1
|
Michel R, Poirier L, van Poelvoorde Q, Legagneux J, Manassero M, Corté L. Interfacial fluid transport is a key to hydrogel bioadhesion. Proc Natl Acad Sci U S A 2019; 116:738-743. [PMID: 30602456 PMCID: PMC6338857 DOI: 10.1073/pnas.1813208116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Attaching hydrogels to soft internal tissues is a key to the development of a number of biomedical devices. Nevertheless, the wet nature of hydrogels and tissues renders this adhesion most difficult to achieve and control. Here, we show that the transport of fluids across hydrogel-tissue interfaces plays a central role in adhesion. Using ex vivo peeling experiments on porcine liver, we characterized the adhesion between model hydrogel membranes and the liver capsule and parenchyma. By varying the contact time, the tissue hydration, and the swelling ratio of the hydrogel membrane, a transition between two peeling regimes is found: a lubricated regime where a liquid layer wets the interface, yielding low adhesion energies (0.1 J/m2 to 1 J/m2), and an adhesive regime with a solid binding between hydrogel and tissues and higher adhesion energies (1 J/m2 to 10 J/m2). We show that this transition corresponds to a draining of the interface inducing a local dehydration of the tissues, which become intrinsically adhesive. A simple model taking into account the microanatomy of tissues captures the transition for both the liver capsule and parenchyma. In vivo experiments demonstrate that this effect still holds on actively hydrated tissues like the liver capsule and show that adhesion can be strongly enhanced when using superabsorbent hydrogel meshes. These results shed light on the design of predictive bioadhesion tests as well as on the development of improved bioadhesive strategies exploiting interfacial fluid transport.
Collapse
Affiliation(s)
- Raphaël Michel
- Ecole Supérieure de Physique et Chimie Industrielle de la Ville de Paris (ESPCI Paris), Paris Sciences et Lettres Research University, Laboratoire Matière Molle et Chimie, CNRS UMR 7167, 75005 Paris, France;
- MINES ParisTech, Paris Sciences et Lettres Research University, Centre des Matériaux, CNRS UMR 7633, 91003 Evry, France
| | - Léna Poirier
- Ecole Supérieure de Physique et Chimie Industrielle de la Ville de Paris (ESPCI Paris), Paris Sciences et Lettres Research University, Laboratoire Matière Molle et Chimie, CNRS UMR 7167, 75005 Paris, France
| | - Quentin van Poelvoorde
- Ecole Supérieure de Physique et Chimie Industrielle de la Ville de Paris (ESPCI Paris), Paris Sciences et Lettres Research University, Laboratoire Matière Molle et Chimie, CNRS UMR 7167, 75005 Paris, France
| | - Josette Legagneux
- Ecole de Chirurgie, Agence Générale des Équipements et Produits de Santé, Assistance Publique-Hôpitaux de Paris, 75005 Paris, France
| | - Mathieu Manassero
- Service de Chirurgie, Ecole Nationale Vétérinaire d'Alfort, 94700 Maisons-Alfort, France
- Laboratoire de Bioingénierie et Bioimagerie Ostéo-Articulaire, CNRS UMR 7052, 75010 Paris, France
| | - Laurent Corté
- Ecole Supérieure de Physique et Chimie Industrielle de la Ville de Paris (ESPCI Paris), Paris Sciences et Lettres Research University, Laboratoire Matière Molle et Chimie, CNRS UMR 7167, 75005 Paris, France;
- MINES ParisTech, Paris Sciences et Lettres Research University, Centre des Matériaux, CNRS UMR 7633, 91003 Evry, France
| |
Collapse
|
2
|
Outer-sphere oxidation of Fe(II) in nitrosylmyoglobin by ferricyanide. J Biol Inorg Chem 2014; 19:805-12. [DOI: 10.1007/s00775-014-1112-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
|
3
|
Sjöberg JS, Bulterijs S. Characteristics, Formation, and Pathophysiology of Glucosepane: A Major Protein Cross-Link. Rejuvenation Res 2009; 12:137-48. [DOI: 10.1089/rej.2009.0846] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
4
|
Rees MD, Kennett EC, Whitelock JM, Davies MJ. Oxidative damage to extracellular matrix and its role in human pathologies. Free Radic Biol Med 2008; 44:1973-2001. [PMID: 18423414 DOI: 10.1016/j.freeradbiomed.2008.03.016] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/16/2008] [Accepted: 03/20/2008] [Indexed: 02/08/2023]
Abstract
The extracellular compartments of most biological tissues are significantly less well protected against oxidative damage than intracellular sites and there is considerable evidence for such compartments being subject to a greater oxidative stress and an altered redox balance. However, with some notable exceptions (e.g., plasma and lung lining fluid) oxidative damage within these compartments has been relatively neglected and is poorly understood. In particular information on the nature and consequences of damage to extracellular matrix is lacking despite the growing realization that changes in matrix structure can play a key role in the regulation of cellular adhesion, proliferation, migration, and cell signaling. Furthermore, the extracellular matrix is widely recognized as being a key site of cytokine and growth factor binding, and modification of matrix structure might be expected to alter such behavior. In this paper we review the potential sources of oxidative matrix damage, the changes that occur in matrix structure, and how this may affect cellular behavior. The role of such damage in the development and progression of inflammatory diseases is discussed.
Collapse
Affiliation(s)
- Martin D Rees
- The Heart Research Institute, 114 Pyrmont Bridge Rd, Camperdown, NSW 2050, Australia
| | | | | | | |
Collapse
|
5
|
Abstract
Recent progress in relating the functional properties of the glomerular capillary wall to its unique structure is reviewed. The fenestrated endothelium, glomerular basement membrane (GBM), and epithelial filtration slits form a series arrangement in which the flow diverges as it enters the GBM from the fenestrae and converges again at the filtration slits. A hydrodynamic model that combines morphometric findings with water flow data in isolated GBM has predicted overall hydraulic permeabilities that are consistent with measurements in vivo. The resistance of the GBM to water flow, which accounts for roughly half that of the capillary wall, is strongly dependent on the extent to which the GBM surfaces are blocked by cells. The spatial frequency of filtration slits is predicted to be a very important determinant of the overall hydraulic permeability, in keeping with observations in several glomerular diseases in humans. Whereas the hydraulic resistances of the cell layers and GBM are additive, the overall sieving coefficient for a macromolecule (its concentration in Bowman's space divided by that in plasma) is the product of the sieving coefficients for the individual layers. Models for macromolecule filtration reveal that the individual sieving coefficients are influenced by one another and by the filtrate velocity, requiring great care in extrapolating in vitro observations to the living animal. The size selectivity of the glomerular capillary has been shown to be determined largely by the cellular layers, rather than the GBM. Controversial findings concerning glomerular charge selectivity are reviewed, and it is concluded that there is good evidence for a role of charge in restricting the transmural movement of albumin. Also discussed is an effect of albumin that has received little attention, namely, its tendency to increase the sieving coefficients of test macromolecules via steric interactions. Among the unresolved issues are the specific contributions of the endothelial glycocalyx and epithelial slit diaphragm to the overall hydraulic resistance and macromolecule selectivity and the nanostructural basis for the observed permeability properties of the GBM.
Collapse
Affiliation(s)
- W M Deen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| | | | | |
Collapse
|