; 8:e76657. [PMID: 24098548 PMCID: PMC3788760 DOI: 10.1371/journal.pone.0076657] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/30/2013] [Indexed: 01/20/2023] Open
Abstract
Background Tau protein is implicated in the pathogenesis of neurodegenerative disorders such as tauopathies including Alzheimer disease, and Tau fibrillization is thought to be related to neuronal toxicity. Physiological inhibitors of Tau fibrillization hold promise for developing new strategies for treatment of Alzheimer disease. Because protein disulfide isomerase (PDI) is both an enzyme and a chaperone, and implicated in neuroprotection against Alzheimer disease, we want to know whether PDI can prevent Tau fibrillization. In this study, we have investigated the interaction between PDI and Tau protein and the effect of PDI on Tau fibrillization. Methodology/Principal Findings As evidenced by co-immunoprecipitation and confocal laser scanning microscopy, human PDI interacts and co-locates with some endogenous human Tau on the endoplasmic reticulum of undifferentiated SH-SY5Y neuroblastoma cells. The results from isothermal titration calorimetry show that one full-length human PDI binds to one full-length human Tau (or human Tau fragment Tau244–372) monomer with moderate, micromolar affinity at physiological pH and near physiological ionic strength. As revealed by thioflavin T binding assays, Sarkosyl-insoluble SDS-PAGE, and transmission electron microscopy, full-length human PDI remarkably inhibits both steps of nucleation and elongation of Tau244–372 fibrillization in a concentration-dependent manner. Furthermore, we find that two molecules of the a-domain of human PDI interact with one Tau244–372 molecule with sub-micromolar affinity, and inhibit both steps of nucleation and elongation of Tau244–372 fibrillization more strongly than full-length human PDI. Conclusions/Significance We demonstrate for the first time that human PDI binds to Tau protein mainly through its thioredoxin-like catalytic domain a, forming a 1∶1 complex and preventing Tau misfolding. Our findings suggest that PDI could act as a physiological inhibitor of Tau fibrillization, and have applications for developing novel strategies for treatment and early diagnosis of Alzheimer disease.
Collapse
Affiliation(s)
- Li-Rong Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao-Ling Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
41
|
Larini L, Gessel MM, LaPointe NE, Do TD, Bowers MT, Feinstein SC, Shea JE. Initiation of assembly of tau(273-284) and its ΔK280 mutant: an experimental and computational study. Phys Chem Chem Phys 2013; 15:8916-28. [PMID: 23515417 DOI: 10.1039/c3cp00063j] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The microtubule associated protein tau is essential for the development and maintenance of the nervous system. Tau dysfunction is associated with a class of diseases called tauopathies, in which tau is found in an aggregated form. This paper focuses on a small aggregating fragment of tau, (273)GKVQIINKKLDL(284), encompassing the (PHF6*) region that plays a central role in tau aggregation. Using a combination of simulations and experiments, we probe the self-assembly of this peptide, with an emphasis on characterizing the early steps of aggregation. Ion-mobility mass spectrometry experiments provide a size distribution of early oligomers, TEM studies provide a time course of aggregation, and enhanced sampling molecular dynamics simulations provide atomistically detailed structural information about this intrinsically disordered peptide. Our studies indicate that a point mutation, as well the addition of heparin, lead to a shift in the conformations populated by the earliest oligomers, affecting the kinetics of subsequent fibril formation as well as the morphology of the resulting aggregates. In particular, a mutant associated with a K280 deletion (a mutation that causes a heritable form of neurodegeneration/dementia in the context of full length tau) is seen to aggregate more readily than its wild-type counterpart. Simulations and experiment reveal that the ΔK280 mutant peptide adopts extended conformations to a greater extent than the wild-type peptide, facilitating aggregation through the pre-structuring of the peptide into a fibril-competent structure.
Collapse
Affiliation(s)
- Luca Larini
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Riss PJ, Brichard L, Ferrari V, Williamson DJ, Fryer TD, Hong YT, Baron JC, Aigbirhio FI. Radiosynthesis and characterization of astemizole derivatives as lead compounds toward PET imaging of τ-pathology. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00017f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
44
|
Battisti A, Ciasca G, Grottesi A, Bianconi A, Tenenbaum A. Temporary secondary structures in tau, an intrinsically disordered protein. MOLECULAR SIMULATION 2012. [DOI: 10.1080/08927022.2011.633347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
45
|
Voss K, Combs B, Patterson KR, Binder LI, Gamblin TC. Hsp70 alters tau function and aggregation in an isoform specific manner. Biochemistry 2012; 51:888-98. [PMID: 22236337 DOI: 10.1021/bi2018078] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tauopathies are characterized by abnormal aggregation of the microtubule associated protein tau. This aggregation is thought to occur when tau undergoes shifts from its native conformation to one that exposes hydrophobic areas on separate monomers, allowing contact and subsequent association into oligomers and filaments. Molecular chaperones normally function by binding to exposed hydrophobic stretches on proteins and assisting in their refolding. Chaperones of the heat shock protein 70 (Hsp70) family have been implicated in the prevention of abnormal tau aggregation in adult neurons. Tau exists as six alternatively spliced isoforms, and all six isoforms appear capable of forming the pathological aggregates seen in Alzheimer's disease. Because tau isoforms differ in primary sequence, we sought to determine whether Hsp70 would differentially affect the aggregation and microtubule assembly characteristics of the various tau isoforms. We found that Hsp70 inhibits tau aggregation directly and not through inducer-mediated effects. We also determined that Hsp70 inhibits the aggregation of each individual tau isoform and was more effective at inhibiting the three repeat isoforms. Finally, all tau isoforms robustly induced microtubule formation while in the presence of Hsp70. The results presented herein indicate that Hsp70 affects tau isoform dysfunction while having very little impact on the normal function of tau to mediate microtubule assembly. This indicates that targeting Hsp70 to tau may provide a therapeutic approach for the treatment of tauopathies that avoids disruption of normal tau function.
Collapse
Affiliation(s)
- Kellen Voss
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | | | | | | | | |
Collapse
|
46
|
Moore CL, Huang MH, Robbennolt SA, Voss KR, Combs B, Gamblin TC, Goux WJ. Secondary nucleating sequences affect kinetics and thermodynamics of tau aggregation. Biochemistry 2011; 50:10876-86. [PMID: 22085312 DOI: 10.1021/bi2014745] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tau protein was scanned for highly amyloidogenic sequences in amphiphilic motifs (X)(n)Z, Z(X)(n)Z (n ≥ 2), or (XZ)(n) (n ≥ 2), where X is a hydrophobic residue and Z is a charged or polar residue. N-Acetyl peptides homologous to these sequences were used to study aggregation. Transmission electron microscopy (TEM) showed seven peptides, in addition to well-known primary nucleating sequences Ac(275)VQIINK (AcPHF6*) and Ac(306)VQIVYK (AcPHF6), formed fibers, tubes, ribbons, or rolled sheets. Of the peptides shown by TEM to form amyloid, Ac(10)VME, AcPHF6*, Ac(375)KLTFR, and Ac(393)VYK were found to enhance the fraction of β-structure of AcPHF6 formed at equilibrium, and Ac(375)KLTFR was found to inhibit AcPHF6 and AcPHF6* aggregation kinetics in a dose-dependent manner, consistent with its participation in a hybrid steric zipper model. Single site mutants were generated which transformed predicted amyloidogenic sequences in tau into non-amyloidogenic ones. A M11K mutant had fewer filaments and showed a decrease in aggregation kinetics and an increased lag time compared to wild-type tau, while a F378K mutant showed significantly more filaments. Our results infer that sequences throughout tau, in addition to PHF6 and PHF6*, can seed amyloid formation or affect aggregation kinetics or thermodynamics.
Collapse
Affiliation(s)
- Christopher L Moore
- Department of Chemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | | | | | | | | | | | | |
Collapse
|
47
|
Onishi T, Iwashita H, Uno Y, Kunitomo J, Saitoh M, Kimura E, Fujita H, Uchiyama N, Kori M, Takizawa M. A novel glycogen synthase kinase-3 inhibitor 2-methyl-5-(3-{4-[(S )-methylsulfinyl]phenyl}-1-benzofuran-5-yl)-1,3,4-oxadiazole decreases tau phosphorylation and ameliorates cognitive deficits in a transgenic model of Alzheimer’s disease. J Neurochem 2011; 119:1330-40. [DOI: 10.1111/j.1471-4159.2011.07532.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Nemes Z. Effects and Analysis of Transglutamination on Protein Aggregation and Clearance in Neurodegenerative Diseases. ADVANCES IN ENZYMOLOGY - AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:347-83. [DOI: 10.1002/9781118105771.ch8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
49
|
Deregulation of Cytoskeletal Protein Phosphorylation and Neurodegeneration. ADVANCES IN NEUROBIOLOGY 2011. [DOI: 10.1007/978-1-4419-6787-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
Han LJ, Shi S, Zheng LF, Yang DJ, Yao TM, Ji LN. Flavonoids Inhibit Heparin-Induced Aggregation of the Third Repeat (R3) of Microtubule-Binding Domain of Alzheimer’s Tau Protein. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2010. [DOI: 10.1246/bcsj.20090254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|