1
|
Morzy D, Schaich M, Keyser UF. A Surfactant Enables Efficient Membrane Spanning by Non-Aggregating DNA-Based Ion Channels. Molecules 2022; 27:578. [PMID: 35056887 PMCID: PMC8779190 DOI: 10.3390/molecules27020578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
DNA nanotechnology makes use of hydrophobically modified constructs to create synthetic membrane protein mimics. However, nucleic acid structures exhibit poor insertion efficiency, leading to a low activity of membrane-spanning DNA protein mimics. It is suggested that non-ionic surfactants improve insertion efficiency, partly by disrupting hydrophobicity-mediated clusters. Here, we employed confocal microscopy and single-molecule transmembrane current measurements to assess the effects of the non-ionic surfactant octylpolyoxyethylene (oPOE) on the clustering behavior and membrane activity of cholesterol-modified DNA nanostructures. Our findings uncover the role of aggregation in preventing bilayer interactions of hydrophobically decorated constructs, and we highlight that premixing DNA structures with the surfactant does not disrupt the cholesterol-mediated aggregates. However, we observed the surfactant's strong insertion-facilitating effect, particularly when introduced to the sample separately from DNA. Critically, we report a highly efficient membrane-spanning DNA construct from combining a non-aggregating design with the addition of the oPOE surfactant.
Collapse
Affiliation(s)
| | | | - Ulrich F. Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK; (D.M.); (M.S.)
| |
Collapse
|
2
|
The Effect of the Osmotically Active Compound Concentration Difference on the Passive Water and Proton Fluxes across a Lipid Bilayer. Int J Mol Sci 2021; 22:ijms222011099. [PMID: 34681757 PMCID: PMC8540289 DOI: 10.3390/ijms222011099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
The molecular details of the passive water flux across the hydrophobic membrane interior are still a matter of debate. One of the postulated mechanisms is the spontaneous, water-filled pore opening, which facilitates the hydrophilic connection between aqueous phases separated by the membrane. In the paper, we provide experimental evidence showing that the spontaneous lipid pore formation correlates with the membrane mechanics; hence, it depends on the composition of the lipid bilayer and the concentration of the osmotically active compound. Using liposomes as an experimental membrane model, osmotically induced water efflux was measured with the stopped-flow technique. Shapes of kinetic curves obtained at low osmotic pressure differences are interpreted in terms of two events: the lipid pore opening and water flow across the aqueous channel. The biological significance of the dependence of the lipid pore formation on the concentration difference of an osmotically active compound was illustrated by the demonstration that osmotically driven water flow can be accompanied by the dissipation of the pH gradient. The application of the Helfrich model to describe the probability of lipid pore opening was validated by demonstrating that the probability of pore opening correlates with the membrane bending rigidity. The correlation was determined by experimentally derived bending rigidity coefficients and probabilities of lipid pores opening.
Collapse
|
3
|
Shao Q, Liu F, Chung C, Elahi-Gedwillo K, Provenzano PP, Forsyth B, Bischof JC. Physical and Chemical Enhancement of and Adaptive Resistance to Irreversible Electroporation of Pancreatic Cancer. Ann Biomed Eng 2017; 46:25-36. [PMID: 28983745 DOI: 10.1007/s10439-017-1932-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Abstract
Irreversible electroporation (IRE) can be used to treat cancer by electrical pulses, with advantages over traditional thermal approaches. Here we assess for the first time the IRE response of pancreatic cancer, one of the deadliest forms of cancer, both in vitro and in vivo. We demonstrate that both established and primary cancer cell lines can be destroyed by IRE, but with differential susceptibility and thresholds. We further demonstrate in vitro that viability for a given IRE dose can vary with the local chemistry as outcomes were shown to depend on suspending medium and reduction of glucose in the media significantly improved IRE destruction. Data here also demonstrate that repeated IRE treatments can lead to adaptive resistance in pancreatic carcinoma cells thereby reducing subsequent treatment efficacy. In addition, we demonstrate that physical enhancement of IRE, by re-arranging the pulse sequences without increasing the electrical energy delivered, achieve reduced viability in vitro and decreased tumor growth in an in vivo xenograft model. Together, these results show that IRE can destroy pancreatic cancer in vitro and in vivo, that there are both chemical and physical enhancements that can improve tumor destruction, and that one should guard against adaptive resistance when performing repeated treatments.
Collapse
Affiliation(s)
- Qi Shao
- Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, MN, 55455, USA.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Feng Liu
- Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, MN, 55455, USA
| | - Connie Chung
- Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, MN, 55455, USA
| | | | - Paolo P Provenzano
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA.,Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.,Physical Sciences in Oncology Center, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | | | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, MN, 55455, USA. .,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA. .,Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Cebrián G, Condón S, Mañas P. Influence of growth and treatment temperature on Staphylococcus aureus resistance to pulsed electric fields: Relationship with membrane fluidity. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Lebar AM, Velikonja A, Kramar P, Iglič A. Internal configuration and electric potential in planar negatively charged lipid head group region in contact with ionic solution. Bioelectrochemistry 2016; 111:49-56. [PMID: 27209203 DOI: 10.1016/j.bioelechem.2016.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 11/17/2022]
Abstract
The lipid bilayer composed of negatively charged lipid 1-palmitoyl-3-oleoyl-sn-glycero-3-phosphatidylserine (POPS) in contact with an aqueous solution of monovalent salt ions was studied theoretically by using the mean-field modified Langevin-Poisson-Boltzmann (MLPB) model. The MLPB results were tested by using molecular dynamic (MD) simulations. In the MLPB model the charge distribution of POPS head groups is theoretically described by the negatively charged surface which accounts for negatively charged phosphate groups, while the positively charged amino groups and negatively charged carboxylate groups are assumed to be fixed on the rod-like structures with rotational degree of freedom. The spatial variation of relative permittivity, which is not considered in the well-known Gouy-Chapman (GC) model or in MD simulations, is thoroughly derived within a strict statistical mechanical approach. Therefore, the spatial dependence and magnitude of electric potential within the lipid head group region and its close vicinity are considerably different in the MLPB model from the GC model. The influence of the bulk salt concentration and temperature on the number density profiles of counter-ions and co-ions in the lipid head group region and aqueous solution along with the probability density function for the lipid head group orientation angle was compared and found to be in qualitative agreement in the MLPB and MD models.
Collapse
Affiliation(s)
- Alenka Maček Lebar
- Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
| | - Aljaž Velikonja
- Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
| | - Peter Kramar
- Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
6
|
Jiang C, Davalos RV, Bischof JC. A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans Biomed Eng 2015; 62:4-20. [PMID: 25389236 DOI: 10.1109/tbme.2014.2367543] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The use of irreversible electroporation (IRE) for cancer treatment has increased sharply over the past decade. As a nonthermal therapy, IRE offers several potential benefits over other focal therapies, which include 1) short treatment delivery time, 2) reduced collateral thermal injury, and 3) the ability to treat tumors adjacent to major blood vessels. These advantages have stimulated widespread interest in basic through clinical studies of IRE. For instance, many in vitro and in vivo studies now identify treatment planning protocols (IRE threshold, pulse parameters, etc.), electrode delivery (electrode design, placement, intraoperative imaging methods, etc.), injury evaluation (methods and timing), and treatment efficacy in different cancer models. Therefore, this study reviews the in vitro, translational, and clinical studies of IRE cancer therapy based on major experimental studies particularly within the past decade. Further, this study provides organized data and facts to assist further research, optimization, and clinical applications of IRE.
Collapse
|
7
|
Polak A, Velikonja A, Kramar P, Tarek M, Miklavčič D. Electroporation threshold of POPC lipid bilayers with incorporated polyoxyethylene glycol (C12E8). J Phys Chem B 2014; 119:192-200. [PMID: 25495217 DOI: 10.1021/jp509789m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Electroporation relates to a phenomenon in which cell membranes are permeabilized after being exposed to high electric fields. On the molecular level, the mechanism is not yet fully elucidated, although a considerable body of experiments and molecular dynamic (MD) simulations were performed on model membranes. Here we present the results of a combined theoretical and experimental investigation of electroporation of palmitoy-oleoyl-phosphatidylcholine (POPC) bilayers with incorporated polyoxyethylene glycol (C12E8) surfactants. The experimental results show a slight increase of the capacitance and a 22% decrease of the voltage breakdown upon addition of C12E8 to pure POPC bilayers. These results were qualitatively confirmed by the MD simulations. They later revealed that the polyoxyethylene glycol molecules play a major role in the formation of hydrophilic pores in the bilayers above the electroporation threshold. The headgroup moieties of the latter are indeed embedded in the interior of the bilayer, which favors formation of water wires that protrude into its hydrophobic core. When the water wires extend across the whole bilayer, they form channels stabilized by the C12E8 head groups. These hydrophilic channels can transport ions across the membrane without the need of major lipid head-group rearrangements.
Collapse
Affiliation(s)
- Andraž Polak
- University of Ljubljana , Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
8
|
Yi J, Barrow AJ, Yu N, O'Neill BE. Efficient electroporation of liposomes doped with pore stabilizing nisin. J Liposome Res 2013; 23:197-202. [PMID: 23594238 DOI: 10.3109/08982104.2013.788024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
CONTEXT Liposomes have a long history as passive and active drug carriers. Recently, a few methods have been realized to control the release from liposomes, including heating, ultrasound and laser. OBJECTIVE We report on a new approach to drive release from liposomes using electric fields. MATERIALS AND METHODS Liposomes were manufactured containing a high concentration of (quenched) 5-6 carboxyfluorescein dye. Nisin, a well-known amphiphilic peptide lantibiotic that works by stabilizing pores formed in cell membranes, was mixed in solution inside or outside the liposomes. The liposomes were then electroporated using a range of voltages, and assayed for increases in fluorescence due to release of dye. Release was measured against positive and negative controls, with positive control release driven by a strong detergent. RESULTS Our results demonstrate that the addition of nisin significantly reduces the electric field required to release the contents of liposomes, from 2000 V/m to approximately 200 V/m. This result proves that, in principle, electroporation (EP) of liposomes doped with small amounts of amphiphilic pore stabilizing peptides may be a practical means to drive release of liposomal contents in vivo. CONCLUSION Drug delivery from liposomes doped with amphiphilic peptides using EP is feasible. This technique could be developed into a potent adjuvant to tumor ablation using irreversible EP.
Collapse
Affiliation(s)
- Jiang Yi
- Department of Translational Imaging, The Methodist Hospital Research Institute, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
9
|
|
10
|
Mares T, Daniel M, Perutkova S, Perne A, Dolinar G, Iglic A, Rappolt M, Kralj-Iglic V. Role of phospholipid asymmetry in the stability of inverted hexagonal mesoscopic phases. J Phys Chem B 2009; 112:16575-84. [PMID: 19367813 DOI: 10.1021/jp805715r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of phospholipid asymmetry in the transition from the lamellar (L(alpha)) to the inverted hexagonal (H(II)) phase upon the temperature increase was considered. The equilibrium configuration of the system was determined by the minimum of the free energy including the contribution of the isotropic and deviatoric bending and the interstitial energy of phospholipid monolayers. The shape and local interactions of a single lipid molecule were taken into account. The minimization with respect to the configuration of the lipid layers was performed by a numerical solution of the system of the Euler-Lagrange differential equations and by the Monte Carlo simulated annealing method. At high enough temperature, the lipid molecules attain a shape exhibiting higher intrinsic mean and deviatoric curvatures, which fits better into the H(II) phase than into the L(alpha) phase. Furthermore, the orientational ordering of lipid molecules in the curvature field expressed as the deviatoric bending provides a considerable negative contribution to the free energy, which stabilizes the nonlamellar H(II) phase. The nucleation configuration for the L(alpha)-H(II) phase transition is tuned by the isotropic and deviatoric bending energies and the interstitial energy.
Collapse
Affiliation(s)
- Tomas Mares
- Laboratory of Biomechanics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, CZ-166 07, Prague 6, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Surfactants are surface-active, amphiphilic compounds that are water-soluble in the micro- to millimolar range, and self-assemble to form micelles or other aggregates above a critical concentration. This definition comprises synthetic detergents as well as amphiphilic peptides and lipopeptides, bile salts and many other compounds. This paper reviews the biophysics of the interactions of surfactants with membranes of insoluble, naturally occurring lipids. It discusses structural, thermodynamic and kinetic aspects of membrane-water partitioning, changes in membrane properties induced by surfactants, membrane solubilisation to micelles and other phases formed by lipid-surfactant systems. Each section defines and derives key parameters, mentions experimental methods for their measurement and compiles and discusses published data. Additionally, a brief overview is given of surfactant-like effects in biological systems, technical applications of surfactants that involve membrane interactions, and surfactant-based protocols to study biological membranes.
Collapse
|
12
|
Towhidi L, Kotnik T, Pucihar G, Firoozabadi SMP, Mozdarani H, Miklavcic D. Variability of the minimal transmembrane voltage resulting in detectable membrane electroporation. Electromagn Biol Med 2009; 27:372-85. [PMID: 19037786 DOI: 10.1080/15368370802394644] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We present a study of the variability of the minimal transmembrane voltage resulting in detectable electroporation of the plasma membrane of spherical and irregularly shaped CHO cells (we denote this voltage by ITVc). Electroporation was detected by monitoring the influx of Ca(2+), and the transmembrane voltage was computed on a 3D finite-elements model of each cell constructed from its cross-section images. We found that ITVc was highly variable, particularly in irregularly shaped cells, where it ranged from 512-1028 mV. We show that this range is much too large to be an artifact due to numerical errors and experimental inaccuracies, implying that for cells of the same type and exposed to the same number of pulses with the same duration, the value of ITVc can differ considerably from one cell to another. We also observed that larger cells are in many cases characterized by a higher ITVc than a smaller one. This is in qualitative agreement with the reports that higher membrane curvature facilitates electroporation, but quantitative considerations suggest that the observed variability of ITVc cannot be attributed entirely to the differences in membrane curvature.
Collapse
Affiliation(s)
- Leila Towhidi
- Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
13
|
Perutková Š, Daniel M, Dolinar G, Rappolt M, Kralj‐Iglič V, Iglič A. Chapter 9 Stability of the Inverted Hexagonal Phase. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2009. [DOI: 10.1016/s1554-4516(09)09009-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Fosnaric M, Bohinc K, Gauger DR, Iglic A, Kralj-Iglic V, May S. The influence of anisotropic membrane inclusions on curvature elastic properties of lipid membranes. J Chem Inf Model 2006; 45:1652-61. [PMID: 16309269 DOI: 10.1021/ci050171t] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A membrane inclusion can be defined as a complex of protein or peptide and the surrounding significantly distorted lipids. We suggest a theoretical model that allows for the estimation of the influence of membrane inclusions on the curvature elastic properties of lipid membranes. Our treatment includes anisotropic inclusions whose energetics depends on their in-plane orientation within the membrane. On the basis of continuum elasticity theory, we calculate the inclusion-membrane interaction energy that reflects the protein or peptide-induced short-ranged elastic deformation of a bent lipid layer. A numerical estimate of the corresponding interaction constants indicates the ability of inclusions to sense membrane bending and to accumulate at regions of favorable curvature, matching the effective shape of the inclusions. Strongly anisotropic inclusions interact favorably with lipid layers that adopt saddlelike curvature; such structures may be stabilized energetically. We explore this possibility for the case of vesicle budding where we consider a shape sequence of closed, axisymmetric vesicles that form a (saddle-curvature adopting) membrane neck. It appears that not only isotropic but also strongly anisotropic inclusions can significantly contribute to the budding energetics, a finding that we discuss in terms of recent experiments.
Collapse
Affiliation(s)
- Miha Fosnaric
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, TrZaska 25, 1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
15
|
Kanduser M, Sentjurc M, Miklavcic D. Cell membrane fluidity related to electroporation and resealing. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 35:196-204. [PMID: 16215750 DOI: 10.1007/s00249-005-0021-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 07/07/2005] [Accepted: 09/10/2005] [Indexed: 11/26/2022]
Abstract
In this paper, we report the results of a systematic attempt to relate the intrinsic plasma membrane fluidity of three different cell lines to their electroporation behaviour, which consists of reversible and irreversible electroporation. Apart from electroporation behaviour of given cell lines the time course required for membrane resealing was determined in order to distinguish the effect of resealing time from the cell's ability to survive given electric pulse parameters. Reversible, irreversible electroporation and membrane resealing were then related to cell membrane fluidity as determined by electron paramagnetic resonance spectroscopy and computer characterization of membrane domains. We found that cell membrane fluidity does not have significant effect on reversible electroporation although there is a tendency for the voltage required for reversible electroporation to increase with increased membrane fluidity. Cell membrane fluidity, however, may affect irreversible electroporation. Nevertheless, this effect, if present, is masked with different time courses of membrane resealing found for the different cell lines studied. The time course of cell membrane resealing itself could be related to the cell's ability to survive.
Collapse
Affiliation(s)
- Masa Kanduser
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, Ljubljana, Slovenia
| | | | | |
Collapse
|
16
|
Pavlin M, Kanduser M, Rebersek M, Pucihar G, Hart FX, Magjarevic R, Miklavcic D. Effect of cell electroporation on the conductivity of a cell suspension. Biophys J 2005; 88:4378-90. [PMID: 15792975 PMCID: PMC1305665 DOI: 10.1529/biophysj.104.048975] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An increased permeability of a cell membrane during the application of high-voltage pulses results in increased transmembrane transport of molecules that otherwise cannot enter the cell. Increased permeability of a cell membrane is accompanied by increased membrane conductivity; thus, by measuring electric conductivity the extent of permeabilized tissue could be monitored in real time. In this article the effect of cell electroporation caused by high-voltage pulses on the conductivity of a cell suspension was studied by current-voltage measurements during and impedance measurement before and after the pulse application. At the same time the percentage of permeabilized and survived cells was determined and the extent of osmotic swelling measured. For a train of eight pulses a transient increase in conductivity of a cell suspension was obtained above permeabilization threshold in low- and high-conductive medium with complete relaxation in <1 s. Total conductivity changes and impedance measurements showed substantial changes in conductivity due to the ion efflux in low-conductive medium and colloid-osmotic swelling in both media. Our results show that by measuring electric conductivity during the pulses we can detect limit permeabilization threshold but not directly permeabilization level, whereas impedance measurements in seconds after the pulse application are not suitable.
Collapse
Affiliation(s)
- Mojca Pavlin
- University of Ljubljana, Faculty of Electrical Engineering, Slovenia
| | | | | | | | | | | | | |
Collapse
|
17
|
Mavcic B, Babnik B, Iglic A, Kanduser M, Slivnik T, Kralj-Iglic V. Shape transformation of giant phospholipid vesicles at high concentrations of C12E8. Bioelectrochemistry 2004; 63:183-7. [PMID: 15110270 DOI: 10.1016/j.bioelechem.2003.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 08/28/2003] [Accepted: 09/19/2003] [Indexed: 11/30/2022]
Abstract
Giant unilamellar phospholipid vesicles were prepared by the method of electroformation from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC). We studied the influence of different concentrations of the surfactant octaethyleneglycol dodecylether (C(12)E(8)) on the spontaneous shape transformations of POPC vesicles at room temperature. In accordance with previous results, we observed that low concentration of C(12)E(8) increased the speed of the characteristic vesicle shape transformation, starting from the initial shape with thin tubular protrusion, through beaded protrusion where the number of beads gradually decreased, to final spherical shapes with invagination, whereby the average mean curvature of the vesicle membrane monotonously decreased. In contrast, higher concentration of C(12)E(8) initially induced the shape transformation in the "opposite direction": in the protrusion, the number of beads gradually increased and eventually a tube was formed whereby the average mean curvature of the vesicle membrane gradually increased. However, at a certain point, an abrupt shape change took place to yield the vesicle with invagination. In this transition, the average mean curvature of the vesicle membrane discontinuously decreased. After this transition, the vesicle began to shrink and finally disappeared. We discuss possible mechanisms involved in the observed transformations.
Collapse
Affiliation(s)
- B Mavcic
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
18
|
Smith KC, Neu JC, Krassowska W. Model of creation and evolution of stable electropores for DNA delivery. Biophys J 2004; 86:2813-26. [PMID: 15111399 PMCID: PMC1304151 DOI: 10.1016/s0006-3495(04)74334-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 01/21/2004] [Indexed: 11/29/2022] Open
Abstract
Electroporation, in which electric pulses create transient pores in the cell membrane, is becoming an important technique for gene therapy. To enable entry of supercoiled DNA into cells, the pores should have sufficiently large radii (>10 nm), remain open long enough for the DNA chain to enter the cell (milliseconds), and should not cause membrane rupture. This study presents a model that can predict such macropores. The distinctive features of this model are the coupling of individual pores through membrane tension and the electrical force on the pores, which is applicable to pores of any size. The model is used to explore the process of pore creation and evolution and to determine the number and size of pores as a function of the pulse magnitude and duration. Next, our electroporation model is combined with a heuristic model of DNA uptake and used to predict the dependence of DNA uptake on pulsing parameters. Finally, the model is used to examine the mechanism of a two-pulse protocol, which was proposed specifically for gene delivery. The comparison between experimental results and the model suggests that this model is well-suited for the investigation of electroporation-mediated DNA delivery.
Collapse
Affiliation(s)
- Kyle C Smith
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
19
|
Fošnarič M, Kralj-Iglič V, Bohinc K, Iglič A, May S. Stabilization of Pores in Lipid Bilayers by Anisotropic Inclusions. J Phys Chem B 2003. [DOI: 10.1021/jp035035a] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Miha Fošnarič
- Laboratory of Applied Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia, Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Lipičeva 2, SI-1000 Ljubljana, Slovenia, and Institute of Molecular Biology, Friedrich-Schiller-University, Winzerlaer Strasse 10, Jena 07745, Germany
| | - Veronika Kralj-Iglič
- Laboratory of Applied Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia, Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Lipičeva 2, SI-1000 Ljubljana, Slovenia, and Institute of Molecular Biology, Friedrich-Schiller-University, Winzerlaer Strasse 10, Jena 07745, Germany
| | - Klemen Bohinc
- Laboratory of Applied Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia, Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Lipičeva 2, SI-1000 Ljubljana, Slovenia, and Institute of Molecular Biology, Friedrich-Schiller-University, Winzerlaer Strasse 10, Jena 07745, Germany
| | - Aleš Iglič
- Laboratory of Applied Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia, Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Lipičeva 2, SI-1000 Ljubljana, Slovenia, and Institute of Molecular Biology, Friedrich-Schiller-University, Winzerlaer Strasse 10, Jena 07745, Germany
| | - Sylvio May
- Laboratory of Applied Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia, Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Lipičeva 2, SI-1000 Ljubljana, Slovenia, and Institute of Molecular Biology, Friedrich-Schiller-University, Winzerlaer Strasse 10, Jena 07745, Germany
| |
Collapse
|
20
|
Babnik B, Miklavcic D, Kanduser M, Hägerstrand H, Kralj-Iglic V, Iglic A. Shape transformation and burst of giant POPC unilamellar liposomes modulated by non-ionic detergent C12E8. Chem Phys Lipids 2003; 125:123-38. [PMID: 14499471 DOI: 10.1016/s0009-3084(03)00084-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We studied spontaneous shape transformations and burst of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) vesicles with exogeneously added non-ionic detergent octaethylene-glycol dodecylether C(12)E(8). The addition of C(12)E(8) increased the speed of the vesicle shape transformation, so that we were able to study for the first time the complete sequence of POPC vesicle shapes starting from initial spherical vesicle with long thin tubular protrusion to final shape with invagination(s). The average mean curvature of the vesicle membrane continuously decreases during this process. The shape of the invaginations is usually spherical, however also non-spherical shapes of invaginations were observed. C(12)E(8) increases amplitudes of the fluctuations of the vesicle membrane. At higher concentrations in the membrane, C(12)E(8) induces the membrane leakage and burst of the vesicles.
Collapse
Affiliation(s)
- Blaz Babnik
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, SI-1000, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|