1
|
Hunter CM, Huang W, Mackay TFC, Singh ND. The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster. PLoS Genet 2016; 12:e1005951. [PMID: 27035832 PMCID: PMC4817973 DOI: 10.1371/journal.pgen.1005951] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/01/2016] [Indexed: 01/01/2023] Open
Abstract
Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait. During meiosis, homologous chromosomes exchange genetic material through recombination. In most sexually reproducing species, recombination is necessary for chromosomes to properly segregate. Recombination defects can generate gametes with an incorrect number of chromosomes, which is devastating for organismal fitness. Despite the central role of recombination for chromosome segregation, recombination is highly variable process both within and between species. Though it is clear that this variation is due at least in part to genetics, the specific genes contributing to variation in recombination within and between species remain largely unknown. This is particularly true in the model organism, Drosophila melanogaster. Here, we use the D. melanogaster Genetic Reference Panel to determine the scale of population-level variation in recombination rate and to identify genes significantly associated with this variation. We estimated rates of recombination on two different chromosomes in 205 strains of D. melanogaster. We also used genome-wide association mapping to identify genetic factors associated with recombination rate variation. We find that recombination rate on the two chromosomes are independent traits. We further find that population-level variation in recombination is mediated by many loci of small effect, and that the genes contributing to variation in recombination rate are outside of the well-characterized meiotic recombination pathway.
Collapse
Affiliation(s)
- Chad M. Hunter
- Program in Genetics, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| | - Wen Huang
- Program in Genetics, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- Initiative in Biological Complexity, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Trudy F. C. Mackay
- Program in Genetics, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Nadia D. Singh
- Program in Genetics, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
2
|
Hatzihristidis T, Desai N, Hutchins AP, Meng TC, Tremblay ML, Miranda-Saavedra D. A Drosophila-centric view of protein tyrosine phosphatases. FEBS Lett 2015; 589:951-66. [PMID: 25771859 DOI: 10.1016/j.febslet.2015.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 12/30/2022]
Abstract
Most of our knowledge on protein tyrosine phosphatases (PTPs) is derived from human pathologies and mouse knockout models. These models largely correlate well with human disease phenotypes, but can be ambiguous due to compensatory mechanisms introduced by paralogous genes. Here we present the analysis of the PTP complement of the fruit fly and the complementary view that PTP studies in Drosophila will accelerate our understanding of PTPs in physiological and pathological conditions. With only 44 PTP genes, Drosophila represents a streamlined version of the human complement. Our integrated analysis places the Drosophila PTPs into evolutionary and functional contexts, thereby providing a platform for the exploitation of the fly for PTP research and the transfer of knowledge onto other model systems.
Collapse
Affiliation(s)
- Teri Hatzihristidis
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Nikita Desai
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Andrew P Hutchins
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Tzu-Ching Meng
- Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Michel L Tremblay
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | - Diego Miranda-Saavedra
- World Premier International (WPI) Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka, Japan; Centro de Biología Molecular Severo Ochoa, CSIC/Universidad Autónoma de Madrid, 28049 Madrid, Spain; IE Business School, IE University, María de Molina 31 bis, 28006 Madrid, Spain.
| |
Collapse
|
3
|
Tchankouo-Nguetcheu S, Udinotti M, Durand M, Meng TC, Taouis M, Rabinow L. Negative regulation of MAP kinase signaling in Drosophila by Ptp61F/PTP1B. Mol Genet Genomics 2014; 289:795-806. [DOI: 10.1007/s00438-014-0852-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/01/2014] [Indexed: 01/19/2023]
|
4
|
The nucleus- and endoplasmic reticulum-targeted forms of protein tyrosine phosphatase 61F regulate Drosophila growth, life span, and fecundity. Mol Cell Biol 2013; 33:1345-56. [PMID: 23339871 DOI: 10.1128/mcb.01411-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein tyrosine phosphatases (PTPs) T cell PTP (TCPTP) and PTP1B share a high level of catalytic domain sequence and structural similarity yet display distinct differences in substrate recognition and function. Their noncatalytic domains contribute to substrate selectivity and function by regulating TCPTP nucleocytoplasmic shuttling and targeting PTP1B to the endoplasmic reticulum (ER). The Drosophila TCPTP/PTP1B orthologue PTP61F has two variants with identical catalytic domains that are differentially targeted to the ER and nucleus. Here we demonstrate that the PTP61F variants differ in their ability to negatively regulate insulin signaling in vivo, with the nucleus-localized form (PTP61Fn) being more effective than the ER-localized form (PTP61Fm). We report that PTP61Fm is reliant on the adaptor protein Dock to attenuate insulin signaling in vivo. Also, we show that the PTP61F variants differ in their capacities to regulate growth, with PTP61Fn but not PTP61Fm attenuating cellular proliferation. Furthermore, we generate a mutant lacking both PTP61F variants, which displays a reduction in median life span and a decrease in female fecundity, and show that both variants are required to rescue these mutant phenotypes. Our findings define the role of PTP61F in life span and fecundity and reinforce the importance of subcellular localization in mediating PTP function in vivo.
Collapse
|
5
|
Abstract
PTP1B (protein tyrosine phosphatase 1B) is a negative regulator of IR (insulin receptor) activation and glucose homoeostasis, but the precise molecular mechanisms governing PTP1B substrate selectivity and the regulation of insulin signalling remain unclear. In the present study we have taken advantage of Drosophila as a model organism to establish the role of the SH3 (Src homology 3)/SH2 adaptor protein Dock (Dreadlocks) and its mammalian counterpart Nck in IR regulation by PTPs. We demonstrate that the PTP1B orthologue PTP61F dephosphorylates the Drosophila IR in S2 cells in vitro and attenuates IR-induced eye overgrowth in vivo. Our studies indicate that Dock forms a stable complex with PTP61F and that Dock/PTP61F associate with the IR in response to insulin. We report that Dock is required for effective IR dephosphorylation and inactivation by PTP61F in vitro and in vivo. Furthermore, we demonstrate that Nck interacts with PTP1B and that the Nck/PTP1B complex inducibly associates with the IR for the attenuation of IR activation in mammalian cells. Our studies reveal for the first time that the adaptor protein Dock/Nck attenuates insulin signalling by recruiting PTP61F/PTP1B to its substrate, the IR.
Collapse
|
6
|
Verheyen EM, Mirkovic I, MacLean SJ, Langmann C, Andrews BC, MacKinnon C. The tissue polarity gene nemo carries out multiple roles in patterning during Drosophila development. Mech Dev 2001; 101:119-32. [PMID: 11231065 DOI: 10.1016/s0925-4773(00)00574-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Drosophila nemo was first identified as a gene required for tissue polarity during ommatidial development. We have extended the analysis of nemo and found that it participates in multiple developmental processes. It is required during wing development for wing shape and vein patterning. We observe genetic interactions between nemo and mutations in the Notch, Wingless, Frizzled and Decapentaplegic pathways. Our data support the findings from other organisms that Nemo proteins act as negative regulators of Wingless signaling. nemo mutations cause polarity defects in the adult wing and overexpression of nemo leads to abdominal polarity defects. The expression of nemo during embryogenesis is dynamic and dsRNA inhibition and ectopic expression studies indicate that nemo is essential during embryogenesis.
Collapse
MESH Headings
- Alleles
- Animals
- Blotting, Northern
- Body Patterning
- DNA, Complementary/metabolism
- Drosophila/embryology
- Drosophila Proteins
- Frizzled Receptors
- In Situ Hybridization
- Insect Proteins/genetics
- Membrane Proteins/genetics
- Microscopy, Electron, Scanning
- Mitogen-Activated Protein Kinases/physiology
- Models, Biological
- Models, Genetic
- Mutation
- Phenotype
- Photoreceptor Cells, Invertebrate/embryology
- Photoreceptor Cells, Invertebrate/physiology
- RNA/metabolism
- RNA, Messenger/metabolism
- Receptors, G-Protein-Coupled
- Receptors, Notch
- Signal Transduction
- Wings, Animal/embryology
- Wings, Animal/physiology
Collapse
Affiliation(s)
- E M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, B.C., V5A 1S6, Burnaby, Canada.
| | | | | | | | | | | |
Collapse
|
7
|
Yamaguchi S, Homma K, Natori S. A novel egg-derived tyrosine phosphatase, EDTP, that participates in the embryogenesis of Sarcophaga peregrina (flesh fly). EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:946-53. [PMID: 10092886 DOI: 10.1046/j.1432-1327.1999.00143.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously reported that cathepsin L mRNA is present in unfertilized eggs of Sarcophaga peregrina (flesh fly) as a maternal mRNA, which suggests that cathepsin L is required for embryogenesis. Now we have identified an egg protein, with a molecular mass of 100 kDa, that is extremely susceptible to cathepsin L digestion and which disappears rapidly as the embryos develop. We purified this protein to homogeneity, cloned its cDNA, and found that it contained a consensus sequence for the active site of tyrosine phosphatase. In fact this protein showed tyrosine phosphatase activity, indicating that it is a novel tyrosine phosphatase. The expression and subsequent disappearance of this protein, which we have named egg-derived tyrosine phosphatase (EDTP), may be indispensable for embryogenesis of Sarcophaga.
Collapse
Affiliation(s)
- S Yamaguchi
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|