1
|
Young RM, Hawkins TA, Cavodeassi F, Stickney HL, Schwarz Q, Lawrence LM, Wierzbicki C, Cheng BYL, Luo J, Ambrosio EM, Klosner A, Sealy IM, Rowell J, Trivedi CA, Bianco IH, Allende ML, Busch-Nentwich EM, Gestri G, Wilson SW. Compensatory growth renders Tcf7l1a dispensable for eye formation despite its requirement in eye field specification. eLife 2019; 8:e40093. [PMID: 30777146 PMCID: PMC6380838 DOI: 10.7554/elife.40093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/26/2019] [Indexed: 12/18/2022] Open
Abstract
The vertebrate eye originates from the eye field, a domain of cells specified by a small number of transcription factors. In this study, we show that Tcf7l1a is one such transcription factor that acts cell-autonomously to specify the eye field in zebrafish. Despite the much-reduced eye field in tcf7l1a mutants, these fish develop normal eyes revealing a striking ability of the eye to recover from a severe early phenotype. This robustness is not mediated through genetic compensation at neural plate stage; instead, the smaller optic vesicle of tcf7l1a mutants shows delayed neurogenesis and continues to grow until it achieves approximately normal size. Although the developing eye is robust to the lack of Tcf7l1a function, it is sensitised to the effects of additional mutations. In support of this, a forward genetic screen identified mutations in hesx1, cct5 and gdf6a, which give synthetically enhanced eye specification or growth phenotypes when in combination with the tcf7l1a mutation.
Collapse
Affiliation(s)
- Rodrigo M Young
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Thomas A Hawkins
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Florencia Cavodeassi
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Heather L Stickney
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Quenten Schwarz
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Lisa M Lawrence
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Claudia Wierzbicki
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Bowie YL Cheng
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Jingyuan Luo
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | | | - Allison Klosner
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Ian M Sealy
- Wellcome Sanger InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Department of MedicineUniversity of CambridgeCambridgeUnited Kingdom
| | - Jasmine Rowell
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Chintan A Trivedi
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Isaac H Bianco
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Miguel L Allende
- Center for Genome RegulationFacultad de Ciencias, Universidad de ChileSantiagoChile
| | - Elisabeth M Busch-Nentwich
- Wellcome Sanger InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Department of MedicineUniversity of CambridgeCambridgeUnited Kingdom
| | - Gaia Gestri
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Stephen W Wilson
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
2
|
Choe SK, Zhang X, Hirsch N, Straubhaar J, Sagerström CG. A screen for hoxb1-regulated genes identifies ppp1r14al as a regulator of the rhombomere 4 Fgf-signaling center. Dev Biol 2011; 358:356-67. [PMID: 21787765 DOI: 10.1016/j.ydbio.2011.05.676] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 01/21/2023]
Abstract
Segmentation of the vertebrate hindbrain into multiple rhombomeres is essential for proper formation of the cerebellum, cranial nerves and cranial neural crest. Paralog group 1 (PG1) hox genes are expressed early in the caudal hindbrain and are required for rhombomere formation. Accordingly, loss of PG1 hox function disrupts development of caudal rhombomeres in model organisms and causes brainstem defects, associated with cognitive impairment, in humans. In spite of this important role for PG1 hox genes, transcriptional targets of PG1 proteins are not well characterized. Here we use ectopic expression together with embryonic dissection to identify novel targets of the zebrafish PG1 gene hoxb1b. Of 100 genes up-regulated by hoxb1b, 54 were examined and 25 were found to represent novel hoxb1b regulated hindbrain genes. The ppp1r14al gene was analyzed in greater detail and our results indicate that Hoxb1b is likely to directly regulate ppp1r14al expression in rhombomere 4. Furthermore, ppp1r14al is essential for establishment of the earliest hindbrain signaling-center in rhombomere 4 by regulating expression of fgf3.
Collapse
Affiliation(s)
- Seong-Kyu Choe
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | | | | | | | |
Collapse
|
3
|
Morona R, Ferran JL, Puelles L, González A. Embryonic genoarchitecture of the pretectum in Xenopus laevis: A conserved pattern in tetrapods. J Comp Neurol 2011; 519:1024-50. [DOI: 10.1002/cne.22548] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Her6 regulates the neurogenetic gradient and neuronal identity in the thalamus. Proc Natl Acad Sci U S A 2009; 106:19895-900. [PMID: 19903880 DOI: 10.1073/pnas.0910894106] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During vertebrate brain development, the onset of neuronal differentiation is under strict temporal control. In the mammalian thalamus and other brain regions, neurogenesis is regulated also in a spatially progressive manner referred to as a neurogenetic gradient, the underlying mechanism of which is unknown. Here we describe the existence of a neurogenetic gradient in the zebrafish thalamus and show that the progression of neurogenesis is controlled by dynamic expression of the bHLH repressor her6. Members of the Hes/Her family are known to regulate proneural genes, such as Neurogenin and Ascl. Here we find that Her6 determines not only the onset of neurogenesis but also the identity of thalamic neurons, marked by proneural and neurotransmitter gene expression: loss of Her6 leads to premature Neurogenin1-mediated genesis of glutamatergic (excitatory) neurons, whereas maintenance of Her6 leads to Ascl1-mediated production of GABAergic (inhibitory) neurons. Thus, the presence or absence of a single upstream regulator of proneural gene expression, Her6, leads to the establishment of discrete neuronal domains in the thalamus.
Collapse
|
5
|
Developmental expression of the three iroquois genes of amphioxus (BfIrxA, BfIrxB, and BfIrxC) with special attention to the gastrula organizer and anteroposterior boundaries in the central nervous system. Gene Expr Patterns 2009; 9:329-34. [DOI: 10.1016/j.gep.2009.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 02/06/2009] [Accepted: 02/11/2009] [Indexed: 11/16/2022]
|
6
|
Feijóo CG, Saldias MP, De la Paz JF, Gómez-Skarmeta JL, Allende ML. Formation of posterior cranial placode derivatives requires the Iroquois transcription factor irx4a. Mol Cell Neurosci 2009; 40:328-37. [DOI: 10.1016/j.mcn.2008.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 09/02/2008] [Accepted: 11/17/2008] [Indexed: 01/29/2023] Open
|
7
|
A functional interaction between Irx and Meis patterns the anterior hindbrain and activates krox20 expression in rhombomere 3. Dev Biol 2009; 327:566-77. [DOI: 10.1016/j.ydbio.2008.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 11/17/2008] [Accepted: 12/16/2008] [Indexed: 11/20/2022]
|
8
|
Cheng CW, Yan CHM, Choy SW, Hui MNY, Hui CC, Cheng SH. Zebrafish homologue irx1a is required for the differentiation of serotonergic neurons. Dev Dyn 2007; 236:2661-7. [PMID: 17685478 DOI: 10.1002/dvdy.21272] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Serotonergic (5HT) neurons produce neurotransmitter serotonin, which modulates various neuronal circuits. The specification and differentiation of 5HT neurons require both extrinsic signals such as Shh and Fgf, as well as intrinsic transcription factors such as nkx2.2, mash1, phox2b, Gata2, and pet1. In this study, we show that iroquois homeodomain factor irx1a, but not irx1b, is expressed in the 5HT neurons. Knockdown of irx1a by antisense morpholino nucleotides reveals that it is a critical determinant for the differentiation of 5HT neurons in the hindbrain. However, irx1a morphants do not show a reduction of the progenitors of 5HT neurons. Hence, irx1a is not required for the initial specification but it is required for the complete differentiation of 5HT neurons.
Collapse
Affiliation(s)
- Chi Wa Cheng
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | | | | | | | | | | |
Collapse
|
9
|
Bergeron SA, Milla LA, Villegas R, Shen MC, Burgess SM, Allende ML, Karlstrom RO, Palma V. Expression profiling identifies novel Hh/Gli-regulated genes in developing zebrafish embryos. Genomics 2007; 91:165-77. [PMID: 18055165 DOI: 10.1016/j.ygeno.2007.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 09/03/2007] [Accepted: 09/11/2007] [Indexed: 01/27/2023]
Abstract
The Hedgehog (Hh) signaling pathway plays critical instructional roles during embryonic development. Misregulation of Hh/Gli signaling is a major causative factor in human congenital disorders and in a variety of cancers. The zebrafish is a powerful genetic model for the study of Hh signaling during embryogenesis, as a large number of mutants that affect different components of the Hh/Gli signaling system have been identified. By performing global profiling of gene expression in different Hh/Gli gain- and loss-of-function scenarios we identified known (e.g., ptc1 and nkx2.2a) and novel Hh-regulated genes that are differentially expressed in embryos with altered Hh/Gli signaling function. By uncovering changes in tissue-specific gene expression, we revealed new embryological processes that are influenced by Hh signaling. We thus provide a comprehensive survey of Hh/Gli-regulated genes during embryogenesis and we identify new Hh-regulated genes that may be targets of misregulation during tumorigenesis.
Collapse
Affiliation(s)
- Sadie A Bergeron
- Department of Biology, University of Massachusetts, Amherst, MA 01003-9297, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Scholpp S, Foucher I, Staudt N, Peukert D, Lumsden A, Houart C. Otx1l, Otx2 and Irx1b establish and position the ZLI in the diencephalon. Development 2007; 134:3167-76. [PMID: 17670791 PMCID: PMC7116068 DOI: 10.1242/dev.001461] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The thalamic complex is the major sensory relay station in the vertebrate brain and comprises three developmental subregions: the prethalamus, the thalamus and an intervening boundary region - the zona limitans intrathalamica (ZLI). Shh signalling from the ZLI confers regional identity of the flanking subregions of the ZLI, making it an important local signalling centre for regional differentiation of the diencephalon. However, our understanding of the mechanisms responsible for positioning the ZLI along the neural axis is poor. Here we show that, before ZLI formation, both Otx1l and Otx2 (collectively referred to as Otx1l/2) are expressed in spatially restricted domains. Formation of both the ZLI and the Irx1b-positive thalamus require Otx1l/2; embryos impaired in Otx1l/2 function fail to form these areas, and, instead, the adjacent pretectum and, to a lesser extent, the prethalamus expand into the mis-specified area. Conditional expression of Otx2 in these morphant embryos cell-autonomously rescues the formation of the ZLI at its correct location. Furthermore, absence of thalamic Irx1b expression, in the presence of normal Otx1l/2 function, leads to a substantial caudal broadening of the ZLI by transformation of thalamic precursors. We therefore propose that the ZLI is induced within the competence area established by Otx1l/2, and is posteriorly restricted by Irx1b.
Collapse
Affiliation(s)
- Steffen Scholpp
- MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Guner B, Karlstrom RO. Cloning of zebrafish nkx6.2 and a comprehensive analysis of the conserved transcriptional response to Hedgehog/Gli signaling in the zebrafish neural tube. Gene Expr Patterns 2007; 7:596-605. [PMID: 17307034 PMCID: PMC2043473 DOI: 10.1016/j.modgep.2007.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 01/02/2007] [Accepted: 01/05/2007] [Indexed: 11/30/2022]
Abstract
Sonic Hedgehog (Shh) signaling helps pattern the vertebrate neural tube, in part by regulating the dorsal/ventral expression of a number of homeodomain containing transcription factors. These Hh responsive genes have been divided into two classes, with Class II genes being activated by Hh signaling and Class I genes being repressed by Hh signaling. While the transcriptional response to varying Hh levels is well defined in chick and mouse, it is only partially described in zebrafish, despite the fact that zebrafish has emerged as a powerful genetic system for the study of neural patterning. To better characterize the Hh response in the zebrafish neural tube, we cloned the zebrafish Class II Hh target genes nkx2.9 and nkx6.2. We then analyzed the expression of a number of Class I and Class II Hh responsive genes in wild type, Hh mutant, and Hh over-expressing zebrafish embryos. We show that expression of Class I and Class II genes is highly conserved in the vertebrate neural tube. Further, ventral-most Class II gene expression was completely lost in all Hh pathway mutants analyzed, indicating high levels of Hh signaling are blocked in all of these mutants. In contrast, more dorsally expressed genes were variably affected in different Hh pathway mutants, indicating mid-levels of Hh signaling are differentially affected. This comprehensive expression study provides an important tool for the characterization of Hh signaling in zebrafish and provides a sensitive assay for determining the degree to which newly identified zebrafish mutants affect Hh signaling.
Collapse
MESH Headings
- Animals
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/metabolism
- Gene Expression Regulation, Developmental
- Hedgehog Proteins/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- In Situ Hybridization
- Neurons/cytology
- Neurons/metabolism
- RNA Probes
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Burcu Guner
- Biology Department, University of Massachusetts, Amherst, MA 01003-9297, USA
| | | |
Collapse
|
12
|
Schlosser G. Induction and specification of cranial placodes. Dev Biol 2006; 294:303-51. [PMID: 16677629 DOI: 10.1016/j.ydbio.2006.03.009] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 12/17/2022]
Abstract
Cranial placodes are specialized regions of the ectoderm, which give rise to various sensory ganglia and contribute to the pituitary gland and sensory organs of the vertebrate head. They include the adenohypophyseal, olfactory, lens, trigeminal, and profundal placodes, a series of epibranchial placodes, an otic placode, and a series of lateral line placodes. After a long period of neglect, recent years have seen a resurgence of interest in placode induction and specification. There is increasing evidence that all placodes despite their different developmental fates originate from a common panplacodal primordium around the neural plate. This common primordium is defined by the expression of transcription factors of the Six1/2, Six4/5, and Eya families, which later continue to be expressed in all placodes and appear to promote generic placodal properties such as proliferation, the capacity for morphogenetic movements, and neuronal differentiation. A large number of other transcription factors are expressed in subdomains of the panplacodal primordium and appear to contribute to the specification of particular subsets of placodes. This review first provides a brief overview of different cranial placodes and then synthesizes evidence for the common origin of all placodes from a panplacodal primordium. The role of various transcription factors for the development of the different placodes is addressed next, and it is discussed how individual placodes may be specified and compartmentalized within the panplacodal primordium. Finally, tissues and signals involved in placode induction are summarized with a special focus on induction of the panplacodal primordium itself (generic placode induction) and its relation to neural induction and neural crest induction. Integrating current data, new models of generic placode induction and of combinatorial placode specification are presented.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, AG Roth, University of Bremen, FB2, 28334 Bremen, Germany.
| |
Collapse
|
13
|
Cheng CW, Yan CHM, Hui CC, Strähle U, Cheng SH. The homeobox gene irx1a is required for the propagation of the neurogenic waves in the zebrafish retina. Mech Dev 2006; 123:252-63. [PMID: 16457994 DOI: 10.1016/j.mod.2005.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 11/26/2005] [Accepted: 12/02/2005] [Indexed: 11/20/2022]
Abstract
Neurogenesis in the compound eyes of Drosophila and the camera eyes of vertebrates spreads in a wave-like fashion. In both phyla, waves of hedgehog expression are known to drive the wave of neuronal differentiation. The mechanism controlling the propagation of hedgehog expression during retinogenesis of the vertebrate eye is poorly understood. The Iroquois homeobox genes play important roles in Drosophila eye development; they are required for the up-regulation of hedgehog expression during propagation of the morphogenetic furrow. Here, we show that the zebrafish Iroquois homolog irx1a is expressed during retinogenesis and knockdown of irx1a results in a retinal phenotype strikingly similar to those of sonic hedgehog (shh) mutants. Analysis of shh-GFP transgene expression in irx1a knockdown retinas revealed that irx1a is required for the propagation of shh expression through the retina. Transplantation experiments illustrated that the effects of irx1a on shh expression are both cell-autonomous and non-cell-autonomous. Our results reveal a role for Iroquois genes in controlling hedgehog expression during vertebrate retinogenesis.
Collapse
Affiliation(s)
- Chi Wa Cheng
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
14
|
de la Calle-Mustienes E, Feijóo CG, Manzanares M, Tena JJ, Rodríguez-Seguel E, Letizia A, Allende ML, Gómez-Skarmeta JL. A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts. Genome Res 2005; 15:1061-72. [PMID: 16024824 PMCID: PMC1182218 DOI: 10.1101/gr.4004805] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies of the genome architecture of vertebrates have uncovered two unforeseen aspects of its organization. First, large regions of the genome, called gene deserts, are devoid of protein-coding sequences and have no obvious biological role. Second, comparative genomics has highlighted the existence of an array of highly conserved non-coding regions (HCNRs) in all vertebrates. Most surprisingly, these structural features are strongly associated with genes that have essential functions during development. Among these, the vertebrate Iroquois (Irx) genes stand out on both fronts. Mammalian Irx genes are organized in two clusters (IrxA and IrxB) that span >1 Mb each with no other genes interspersed. Additionally, a large number of HCNRs exist within Irx clusters. We have systematically examined the enhancer activity of HCNRs from the IrxB cluster using transgenic Xenopus and zebrafish embryos. Most of these HCNRs are active in subdomains of endogenous Irx expression, and some are candidates to contain shared enhancers of neighboring genes, which could explain the evolutionary conservation of Irx clusters. Furthermore, HCNRs present in tetrapod IrxB but not in fish may be responsible for novel Irx expression domains that appeared after their divergence. Finally, we have performed a more detailed analysis on two IrxB ultraconserved non-coding regions (UCRs) duplicated in IrxA clusters in similar relative positions. These four regions share a core region highly conserved among all of them and drive expression in similar domains. However, inter-species conserved sequences surrounding the core, specific for each of these UCRs, are able to modulate their expression.
Collapse
Affiliation(s)
- Elisa de la Calle-Mustienes
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Leung AYH, Mendenhall EM, Kwan TTF, Liang R, Eckfeldt C, Chen E, Hammerschmidt M, Grindley S, Ekker SC, Verfaillie CM. Characterization of expanded intermediate cell mass in zebrafish chordin morphant embryos. Dev Biol 2005; 277:235-54. [PMID: 15572152 DOI: 10.1016/j.ydbio.2004.09.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 08/30/2004] [Accepted: 09/24/2004] [Indexed: 11/30/2022]
Abstract
We investigated the mechanisms of intermediate cell mass (ICM) expansion in zebrafish chordin (Chd) morphant embryos and examined the role of BMPs in relation to this phenotype. At 24 h post-fertilization (hpf), the expanded ICM of embryos injected with chd morpholino (MO) (ChdMO embryos) contained a monotonous population of hematopoietic progenitors. In situ hybridization showed that hematopoietic transcription factors were ubiquitously expressed in the ICM whereas vascular gene expression was confined to the periphery. BMP4 (but not BMP2b or 7) and smad5 mRNA were ectopically expressed in the ChdMO ICM. At 48 hpf, monocytic cells were evident in both the ICM and circulation of ChdMO but not WT embryos. While injection of BMP4 MO had no effect on WT hematopoiesis, co-injecting BMP4 with chd MOs significantly reduced ICM expansion. Microarray studies revealed a number of genes that were differentially expressed in ChdMO and WT embryos and their roles in hematopoiesis has yet to be determined. In conclusion, the expanded ICM in ChdMO embryos represented an expansion of embryonic hematopoiesis that was skewed towards a monocytic lineage. BMP4, but not BMP2b or 7, was involved in this process. The results provide ground for further research into the mechanisms of embryonic hematopoietic cell expansion.
Collapse
Affiliation(s)
- Anskar Y H Leung
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lecaudey V, Anselme I, Dildrop R, Rüther U, Schneider-Maunoury S. Expression of the zebrafish Iroquois genes during early nervous system formation and patterning. J Comp Neurol 2005; 492:289-302. [PMID: 16217788 DOI: 10.1002/cne.20765] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Iroquois genes are involved in many patterning processes during development. In particular, they act as prepattern genes to control proneural gene expression both in Drosophila and in vertebrates. In this paper, we have analyzed the expression during embryogenesis of the 11 zebrafish Iroquois genes, with special interest for nervous system formation and patterning. During the first 2 days of development, Iroquois genes are expressed in distinct domains in the neuroepithelium, as well as in groups of neuronal progenitors and neurons. They are also expressed at different stages of placodal development. These expression patterns are similar to the patterns of the murine irx genes and also show features specific to teleosts. For the zebrafish Iroquois gene family, we find both specific patterns and patterns conserved within a cluster, between paralogues, or in most genes of the family. Overall, these expression data suggest functions for the Iroquois family of transcription factors in neural and placodal patterning, neurogenesis, and neuronal specification.
Collapse
Affiliation(s)
- Virginie Lecaudey
- Biologie du Développement, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7622, Université Pierre et Marie Curie, 75252 Paris, France
| | | | | | | | | |
Collapse
|
17
|
Abstract
The synchronous contraction of the vertebrate heart requires a conduction system. While coordinated contraction of the cardiac chambers is observed in zebrafish larvae, no histological evidence yet has been found for the existence of a cardiac conduction system in this tractable teleost. The homeodomain transcription factor gene IRX1 has been shown in the mouse embryo to be a marker of cells that give rise to the distinctive cardiac ventricular conduction system. Here, I demonstrate that zebrafish IRX1b is expressed in a restricted subset of ventricular myocytes within the embryonic zebrafish heart. IRX1b expression occurs as the electrical maturation of the heart is taking place, in a location analogous to the initial expression domain of mouse IRX1. The gene expression pattern of IRX1b is altered in silent heart genetic mutant embryos and in embryos treated with the endothelin receptor antagonist bosentan. Furthermore, injection of a morpholino oligonucleotide targeted to block IRX1b translation slows the heart rate.
Collapse
Affiliation(s)
- Elaine M Joseph
- Department of Medicine, Harvard Medical School/Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| |
Collapse
|
18
|
Blader P, Lam CS, Rastegar S, Scardigli R, Nicod JC, Simplicio N, Plessy C, Fischer N, Schuurmans C, Guillemot F, Strähle U. Conserved and acquired features of neurogenin1 regulation. Development 2004; 131:5627-37. [PMID: 15496438 DOI: 10.1242/dev.01455] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The telencephalon shows vast morphological variations among different vertebrate groups. The transcription factor neurogenin1(ngn1) controls neurogenesis in the mouse pallium and is also expressed in the dorsal telencephalon of the evolutionary distant zebrafish. The upstream regions of the zebrafish and mammalian ngn1 loci harbour several stretches of conserved sequences. Here, we show that the upstream region of zebrafish ngn1 is capable of faithfully recapitulating endogenous expression in the zebrafish and mouse telencephalon. A single conserved regulatory region is essential for dorsal telencephalic expression in the zebrafish, and for expression in the dorsal pallium of the mouse. However, a second conserved region that is inactive in the fish telencephalon is necessary for expression in the lateral pallium of mouse embryos. This regulatory region, which drives expression in the zebrafish diencephalon and hindbrain, is dependent on Pax6 activity and binds recombinant Pax6 in vitro. Thus, the regulatory elements of ngn1 appear to be conserved among vertebrates, with certain differences being incorporated in the utilisation of these enhancers, for the acquisition of more advanced features in amniotes. Our data provide evidence for the co-option of regulatory regions as a mechanism of evolutionary diversification of expression patterns, and suggest that an alteration in Pax6expression was crucial in neocortex evolution.
Collapse
Affiliation(s)
- Patrick Blader
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Glavic A, Maris Honoré S, Gloria Feijóo C, Bastidas F, Allende ML, Mayor R. Role of BMP signaling and the homeoprotein iroquois in the specification of the cranial placodal field. Dev Biol 2004; 272:89-103. [PMID: 15242793 DOI: 10.1016/j.ydbio.2004.04.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 03/30/2004] [Accepted: 04/19/2004] [Indexed: 01/24/2023]
Abstract
Different types of placodes originate at the anterior border of the neural plate but it is still an unresolved question whether individual placodes arise as distinct ectodermal specializations in situ or whether all or a subset of the placodes originate from a common preplacodal field. We have analyzed the expression and function of the homeoprotein Iro1 in Xenopus and zebrafish embryos, and we have compared its expression with several preplacodal and placodal markers. Our results indicate that the iro1 genes are expressed in the preplacodal region, being one of the earliest markers for this area. We show that an interaction between the neural plate and the epidermis is able to induce the expression of several preplacodal markers, including Xiro1, by a similar mechanism to that previously shown for neural crest induction. In addition, we analyzed the role of BMP in the specification of the preplacodal field by studying the expression of the preplacodal markers Six1, Xiro1, and several specific placodal markers. We experimentally modified the level of BMP activity by three different methods. First, we implanted beads soaked with noggin in early neurula stage Xenopus embryos; second, we injected the mRNA that encodes a dominant negative of the BMP receptor into Xenopus and zebrafish embryos; and third, we grafted cells expressing chordin into zebrafish embryos. The results obtained using all three methods show that a reduction in the level of BMP activity leads to an expansion of the preplacodal and placodal region similar to what has been described for neural crest regions. By using conditional constructs of Xiro1, we performed gain and loss of function experiments. We show that Xiro1 play an important role in the specification of both the preplacodal field as well as individual placodes. We have also used inducible dominant negative and activator constructs of Notch signaling components to analyze the role of these factors on placodal development. Our results indicate that the a precise level of BMP activity is required to induce the neural plate border, including placodes and neural crest cells, that in this border the iro1 gene is activated, and that this activation is required for the specification of the placodes.
Collapse
Affiliation(s)
- Alvaro Glavic
- Millennium Nucleus in Developmental Biology, Laboratory of Developmental Biology, Facultad de Ciencias, Universidad de Chile, Santiago
| | | | | | | | | | | |
Collapse
|
20
|
Geling A, Itoh M, Tallafuss A, Chapouton P, Tannhäuser B, Kuwada JY, Chitnis AB, Bally-Cuif L. bHLH transcription factor Her5 links patterning to regional inhibition of neurogenesis at the midbrain-hindbrain boundary. Development 2003; 130:1591-604. [PMID: 12620984 DOI: 10.1242/dev.00375] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The midbrain-hindbrain (MH) domain of the vertebrate embryonic neural plate displays a stereotypical profile of neuronal differentiation, organized around a neuron-free zone ('intervening zone', IZ) at the midbrain-hindbrain boundary (MHB). The mechanisms establishing this early pattern of neurogenesis are unknown. We demonstrate that the MHB is globally refractory to neurogenesis, and that forced neurogenesis in this area interferes with the continued expression of genes defining MHB identity. We further show that expression of the zebrafish bHLH Hairy/E(spl)-related factor Her5 prefigures and then precisely delineates the IZ throughout embryonic development. Using morpholino knock-down and conditional gain-of-function assays, we demonstrate that Her5 is essential to prevent neuronal differentiation and promote cell proliferation in a medial compartment of the IZ. We identify one probable target of this activity, the zebrafish Cdk inhibitor p27Xic1. Finally, although the her5 expression domain is determined by anteroposterior patterning cues, we show Her5 does not retroactively influence MH patterning. Together, our results highlight the existence of a mechanism that actively inhibits neurogenesis at the MHB, a process that shapes MH neurogenesis into a pattern of separate neuronal clusters and might ultimately be necessary to maintain MHB integrity. Her5 appears as a partially redundant component of this inhibitory process that helps translate early axial patterning information into a distinct spatiotemporal pattern of neurogenesis and cell proliferation within the MH domain.
Collapse
Affiliation(s)
- Andrea Geling
- Zebrafish Neurogenetics Junior Research Group, Institute of Virology, Technical University-Munich, Trogerstrasse 4b, D-81675 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Gómez-Skarmeta JL, Modolell J. Iroquois genes: genomic organization and function in vertebrate neural development. Curr Opin Genet Dev 2002; 12:403-8. [PMID: 12100884 DOI: 10.1016/s0959-437x(02)00317-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We review recent work that shows that the iroquois (Iro/Irx) homeobox genes have conserved genomic organization in Drosophila and vertebrates. In addition, these genes play pivotal functions in the initial specification of the vertebrate neuroectoderm, and, in collaboration with other transcription factors, later subdivision of the anterior-posterior and dorso-ventral axis of the neuroectoderm.
Collapse
Affiliation(s)
- José Luis Gómez-Skarmeta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | |
Collapse
|
22
|
Itoh M, Kudoh T, Dedekian M, Kim CH, Chitnis AB. A role foriro1andiro7in the establishment of an anteroposterior compartment of the ectoderm adjacent to the midbrain-hindbrain boundary. Development 2002; 129:2317-27. [PMID: 11973265 DOI: 10.1242/dev.129.10.2317] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have identified a novel Iroquois (Iro) gene, iro7, in zebrafish. iro7 is expressed during gastrulation along with iro1 in a compartment of the dorsal ectoderm that includes the prospective midbrain-hindbrain domain, the adjacent neural crest and the trigeminal placodes in the epidermis. The iro1 and iro7 expression domain is expanded in headless and masterblind mutants, which are characterized by exaggerated Wnt signaling. Early expansion of iro1 and iro7 expression in these mutants correlates with expansion of the midbrain-hindbrain boundary (MHB) domain, the neural crest and trigeminal neurons, raising the possibility that iro1 and iro7 have a role in determination of these ectodermal derivatives. A knockdown of iro7 function revealed that iro7 is essential for the determination of neurons in the trigeminal placode. In addition, a knockdown of both iro1 and iro7 genes uncovered their essential roles in neural crest development and establishment of the isthmic organizer at the MHB. These results suggest a new role for Iro genes in establishment of an ectodermal compartment after Wnt signaling in vertebrate development. Furthermore, analysis of activator or repressor forms of iro7 suggests that iro1 and iro7 are likely to function as repressors in establishment of the isthmic organizer and neural crest, and Iro genes may have dual functions as repressors and activators in neurogenesis.
Collapse
Affiliation(s)
- Motoyuki Itoh
- Laboratory of Molecular Genetics, NICHD/NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
23
|
Lecaudey V, Thisse C, Thisse B, Schneider-Maunoury S. Sequence and expression pattern of ziro7, a novel, divergent zebrafish iroquois homeobox gene. Mech Dev 2001; 109:383-8. [PMID: 11731254 DOI: 10.1016/s0925-4773(01)00531-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have isolated the zebrafish ziro7 gene, a novel, divergent member of the Iroquois family. ziro7 is expressed at early epiboly stages in the dorsal half of the zebrafish embryo, with a higher level in the dorso-lateral margin. From mid-gastrulation stages onward, ziro7 is expressed in a large transversal stripe in the future neural plate, which subsequently divides into thinner stripes located in the diencephalon, midbrain and hindbrain.
Collapse
Affiliation(s)
- V Lecaudey
- Laboratoire de Biologie Moléculaire du Développement, INSERM U368, Ecole Normale Supérieure, 46, rue d'Ulm, 75230 Cedex 05, Paris, France
| | | | | | | |
Collapse
|