1
|
Hart XM, Gründer G, Ansermot N, Conca A, Corruble E, Crettol S, Cumming P, Frajerman A, Hefner G, Howes O, Jukic MM, Kim E, Kim S, Maniscalco I, Moriguchi S, Müller DJ, Nakajima S, Osugo M, Paulzen M, Ruhe HG, Scherf-Clavel M, Schoretsanitis G, Serretti A, Spina E, Spigset O, Steimer W, Süzen SH, Uchida H, Unterecker S, Vandenberghe F, Verstuyft C, Zernig G, Hiemke C, Eap CB. Optimisation of pharmacotherapy in psychiatry through therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests: Focus on antipsychotics. World J Biol Psychiatry 2024; 25:451-536. [PMID: 38913780 DOI: 10.1080/15622975.2024.2366235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND For psychotic disorders (i.e. schizophrenia), pharmacotherapy plays a key role in controlling acute and long-term symptoms. To find the optimal individual dose and dosage strategy, specialised tools are used. Three tools have been proven useful to personalise drug treatments: therapeutic drug monitoring (TDM) of drug levels, pharmacogenetic testing (PG), and molecular neuroimaging. METHODS In these Guidelines, we provide an in-depth review of pharmacokinetics, pharmacodynamics, and pharmacogenetics for 45 antipsychotics. Over 30 international experts in psychiatry selected studies that have measured drug concentrations in the blood (TDM), gene polymorphisms of enzymes involved in drug metabolism, or receptor/transporter occupancies in the brain (positron emission tomography (PET)). RESULTS Study results strongly support the use of TDM and the cytochrome P450 (CYP) genotyping and/or phenotyping to guide drug therapies. Evidence-based target ranges are available for titrating drug doses that are often supported by PET findings. CONCLUSION All three tools discussed in these Guidelines are essential for drug treatment. TDM goes well beyond typical indications such as unclear compliance and polypharmacy. Despite its enormous potential to optimise treatment effects, minimise side effects and ultimately reduce the global burden of diseases, personalised drug treatment has not yet become the standard of care in psychiatry.
Collapse
Affiliation(s)
- Xenia Marlene Hart
- Department of Molecular Neuroimaging, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Gerhard Gründer
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- German Center for Mental Health (DZPG), Partner Site Mannheim, Heidelberg, Germany
| | - Nicolas Ansermot
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Andreas Conca
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Emmanuelle Corruble
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Severine Crettol
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counseling, Queensland University of Technology, Brisbane, Australia
| | - Ariel Frajerman
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Gudrun Hefner
- Forensic Psychiatry, Vitos Clinic for Forensic Psychiatry, Eltville, Germany
| | - Oliver Howes
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Marin M Jukic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Euitae Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seoyoung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ignazio Maniscalco
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Sho Moriguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daniel J Müller
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Martin Osugo
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA - Translational Brain Medicine, Alexianer Center for Mental Health, Aachen, Germany
| | - Henricus Gerardus Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | | | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Olav Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Werner Steimer
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University Munich, Munich, Germany
| | - Sinan H Süzen
- Department of Pharmaceutic Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Stefan Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Frederik Vandenberghe
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Celine Verstuyft
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenetics and Hormonology, Bicêtre University Hospital Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gerald Zernig
- Department of Pharmacology, Medical University Innsbruck, Hall in Tirol, Austria
- Private Practice for Psychotherapy and Court-Certified Witness, Hall in Tirol, Austria
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy and Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Mainz, Mainz, Germany
| | - Chin B Eap
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Hart XM, Spangemacher M, Uchida H, Gründer G. Update Lessons from Positron Emission Tomography Imaging Part I: A Systematic Critical Review on Therapeutic Plasma Concentrations of Antipsychotics. Ther Drug Monit 2024; 46:16-32. [PMID: 38018857 DOI: 10.1097/ftd.0000000000001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/06/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Positron emission tomography (PET) and single photon emission tomography (SPECT) of molecular drug targets (neuroreceptors and transporters) provide essential information for therapeutic drug monitoring-guided antipsychotic drug therapy. The optimal therapeutic windows for D 2 antagonists and partial agonists, as well as their proposed target ranges, are discussed based on an up-to-date literature search. METHODS This part I of II presents an overview of molecular neuroimaging studies in humans and primates involving the target engagement of amisulpride, haloperidol, clozapine, aripiprazole, olanzapine, quetiapine, risperidone, cariprazine, and ziprasidone. The systemic review particularly focused on dopamine D 2 -like and 5-HT 2A receptors. Target concentration ranges were estimated based on receptor occupancy ranges that relate to clinical effects or side effects (ie, extrapyramidal side effects). In addition, findings for other relevant receptor systems were included to further enrich the discussion. RESULTS The reported reference ranges for aripiprazole and clozapine align closely with findings from PET studies. Conversely, for haloperidol, risperidone, and olanzapine, the PET studies indicate that a lowering of the previously published upper limits would be necessary to decrease the risk of extrapyramidal side effect. CONCLUSIONS Molecular neuroimaging studies serve as a strong tool for defining target ranges for antipsychotic drug treatment and directing therapeutic drug monitoring.
Collapse
Affiliation(s)
- Xenia M Hart
- Central Institute of Mental Health, Department of Molecular Neuroimaging, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Moritz Spangemacher
- Central Institute of Mental Health, Department of Molecular Neuroimaging, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Central Institute of Mental Health, Department of Psychiatry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; and
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Gerhard Gründer
- Central Institute of Mental Health, Department of Molecular Neuroimaging, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
3
|
Royse SK, Lopresti BJ, Mathis CA, Tollefson S, Narendran R. Beyond monoamines: II. Novel applications for PET imaging in psychiatric disorders. J Neurochem 2023; 164:401-443. [PMID: 35716057 DOI: 10.1111/jnc.15657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
Early applications of positron emission tomography (PET) in psychiatry sought to identify derangements of cerebral blood flow and metabolism. The need for more specific neurochemical imaging probes was soon evident, and these probes initially targeted the sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. For nearly 30 years, the centrality of monoamine dysfunction in psychiatric disorders drove the development of an armamentarium of monoaminergic PET radiopharmaceuticals and imaging methodologies. However, continued investments in monoamine-enhancing drug development realized only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely parallelled drug development priorities, resulting in the development of new PET imaging agents for non-monoamine targets. In part two of this review, we survey clinical research studies using the novel targets and radiotracers described in part one across major psychiatric application areas such as substance use disorders, anxiety disorders, eating disorders, personality disorders, mood disorders, and schizophrenia. Important limitations of the studies described are discussed, as well as key methodologic issues, challenges to the field, and the status of clinical trials seeking to exploit these targets for novel therapeutics.
Collapse
Affiliation(s)
- Sarah K Royse
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah Tollefson
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Xu Y, Li Z. Imaging metabotropic glutamate receptor system: Application of positron emission tomography technology in drug development. Med Res Rev 2019; 39:1892-1922. [DOI: 10.1002/med.21566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Youwen Xu
- Independent Consultant and Contractor, Radiopharmaceutical Development, Validation and Bio-Application; Philadelphia Pennsylvania
| | - Zizhong Li
- Pharmaceutical Research and Development, SOFIE Biosciences; Somerset New Jersey
| |
Collapse
|
5
|
A systematic review of lessons learned from PET molecular imaging research in atypical parkinsonism (Niccolini and Politis, 2016) : Reply to Jean-Claude Baron Letter to Editor. Eur J Nucl Med Mol Imaging 2016; 44:548-550. [PMID: 28025656 DOI: 10.1007/s00259-016-3597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Johnson M, Kozielska M, Pilla Reddy V, Vermeulen A, Barton HA, Grimwood S, de Greef R, Groothuis GMM, Danhof M, Proost JH. Translational Modeling in Schizophrenia: Predicting Human Dopamine D2 Receptor Occupancy. Pharm Res 2015; 33:1003-17. [DOI: 10.1007/s11095-015-1846-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/10/2015] [Indexed: 12/01/2022]
|
7
|
Nikolaus S, Hautzel H, Müller HW. Neurochemical dysfunction in treated and nontreated schizophrenia - a retrospective analysis of in vivo imaging studies. Rev Neurosci 2014; 25:25-96. [PMID: 24486731 DOI: 10.1515/revneuro-2013-0063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/26/2013] [Indexed: 12/22/2022]
Abstract
To evaluate the contribution of individual synaptic constituents, all available in vivo imaging studies on schizophrenic patients were subjected to a retrospective analysis. For the pool of drug-naïve, drug-free, and acutely medicated patients, major findings were increases in neostriatal dopamine (DA) synthesis and release and decreases in neostriatal DA transporters and D1 receptors, neostriatal, thalamic, frontal, and parietal D2 receptors, mesencephalic/pontine and temporal 5-HT1A receptors, frontal and temporal HT2A and μ-amino butyric acid (GABA)A receptors. Based on the findings on drug-naïve and drug-free patients, it may be hypothesized that schizophrenia initially is characterized by an impaired mechanism of D2 autoreceptor and heteroreceptor sensitization leading to sensitization instead of desensitization in response to increased levels of neostriatal DA. Neuroleptic medication blocks neostriatal D2 autoreceptor and heteroreceptors, reducing neostriatal DA and disinhibiting DA action mediated by D2 heteroreceptor binding sites. Ultimately, this may result in a restitution of GABA function, leading to a recovery of inhibitory input to the target regions of the descending corticothalamostriatal efferents. Furthermore, a blockade of inhibitory and excitatory neocortical 5-HT function may be inferred, which is likely to reduce (excitatory) DAergic input to the mesolimbic target regions of corticothalamostriatal projections.
Collapse
|
8
|
A double-blind, randomized, placebo-controlled study with JNJ-37822681, a novel, highly selective, fast dissociating D₂ receptor antagonist in the treatment of acute exacerbation of schizophrenia. Eur Neuropsychopharmacol 2012; 22:721-33. [PMID: 22464973 DOI: 10.1016/j.euroneuro.2012.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 11/20/2022]
Abstract
JNJ-37822681 is a novel, highly selective dopamine D₂ receptor antagonist characterized by a rapid dissociation rate from the dopamine D₂ receptor. This profile was hypothesized to confer antipsychotic efficacy and improved tolerability. In this 12-week study, the efficacy and safety of JNJ-37822681 were evaluated in patients with an acute exacerbation of schizophrenia, randomly assigned (1:1:1:1:1) to JNJ-37822681 (10-, 20- or 30-mg bid), olanzapine (15 mg once-daily), or placebo (for 6 weeks followed by olanzapine for 6 weeks). Of 498 randomized patients, 298 (60%) completed the study. All JNJ-37822681 dose groups and the olanzapine group showed significantly greater reduction in PANSS total score from baseline to week 6 versus placebo (all p-values < 0.001). Least-squares adjusted mean changes from baseline to week 6 in PANSS total score were: -6.4 (placebo); -18.4 (10 mg JNJ-37822681), -17.7 (20 mg JNJ-37822681), -20.0 (30 mg JNJ-37822681) and -22.9 (olanzapine). All JNJ-37822681 groups showed significant improvement versus placebo from baseline to week 6 in the PANSS subscales, Marder factors, Clinical Global Impression of Severity, and in the Subjective Well-Being on Neuroleptics scale (all p-values < 0.05). The most common treatment-emergent adverse events with JNJ-37822681 were insomnia (17%) and akathisia (13%). Incidences of extrapyramidal symptoms were dose-related and were comparable for JNJ-37822681 10 mg bid and olanzapine groups. All JNJ-37822681 dose groups showed lesser weight gain compared with olanzapine. The efficacy and tolerability profile of the JNJ-37822681 10 mg bid was consistent with the study hypothesis.
Collapse
|
9
|
Vauquelin G, Bostoen S, Vanderheyden P, Seeman P. Clozapine, atypical antipsychotics, and the benefits of fast-off D2 dopamine receptor antagonism. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:337-72. [PMID: 22331262 DOI: 10.1007/s00210-012-0734-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/25/2012] [Indexed: 12/20/2022]
Abstract
Drug-receptor interactions are traditionally quantified in terms of affinity and efficacy, but there is increasing awareness that the drug-on-receptor residence time also affects clinical performance. While most interest has hitherto been focused on slow-dissociating drugs, D(2) dopamine receptor antagonists show less extrapyramidal side effects but still have excellent antipsychotic activity when they dissociate swiftly. Fast dissociation of clozapine, the prototype of the "atypical antipsychotics", has been evidenced by distinct radioligand binding approaches both on cell membranes and intact cells. The surmountable nature of clozapine in functional assays with fast-emerging responses like calcium transients is confirmatory. Potential advantages and pitfalls of the hitherto used techniques are discussed, and recommendations are given to obtain more precise dissociation rates for such drugs. Surmountable antagonism is necessary to allow sufficient D(2) receptor stimulation by endogenous dopamine in the striatum. Simulations are presented to find out whether this can be achieved during sub-second bursts in dopamine concentration or rather during much slower, activity-related increases thereof. While the antagonist's dissociation rate is important to distinguish between both mechanisms, this becomes much less so when contemplating time intervals between successive drug intakes, i.e., when pharmacokinetic considerations prevail. Attention is also drawn to the divergent residence times of hydrophobic antagonists like haloperidol when comparing radioligand binding data on cell membranes with those on intact cells and clinical data.
Collapse
Affiliation(s)
- Georges Vauquelin
- Department of Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | | | | | | |
Collapse
|
10
|
Wu C, Li R, Dearborn D, Wang Y. Reductive Amination with [<sup>11</sup>C]Formaldehyde: A Versatile Approach to Radiomethylation of Amines. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ijoc.2012.23030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
DeLorenzo C, Lichenstein S, Schaefer K, Dunn J, Marshall R, Organisak L, Kharidia J, Robertson B, Mann JJ, Parsey RV. SEP-225289 serotonin and dopamine transporter occupancy: a PET study. J Nucl Med 2011; 52:1150-5. [PMID: 21680689 DOI: 10.2967/jnumed.110.084525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED SEP-225289 is a novel compound that, based on in vitro potencies for transporter function, potentially inhibits reuptake at dopamine, norepinephrine, and serotonin transporters. An open-label PET study was conducted during the development of SEP-225289 to investigate its dopamine and serotonin transporter occupancy. METHODS Different single doses of SEP-225289 were administered to healthy volunteers in 3 cohorts: 8 mg (n = 7), 12 mg (n = 5), and 16 mg (n = 7). PET was performed before and approximately 24 h after oral administration of SEP-225289, to assess occupancy at trough levels. Dopamine and serotonin transporter occupancies were estimated from PET using (11)C-N-(3-iodoprop-2E-enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane ((11)C-PE2I) and (11)C-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine ((11)C-DASB), respectively. Plasma concentration of SEP-225289 was assessed before ligand injection, and subjects were monitored for adverse events. RESULTS Average dopamine and serotonin transporter occupancies increased with increasing doses of SEP-225289. Mean dopamine and serotonin transporter occupancies were 33% ± 11% and 2% ± 13%, respectively, for 8 mg; 44% ± 4% and 9% ± 10%, respectively, for 12 mg; and 49% ± 7% and 14% ± 15%, respectively, for 16 mg. On the basis of the relationship between occupancy and plasma concentration, dopamine transporter IC(50) (the plasma concentration of drug at 50% occupancy) was determined (4.5 ng/mL) and maximum dopamine transporter occupancy was extrapolated (85%); however, low serotonin transporter occupancy prevented similar serotonin transporter calculations. No serious adverse events were reported. CONCLUSION At the doses evaluated, occupancy of the dopamine transporter was significantly higher than that of the serotonin transporter, despite similar in vitro potencies, confirming that, in addition to in vitro assays, PET occupancy studies can be instrumental to the drug development process by informing early decisions about indication, dose, and therapeutic potential.
Collapse
|
12
|
Cumming P. Absolute abundances and affinity states of dopamine receptors in mammalian brain: A review. Synapse 2011; 65:892-909. [DOI: 10.1002/syn.20916] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 01/14/2011] [Indexed: 12/14/2022]
|
13
|
Abstract
Quetiapine is next to clozapine an antipsychotic agent that exerts hardly any extrapyramidal side-effects at clinical efficacious doses. Some previous receptor occupancy studies reported preferential extrastriatal D2/3 receptor (D2/3R)-binding properties of second-generation antipsychotics and suggested this as possible reason for improved tolerability. This positron emission tomography (PET) investigation was designed to compare the occupancy of dopamine D2/3Rs by quetiapine in striatal and extrastriatal brain regions. Therefore, a cohort of 16 quetiapine-treated psychotic patients underwent an [18F]fallypride (FP) PET scan. Due to the high affinity of FP and its comparatively long half-life, striatal and extrastriatal binding potentials could be determined in one single scan. Receptor occupancy was calculated as percent reduction in binding potential relative to age-matched medication-free patients suffering from schizophrenia. Quetiapine occupied 44+/-18% in the temporal cortex and 26+/-17% in the putamen, a difference significant at the level of p=0.005 (Student's t test). Quetiapine showed a mean occupancy of 36+/-16% and in the thalamus. In the caudate nucleus there was an occupancy of 29+/-16% (p=0.0072). Individual occupancy levels did not exceed 59% in any of the striatal volumes of interest. The time-interval between scan and last drug ingestion did not influence the relationship between plasma concentration and central D2/3R occupancy. Taken together, quetiapine shows preferential extrastriatal binding at D2/3Rs; the extent of this difference is comparable to that previously described for clozapine. Both antipsychotics show very low affinity for D2/3Rs.
Collapse
|
14
|
Marazziti D, Baroni S, Masala I, Giannaccini G, Betti L, Palego L, Dell’Osso MC, Consoli G, Castagna M, Lucacchini A. [3H]-YM-09151-2 binding sites in human brain postmortem. Neurochem Int 2009; 55:643-7. [DOI: 10.1016/j.neuint.2009.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 11/16/2022]
|
15
|
Ribeiro MJ, Ricard M, Bourgeois S, Lièvre MA, Bottlaender M, Gervais P, Dollé F, Syrota A. Biodistribution and radiation dosimetry of [11C]raclopride in healthy volunteers. Eur J Nucl Med Mol Imaging 2005; 32:952-8. [PMID: 15841376 DOI: 10.1007/s00259-005-1783-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 01/26/2005] [Indexed: 11/25/2022]
Abstract
PURPOSE This study reports on the whole-body biodistribution and radiation dosimetry of [11C]raclopride, a dopamine D2 receptor antagonist. METHODS In three healthy male volunteers, whole-body scans were performed up to 2 h following i.v. injection of 320+/-65 MBq [11C]raclopride. Transmission scans (3 min per step, eight or nine steps according to the height of the subject) in 2D mode were used for subsequent attenuation correction of emission scans. Emission scans (1 min per step, eight or nine steps) were acquired over 2 h. Venous blood samples and urine were collected up to 2 h after injection of the radiotracer. For each subject, the percentage of injected activity measured in regions of interest over brain, intestine, lungs, kidneys and liver was fitted to a mono-exponential model, as an uptake phase followed by a mono-exponential washout, for urinary bladder to generate time-activity curves. Using the MIRD method, several source organs were considered in estimating residence time and mean effective radiation absorbed doses. RESULTS Blood pressure and ECG findings remained unchanged after tracer injection. The analysed blood and urine pharmacological parameters did not change significantly after [(11)C]raclopride injection. The primary routes of clearance were renal and intestinal. Ten minutes after injection, high activities were observed in the gall-bladder, kidneys and liver. High activity was observed in the gall-bladder during the whole study. The kidneys, urinary bladder wall, liver and gall-bladder received the highest absorbed doses. The average effective dose of [11C]raclopride was estimated to be 6.7+/-0.4 microSv/MBq. CONCLUSION The amount of [11C]raclopride required for adequate dopamine D2 receptor imaging results in an acceptable effective dose equivalent, permitting two or three repeated clinical PET imaging studies, with the injection of 222 MBq for each study.
Collapse
Affiliation(s)
- Maria-João Ribeiro
- Service Hospitalier Frédéric Joliot, Département de Recherche Médicale, Direction des Sciences du Vivant, Commissariat à l'Energie Atomique, Orsay Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Moresco RM, Cavallaro R, Messa C, Bravi D, Gobbo C, Galli L, Lucignani G, Colombo C, Rizzo G, Velonà I, Smeraldi E, Fazio F. Cerebral D2 and 5-HT2 receptor occupancy in Schizophrenic patients treated with olanzapine or clozapine. J Psychopharmacol 2004; 18:355-65. [PMID: 15358979 DOI: 10.1177/026988110401800306] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report the results of a double-blind, randomized prospective trial on D2 and 5-HT2 receptor occupancy and the clinical effects of olanzapine versus clozapine in a sample of neuroleptic-refractory schizophrenic patients. Receptor occupancy was evaluated in different cortical areas and in basal ganglia using [18F] fluoro-ethyl-spiperone ([18F] FESP) and positron emission tomography (PET). A total of 15 neuroleptic-free patients completed the study undergoing a baseline and a post-treatment PET scan (olanzapine, nine patients, one female; clozapine, six patients, three female) 8 weeks after starting treatment. PET data were analysed both by regions of interest and on a voxel-by-voxel basis using Statistical Parametric Mapping (SPM96). Olanzapine and clozapine induced a similar and significant inhibition of [18F] FESP binding index in the cortex. In the basal ganglia, receptor occupancy was significantly higher with olanzapine than with clozapine (p=0.0018). By contrast, no differences in receptor occupancy were detected at the level of the pituitary gland. Clinical outcomes, in particular a full extra pyramidal tolerability, were similar. In this sample of neuroleptic-refractory schizophrenic patients, olanzapine and clozapine showed a different pattern of occupancy of D2-like receptor despite a common lack of extrapyramidal side-effects.
Collapse
Affiliation(s)
- Rosa Maria Moresco
- IBFM-CNR, Department of Nuclear Medicine, University of Milan-Bicocca, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Erritzoe D, Talbot P, Frankle WG, Abi-Dargham A. Positron emission tomography and single photon emission CT molecular imaging in schizophrenia. Neuroimaging Clin N Am 2003; 13:817-32. [PMID: 15024964 DOI: 10.1016/s1052-5149(03)00089-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We reviewed findings from PET and SPECT studies that have contributed to our understanding of the pathophysiology and treatment of schizophrenia. The most robust set of findings pertains to imaging of presynaptic dopaminergic function in the striatum. The results of these studies have been consistent in showing that schizophrenia, at least during episodes of illness exacerbation, is associated with increased activity of DA neurons; this increased presynaptic activity is associated with positive symptoms and good therapeutic response. Studies of cortical DA function are less numerous and less consistent. In the future, technical advances in PET instrumentation and radioligand development should contribute to a clarification of the role of prefrontal DA in the cognitive impairment that is presented by these patients. An important drawback of the literature in this field is the generally low number of subjects that are included in studies (typically less than 20 per group). Small samples are necessitated by the cost of these investigations, but also, in some instances, to the difficulty in recruiting appropriate clinical subjects (such as drug-free patients who have schizophrenia). In conditions that are characterized by marked heterogeneity, such as major depressive disorders, this factor is bound to yield divergent results across studies. Another source of discrepancy is the variety of technical approaches to data acquisition and analysis. For example, analytical methods range from "empirical" or "semiquantitative" (typically a region of interest to a region of reference ratio measured at one time point) to model-based methods that use an arterial input function. The limitations that are associated with empirical analytical methods might account for artifactual results, especially when the effect size of the between-group difference and the number of subjects are small [149]. In addressing these limitations it will be important to increase the availability of these techniques beyond a few academic centers, to promote multi-center studies in well-characterized populations, and to standardize analytical methods. Until recently, SPECT was the only widely available technique, and SPECT studies have provided a substantial contribution to this field. With the current increase in PET camera availability, the development of [18F]-based molecular imaging probes will provide unique opportunities for further dissemination of these techniques. The article reviewed seminal findings obtained with PET and SPECT molecular imaging of schizophrenia. These techniques do not play a major role in the diagnosis and treatment of this disorder, remain essentially research tools. The results that have been produced by this field to date suggest that PET will significantly contribute to unraveling the biologic bases of psychiatric disorders and may contribute to their clinical management. Moreover, it is foreseeable that PET will become increasingly involved in the development of new psychiatric medications. Expanding the availability of PET and the current radiopharmaceutical portfolio will be critical for these predictions to become reality.
Collapse
Affiliation(s)
- David Erritzoe
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 31, New York, NY 10032, USA
| | | | | | | |
Collapse
|
18
|
Gatley SJ, Volkow ND, Fowler JS, Ding YS, Logan J, Wang GJ, Gifford AN. Positron emission tomography and its use to image the occupancy of drug binding sites. Drug Dev Res 2003. [DOI: 10.1002/ddr.10219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Bressan RA, Erlandsson K, Jones HM, Mulligan RS, Ell PJ, Pilowsky LS. Optimizing limbic selective D2/D3 receptor occupancy by risperidone: a [123I]-epidepride SPET study. J Clin Psychopharmacol 2003; 23:5-14. [PMID: 12544369 DOI: 10.1097/00004714-200302000-00002] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Selective action at limbic cortical dopamine D2-like receptors is a putative mechanism of atypical antipsychotic efficacy with few extrapyramidal side effects. Although risperidone is an atypical antipsychotic with high affinity for D2 receptors, low-dose risperidone treatment is effective without inducing extrapyramidal symptoms. The objective was to test the hypothesis that treatment with low-dose risperidone results in 'limbic selective' D2/D3 receptor blockade in vivo. Dynamic single photon emission tomography (SPET) sequences were obtained over 5 hours after injection of [123I]-epidepride (approximately 150 MBq), using a high-resolution triple-headed brain scanner (Marconi Prism 3000XP). Kinetic modelling was performed using the simplified reference region model to obtain binding potential values. Estimates of receptor occupancy were made relative to a normal volunteer control group (n = 5). Six patients treated with low-dose risperidone (mean = 2.6 mg) showed moderate levels of D2/D3 occupancy in striatum (49.9%), but higher levels of D2/D3 occupancy in thalamus (70.8%) and temporal cortex (75.2%). Occupancy values in striatum were significantly different from thalamus (F (1,4) = 26.3, p < 0.01) and from temporal cortex (F (1,4) = 53.4, p < 0.01). This is the first study to evaluate striatal and extrastriatal occupancy of risperidone. Low dose treatment with risperidone achieves a similar selectivity of limbic cortical over striatal D2/D3 receptor blockade to that of atypical antipsychotics with lower D2/D3 affinity such as clozapine, olanzapine and quetiapine. This finding is consistent with the relevance of 'limbic selective' D2/D3 receptor occupancy to the therapeutic efficacy of atypical antipsychotic drugs.
Collapse
Affiliation(s)
- Rodrigo A Bressan
- Section of Neurochemical Imaging, Institute of Psychiatry, De Crespigny Park, Denmark Hill, London, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Verhoeff NPLG, Kapur S. The Role of Neuroimaging in Development of and Treatment With Antipsychotics. J Pharm Pract 2001. [DOI: 10.1106/ryyj-eemb-9ka4-d5dh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
This article addresses how neuroimaging can impact the development of and therapy with antipsychotics. The article explains how drug development, disease pathophysiology and neuroimaging approaches can be understood within a single neurobiological framework. It then highlights the relative strengths and applicability of the two streams of neuroimaging: neurochemical neuroimaging that reveals regional concentrations of particular neurochemical species (receptors, transporters or enzymes) and functional neuroimaging that reveals the effects of drug or disease on regional indices of neuronal function such as blood flow and oxygen and glucose metabolism. The application of these techniques is exemplified with recent examples from development and therapeutic use of antipsychotics. To assist decision making in the context of these imaging possibilities, the article presents an algorithm that can be used to guide decisions regarding the application of neuroimaging in the development of and treatment with antipsychotics.
Collapse
Affiliation(s)
- Nicolaas P. L. G. Verhoeff
- Schizophrenia Program and PET Centre, CAMH, Toronto, The Clarke Division of the CAMH, 250 College Street, Toronto, ON Canada, M5T 1R8 and the Department of Psychiatry, University of Toronto,
| | - Shitij Kapur
- Schizophrenia Program and PET Centre, CAMH, Toronto, The Clarke Division of the CAMH, 250 College Street, Toronto, ON Canada, M5T 1R8 and Department of Psychiatry, University of Toronto
| |
Collapse
|
21
|
Abstract
The use of in vivo receptor imaging by positron emission tomography (PET) and single photon emission tomography (SPET) has permitted exploration of targets for antipsychotic drug action in living patients. Early PET and SPET studies focused on striatal D2 dopamine receptors. There is broad agreement that unwanted extrapyramidal (parkinsonian) side effects of antipsychotic drugs result from high striatal dopamine D2/D3 receptor blockade by these drugs. The dopamine hypothesis of antipsychotic drug action suggests that clinical response is directly related to the level of striatal D2/D3 receptor occupancy of antipsychotic drugs. This may be true for classical antipsychotic drugs, but recent evidence suggests that novel, atypical antipsychotic drugs produce efficacy in association with modest and transient striatal D2/D3 receptor occupancy levels. Furthermore, atypical antipsychotic drugs appear to show preferential occupancy of limbic cortical dopamine D2 receptors. Cortical dopamine D2/D2-like receptors may be a common site of action for all antipsychotic drugs. Data from receptor challenge paradigms has highlighted the need to explore the neurotransmitter systems involved in regulating or stabilising dopamine transmission, either via dopamine autoreceptors or non-dopaminergic pathways. These may be promising targets for drug development. In vivo PET and SPET imaging has produced unique data contributing to the design of better, less toxic drugs for schizophrenia.
Collapse
Affiliation(s)
- L S Pilowsky
- Institute of Nuclear Medicine, UCL, Middlesex Hospital, London.
| |
Collapse
|
22
|
Gefvert O, Lundberg T, Wieselgren IM, Bergström M, Långström B, Wiesel F, Lindström L. D(2) and 5HT(2A) receptor occupancy of different doses of quetiapine in schizophrenia: a PET study. Eur Neuropsychopharmacol 2001; 11:105-10. [PMID: 11313155 DOI: 10.1016/s0924-977x(00)00133-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Quetiapine is a novel antipsychotic agent with many atypical features, including low D(2) and higher 5HT(2A) affinity in vitro, low propensity to induce extra-pyramidal side effects and minimal effects on prolactin levels. The purpose of this study was to investigate, using positron emission tomography (PET), the relationship between plasma concentrations of different doses of quetiapine and occupancy of D(2) and 5HT(2A) receptors in schizophrenic patients. METHODS Five patients were treated with quetiapine (titrated to 750 or 450 mg/day) for 28 days, subsequently reduced weekly in a descending-dose schedule. Dopamine D(2) and 5HT(2A) occupancies were determined using [(11)C] raclopride and [(11)C] N-methylspiperone as ligands, respectively, and PET imaging. RESULTS Mean D(2) receptor occupancies of 41 and 30% were observed at quetiapine doses of 750 and 450 mg/day. At lower dose levels no occupancy could be determined. Quetiapine induced a consistently higher degree of 5HT(2A) receptor occupancy, with mean occupancies of 74 and 57% at doses of 750 and 450 mg/day, respectively. No EPS emerged during the trial and most of the pre-trial EPS resolved during the study. CONCLUSIONS In clinically effective doses, quetiapine induced low occupancy at D(2) receptors, which is consistent with atypical antipsychotics such as clozapine, and probably explains the lack of EPS observed in this trial. Correlations between receptor occupancy and plasma concentrations of quetiapine could not be calculated, although receptor occupancy increased with higher plasma concentrations for the 450 and 750 mg doses.
Collapse
Affiliation(s)
- O Gefvert
- Department of Psychiatric Research, Central Hospital, S-721 89, Västerås, Sweden.
| | | | | | | | | | | | | |
Collapse
|
23
|
Stephenson CM, Bigliani V, Jones HM, Mulligan RS, Acton PD, Visvikis D, Ell PJ, Kerwin RW, Pilowsky LS. Striatal and extra-striatal D(2)/D(3) dopamine receptor occupancy by quetiapine in vivo. [(123)I]-epidepride single photon emission tomography(SPET) study. Br J Psychiatry 2000; 177:408-15. [PMID: 11059993 DOI: 10.1192/bjp.177.5.408] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Selective action at limbic cortical dopamine D(2)-like receptors could mediate atypical antipsychotic efficacy with few extrapyramidal side-effects. AIMS To test the hypothesis that quetiapine has 'limbic selective' D(2)/D(3) receptor occupancy in vivo. METHOD The high-affinity D(2)/D(3) ligand [(123)I]-epidepride and single photon emission tomography were used to estimate D(2)/D(3) specific binding and an index of relative percentage D(2)/D(3) occupancy in striatal and temporal cortical regions for quetiapine-treated patients (n=6). Quetiapine-, and previously studied typical-antipsychotic- and clozapine-treated patients were compared. RESULTS Mean (s.d.) relative percentage D(2)/D(3) receptor occupancy by quetiapine was 32.0% (14.6) in striatum and 60.1% (17.2) in temporal cortex (mean daily dose 450 mg: range 300-700 mg/day). Quetiapine treatment resulted in limbic selective D(2)/D(3) blockade similar to clozapine and significantly higher than typical antipsychotics. CONCLUSIONS Preliminary data suggest that limbic selective D(2)/D(3) receptor blockade is important for atypical drug action.
Collapse
|
24
|
Sihver W, Fasth KJ, Horti AG, Koren AO, Bergström M, Lu L, Hagberg G, Lundqvist H, Dannals RF, London ED, Nordberg A, Långström B. Synthesis and characterization of binding of 5-[76Br]bromo-3-[[2(S)-azetidinyl]methoxy]pyridine, a novel nicotinic acetylcholine receptor ligand, in rat brain. J Neurochem 1999; 73:1264-72. [PMID: 10461920 DOI: 10.1046/j.1471-4159.1999.0731264.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
5-[76Br]Bromo-3-[[2(S)-azetidinyl]methoxy]pyridine ([76Br]BAP), a novel nicotinic acetylcholine receptor ligand, was synthesized using [76Br]bromide in an oxidative bromodestannylation of the corresponding trimethylstannyl compound. The radiochemical yield was 25%, and the specific radioactivity was on the order of 1 Ci/micromol. The binding properties of [76Br]BAP were characterized in vitro and in vivo in rat brain, and positron emission tomography (PET) experiments were performed in two rhesus monkeys. In association experiments on membranes of the cortex and thalamus, >90% of maximal specific [76Br]BAP binding was obtained after 60 min. The dissociation half-life of [76Br]BAP was 51 +/- 6 min in cortical membranes and 56 +/- 3 min in thalamic membranes. Saturation experiments with [76Br]BAP revealed one population of binding sites with dissociation constant (K(D)) values of 36 +/- 9 and 30 +/- 9 pM in membranes of cortex and thalamus, respectively. The maximal binding site density (Bmax) values were 90 +/- 17 and 207 +/- 33 fmol/mg in membranes of cortex and thalamus, respectively. Scatchard plots were nonlinear, and the Hill coefficients were <1, suggesting the presence of a lower-affinity binding site. In vitro autoradiography studies showed that binding of [76Br]BAP was high in the thalamus and presubiculum, moderate in the cortex and striatum, and low in the cerebellum and hippocampus. A similar pattern of [76Br]BAP accumulation was observed by ex vivo autoradiography. In vivo, binding of [76Br]BAP in whole rat brain was blocked by preinjection of (S)(-)-nicotine (0.3 mg/kg) by 27, 52, 68, and 91% at survival times of 10, 25, 40, 120, and 300 min, respectively. In a preliminary PET study in rhesus monkeys, the highest [76Br]BAP uptake was found in the thalamus, and radioactivity was displaceable by approximately 60% with cytisine and by 50% with (S)(-)-nicotine. The data of this study indicate that [76Br]BAP is a promising radioligand for the characterization of nicotinic acetylcholine receptors in vivo.
Collapse
Affiliation(s)
- W Sihver
- PET Centre Uppsala University, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|