1
|
Ali Moussa HY, Shin KC, Ponraj J, Park SH, Lee OS, Mansour S, Park Y. PIP 2 Is An Electrostatic Catalyst for Vesicle Fusion by Lowering the Hydration Energy: Arresting Vesicle Fusion by Masking PIP 2. ACS NANO 2024; 18:12737-12748. [PMID: 38717305 DOI: 10.1021/acsnano.3c09614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Lipids are key factors in regulating membrane fusion. Lipids are not only structural components to form membranes but also active catalysts for vesicle fusion and neurotransmitter release, which are driven by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. SNARE proteins seem to be partially assembled before fusion, but the mechanisms that arrest vesicle fusion before Ca2+ influx are still not clear. Here, we show that phosphatidylinositol 4,5-bisphosphate (PIP2) electrostatically triggers vesicle fusion as an electrostatic catalyst by lowering the hydration energy and that a myristoylated alanine-rich C-kinase substrate (MARCKS), a PIP2-binding protein, arrests vesicle fusion in a vesicle docking state where the SNARE complex is partially assembled. Vesicle-mimicking liposomes fail to reproduce vesicle fusion arrest by masking PIP2, indicating that native vesicles are essential for the reconstitution of physiological vesicle fusion. PIP2 attracts cations to repel water molecules from membranes, thus lowering the hydration energy barrier.
Collapse
Affiliation(s)
- Houda Yasmine Ali Moussa
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Janarthanan Ponraj
- HBKU Core Laboratories, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | | | - One-Sun Lee
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University, Košice SK-04001, Slovakia
| | - Said Mansour
- HBKU Core Laboratories, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
2
|
Ji X, Wang J, Wang T, Huang Y, Zhao B, Wang N, Huang X, Hao H. Stabilization and Coagulation of Colloidal Suspensions during Crystallization. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Xiongtao Ji
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yunhai Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bugui Zhao
- Shandong Lukang Pharmaceutical Co., Ltd, Shandong 272021, China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Migliore R, Biver T, Barone G, Sgarlata C. Quantitative Analysis of the Interactions of Metal Complexes and Amphiphilic Systems: Calorimetric, Spectroscopic and Theoretical Aspects. Biomolecules 2022; 12:biom12030408. [PMID: 35327600 PMCID: PMC8946196 DOI: 10.3390/biom12030408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023] Open
Abstract
Metals and metal-based compounds have many implications in biological systems. They are involved in cellular functions, employed in the formation of metal-based drugs and present as pollutants in aqueous systems, with toxic effects for living organisms. Amphiphilic molecules also play important roles in the above bio-related fields as models of membranes, nanocarriers for drug delivery and bioremediating agents. Despite the interest in complex systems involving both metal species and surfactant aggregates, there is still insufficient knowledge regarding the quantitative aspects at the basis of their binding interactions, which are crucial for extensive comprehension of their behavior in solution. Only a few papers have reported quantitative analyses of the thermodynamic, kinetic, speciation and binding features of metal-based compounds and amphiphilic aggregates, and no literature review has yet addressed the quantitative study of these complexes. Here, we summarize and critically discuss the recent contributions to the quantitative investigation of the interactions of metal-based systems with assemblies made of amphiphilic molecules by calorimetric, spectrophotometric and computational techniques, emphasizing the unique picture and parameters that such an analytical approach may provide, to support a deep understanding and beneficial use of these systems for several applications.
Collapse
Affiliation(s)
- Rossella Migliore
- Institute of Biomolecular Chemistry, National Research Council, Via Paolo Gaifami 18, 95126 Catania, Italy;
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy;
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 17, 90128 Palermo, Italy;
| | - Carmelo Sgarlata
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Correspondence:
| |
Collapse
|
4
|
Norling K, Sjöberg M, Bally M, Zhdanov VP, Parveen N, Höök F. Dissimilar Deformation of Fluid- and Gel-Phase Liposomes upon Multivalent Interaction with Cell Membrane Mimics Revealed Using Dual-Wavelength Surface Plasmon Resonance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2550-2560. [PMID: 35156833 PMCID: PMC8892953 DOI: 10.1021/acs.langmuir.1c03096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The mechanical properties of biological nanoparticles play a crucial role in their interaction with the cellular membrane, in particular for cellular uptake. This has significant implications for the design of pharmaceutical carrier particles. In this context, liposomes have become increasingly popular, among other reasons due to their customizability and easily varied physicochemical properties. With currently available methods, it is, however, not trivial to characterize the mechanical properties of nanoscopic liposomes especially with respect to the level of deformation induced upon their ligand-receptor-mediated interaction with laterally fluid cellular membranes. Here, we utilize the sensitivity of dual-wavelength surface plasmon resonance to probe the size and shape of bound liposomes (∼100 nm in diameter) as a means to quantify receptor-induced deformation during their interaction with a supported cell membrane mimic. By comparing biotinylated liposomes in gel and fluid phases, we demonstrate that fluid-phase liposomes are more prone to deformation than their gel-phase counterparts upon binding to the cell membrane mimic and that, as expected, the degree of deformation depends on the number of ligand-receptor pairs that are engaged in the multivalent binding.
Collapse
Affiliation(s)
- Karin Norling
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Mattias Sjöberg
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Marta Bally
- Department
of Clinical Microbiology, Umeå University, 901 85 Umeå, Sweden
- Wallenberg
Centre for Molecular Medicine, Umeå
University, 901 85 Umeå, Sweden
| | - Vladimir P. Zhdanov
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Boreskov
Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nagma Parveen
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- (N.P.)
| | - Fredrik Höök
- Division
of Nano and Biophysics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- (F.H.)
| |
Collapse
|
5
|
Talló K, Pons R, González C, López O. Monitoring the formation of a colloidal lipid gel at the nanoscale: vesicle aggregation driven by a temperature-induced mechanism. J Mater Chem B 2021; 9:7472-7481. [PMID: 34551044 DOI: 10.1039/d1tb01020d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Colloidal gels made of lipid vesicles at highly diluted conditions have been recently described. The structure and composition of this type of material could be especially relevant for studies that combine model lipid membranes with proteins, peptides, or enzymes to replicate biological conditions. Details about the nanoscale events that occur during the formation of such gels would motivate their future application. Thus, in this work we investigate the gelation mechanism, which consists of a lipid dispersion of vesicles going through a process that involves freezing and heating. The appropriate combination of techniques (transmission electron microscopy, differential scanning calorimetry and synchrotron small angle X-ray scattering) allowed in-depth analysis of the different events that give rise to the formation of the gel. Results showed how freezing damaged the lipid dispersion, causing a polydisperse suspension of membrane fragments and vesicles upon melting. Heating above the lipids' main phase transition temperature promoted the formation of elongated tubular structures. After cooling, these lipid tubes broke down into vesicles that formed branched aggregates across the aqueous phase, obtaining a material with gel characteristics. These mechanistic insights may also allow finding new ways to interact with lipid vesicles to form structured materials. Future works might complement the presented results with molecular dynamics or nuclear magnetic resonance experiments.
Collapse
Affiliation(s)
- Kirian Talló
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Ramon Pons
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - César González
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Olga López
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
6
|
Peng Z, Shimba K, Miyamoto Y, Yagi T. A Study of the Effects of Plasma Surface Treatment on Lipid Bilayers Self-Spreading on a Polydimethylsiloxane Substrate under Different Treatment Times. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10732-10740. [PMID: 34464138 DOI: 10.1021/acs.langmuir.1c01319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plasma-treated poly(dimethylsiloxane) (PDMS)-supported lipid bilayers are used as functional tools for studying cell membrane properties and as platforms for biotechnology applications. Self-spreading is a versatile method for forming lipid bilayers. However, few studies have focused on the effect of plasma treatment on self-spreading lipid bilayer formation. In this paper, we performed lipid bilayer self-spreading on a PDMS surface with different treatment times. Surface characterization of PDMS treated with different treatment times is evaluated by AFM and SEM, and the effects of plasma treatment of the PDMS surface on lipid bilayer self-spreading behavior is investigated by confocal microscopy. The front-edge velocity of lipid bilayers increases with the plasma treatment time. By theoretical analyses with the extended-DLVO modeling, we find that the most likely cause of the velocity change is the hydration repulsion energy between the PDMS surface and lipid bilayers. Moreover, the growth behavior of membrane lobes on the underlying self-spreading lipid bilayer was affected by topography changes in the PDMS surface resulting from plasma treatment. Our findings suggest that the growth of self-spreading lipid bilayers can be controlled by changing the plasma treatment time.
Collapse
Affiliation(s)
- Zugui Peng
- School of Engineering, Tokyo Institute of Technology, 403, Ishikawadai Bldg. 3, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Kenta Shimba
- School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoshitaka Miyamoto
- School of Engineering, Tokyo Institute of Technology, 403, Ishikawadai Bldg. 3, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
- Department of Reproductive Biology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Tohru Yagi
- School of Engineering, Tokyo Institute of Technology, 403, Ishikawadai Bldg. 3, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| |
Collapse
|
7
|
Ghosh R, Satarifard V, Grafmüller A, Lipowsky R. Budding and Fission of Nanovesicles Induced by Membrane Adsorption of Small Solutes. ACS NANO 2021; 15:7237-7248. [PMID: 33819031 PMCID: PMC8155335 DOI: 10.1021/acsnano.1c00525] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Membrane budding and fission are essential cellular processes that produce new membrane compartments during cell and organelle division, for intracellular vesicle trafficking as well as during endo- and exocytosis. Such morphological transformations have also been observed for giant lipid vesicles with a size of many micrometers. Here, we report budding and fission processes of lipid nanovesicles with a size below 50 nm. We use coarse-grained molecular dynamics simulations, by which we can visualize the morphological transformations of individual vesicles. The budding and fission processes are induced by low concentrations of small solutes that absorb onto the outer leaflets of the vesicle membranes. In addition to the solute concentration, we identify the solvent conditions as a second key parameter for these processes. For good solvent conditions, the budding of a nanovesicle can be controlled by reducing the vesicle volume for constant solute concentration or by increasing the solute concentration for constant vesicle volume. After the budding process is completed, the budded vesicle consists of two membrane subcompartments which are connected by a closed membrane neck. The budding process is reversible as we demonstrate explicitly by reopening the closed neck. For poor solvent conditions, on the other hand, we observe two unexpected morphological transformations of nanovesicles. Close to the binodal line, at which the aqueous solution undergoes phase separation, the vesicle exhibits recurrent shape changes with closed and open membrane necks, reminiscent of flickering fusion pores (kiss-and-run) as observed for synaptic vesicles. As we approach the binodal line even closer, the recurrent shape changes are truncated by the fission of the membrane neck which leads to the division of the nanovesicle into two daughter vesicles. In this way, our simulations reveal a nanoscale mechanism for the budding and fission of nanovesicles, a mechanism that arises from the interplay between membrane elasticity and solute-mediated membrane adhesion.
Collapse
|
8
|
Li T, Shen C, Wu S, Jin C, Bradford SA. Synergies of surface roughness and hydration on colloid detachment in saturated porous media: Column and atomic force microscopy studies. WATER RESEARCH 2020; 183:116068. [PMID: 32619803 DOI: 10.1016/j.watres.2020.116068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Saturated column experiments were conducted to systematically examine the influence of hydration on the detachment of nano- and micro-sized latex colloids (35 nm and 1 μm, respectively) from sand. The colloids were attached on the sand in primary minima (PM) using high ionic strength (IS) NaCl solutions. The PM were predicted to be shallower and located farther from sand surfaces with increasing IS due to the hydration force. Consequently, a greater amount of colloid detachment occurred in deionized water when the colloids were initially deposited at a higher IS. Atomic force microscopy (AFM) examinations showed that both nanoscale protruding asperities and large wedge-like valleys existed on the sand surface. The influence of these surface features on the interaction energies/forces was modeled by approximating the roughness as cosinoidal waves and two intersecting half planes, respectively. The PM were deep and attachment was irreversible at concave regions for all ISs, even if the hydration force was included. Conversely, colloids were weakly attached at protruding asperities due to a reduced PM depth, and thus were responsible for the detachment upon IS reduction. The AFM examinations confirmed that the adhesive forces were enhanced and reduced (or even completely eliminated) at concave and convex locations of sand surfaces, respectively. These results have important implications for surface cleaning and prediction of the transport and fate of hazardous colloids and colloid-associated contaminants in subsurface environments.
Collapse
Affiliation(s)
- Tiantian Li
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Chongyang Shen
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China.
| | - Sen Wu
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Scott A Bradford
- USDA, ARS, U.S. Salinity Laboratory, Riverside, CA, 92507-4617, United States.
| |
Collapse
|
9
|
Zhdanov VP. Nanoparticles without and with protein corona: van der Waals and hydration interaction. J Biol Phys 2019; 45:307-316. [PMID: 31432351 PMCID: PMC6706358 DOI: 10.1007/s10867-019-09530-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/31/2019] [Indexed: 01/21/2023] Open
Abstract
The van der Waals (vdW) interaction between nanoparticles (NPs) in general, and especially between metal NPs, may be appreciable, and may result in nanoparticle aggregation. In biofluids, NPs become rapidly surrounded by a protein corona (PC). Here, the vdW and hydration interaction of NPs with and without PC are compared in detail. The focus is on two widely used types of NPs fabricated of SiO2 and Au and possessing weak and strong vdW interactions, respectively. For SiO2, the presence of PC increases the vdW interaction, but it remains relatively weak and insufficient for aggregation. For Au, the presence of PC decreases the vdW interaction, and in the case of small NPs (≤ 40 nm in diameter) it may become insufficient for aggregation as well while the larger NPs can aggregate.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
10
|
Pippa N, Stangel C, Kastanas I, Triantafyllopoulou E, Naziris N, Stellas D, Zhang M, Yudasaka M, Demetzos C, Tagmatarchis N. Carbon nanohorn/liposome systems: Preformulation, design and in vitro toxicity studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110114. [PMID: 31546408 DOI: 10.1016/j.msec.2019.110114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/29/2019] [Accepted: 08/22/2019] [Indexed: 12/25/2022]
Abstract
In the present work, the convergence of two different drug delivery systems is investigated, namely the combination of carbon nanohorns (CNHs) and liposomes. Our effort initially included the synthesis of two conversely charged carbon nanohorns and their subsequent analysis through various methods. The study of their effect on the thermotropic behavior of artificial membranes provided an essential assistance for the upcoming liposome preparation, which were estimated for their physicochemical properties. The presence of CNHs alters the calorimetric parameters of the lipids. We also prepared CNHs:liposome systems. The characteristic morphology and secondary spherical superstructure of CNHs is retained in the chimeric materials, suggesting that the interactions with the liposomes do not alter the dahlia-flower-like aggregation of CNHs. Both CNHs-liposome systems exhibit a relatively small cellular cytotoxicity in vitro, tested in mouse embryonic fibroblasts. To summarize, we developed CNHs:liposome platforms with a complete knowledge of their thermotropic, physicochemical, morphological and nanotoxicological characteristics.
Collapse
Affiliation(s)
- Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Christina Stangel
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Ioannis Kastanas
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Efstathia Triantafyllopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Nikolaos Naziris
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Dimitris Stellas
- Biomedical Research Foundation, Academy of Athens, Athens, Greece; Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederic, MD, USA
| | - Minfang Zhang
- CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Masako Yudasaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece.
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| |
Collapse
|
11
|
De SK, Kanwa N, Chakraborty A. Influence of Trivalent Metal Ions on Lipid Vesicles: Gelation and Fusion Phenomena. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6429-6440. [PMID: 30983360 DOI: 10.1021/acs.langmuir.9b00682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this contribution, we report the interaction of 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) lipid vesicles with a series of trivalent metal ions of the same group, namely, Al3+, Ga3+, and In3+, to get a distinct view of the effect of size, effective charge, and hydration free energy of these metal ions on lipid vesicles. We employed steady-state and time-resolved spectroscopic techniques including time-resolved anisotropy measurement, confocal imaging, and dynamic light scattering (DLS) measurement to probe the interaction. Our study reveals that all of the three trivalent metal ions induce gelation in lipid vesicles by removing water molecules from the interfacial region. The extent of gelation induced by the metal ions follows the order of In3+ > Ga3+ ≥ Al3+. We explain this observation in light of different free-energy terms. Notably, the degree of interaction for trivalent metal ions is higher as compared to that for divalent metal ions at physiological pH (pH ∼ 7.0). Most importantly, we observe that unlike divalent metal ions, trivalent metal ions dehydrate the lipid vesicles even at lower pH. The DLS measurement and confocal imaging indicate that In3+ causes significant aggregation or fusion of the PC vesicles, while Al3+ and Ga3+ did not induce any aggregation at the experimental concentration. We employ Derjaguin-Landau-Vervey-Overbeek (DLVO) theory to explain the aggregation phenomena induced by In3+.
Collapse
Affiliation(s)
- Soumya Kanti De
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 452020 , Madhya Pradesh , India
| | - Nishu Kanwa
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 452020 , Madhya Pradesh , India
| | - Anjan Chakraborty
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 452020 , Madhya Pradesh , India
| |
Collapse
|
12
|
Tashiro Y, Takaki K, Futamata H. Targeted delivery using membrane vesicles in prokaryotes. Biophys Physicobiol 2019; 16:114-120. [PMID: 31131182 PMCID: PMC6530884 DOI: 10.2142/biophysico.16.0_114] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Membrane vesicles (MVs) are lumen-containing spheres of lipid bilayers secreted by all prokaryotes into the extracellular milieu. They have multifunctional roles in stress response, virulence transfer, biofilm formation, and microbial interactions. Remarkably, MVs contain various components, including lytic enzymes, genetic materials, and hydrophobic signals, at high concentrations and transfer them effectively to the target microbial cells. Therefore, MVs act as carriers for bactericidal effects, horizontal gene transfer, and quorum sensing. Although the purpose of secreted MVs remains unclear, recent reports have provided evidence that MVs selectively interact with microbial cells in order to transfer their content to the target species. Herein, we review microbial interactions using MVs and discuss MV-mediated selective delivery of their content to target microbial cells.
Collapse
Affiliation(s)
- Yosuke Tashiro
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| | - Kotaro Takaki
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| | - Hiroyuki Futamata
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
13
|
Kumar S, Yadav I, Ray D, Abbas S, Saha D, Aswal VK, Kohlbrecher J. Evolution of Interactions in the Protein Solution As Induced by Mono and Multivalent Ions. Biomacromolecules 2019; 20:2123-2134. [PMID: 30908911 DOI: 10.1021/acs.biomac.9b00374] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The evolution of interactions in the bovine serum albumin (BSA) protein solution on addition of mono and multivalent (di, tri and tetra) counterions has been studied using small-angle neutron scattering (SANS), dynamic light scattering (DLS) and ζ-potential measurements. It is found that in the presence of mono and divalent counterions, protein behavior can be well explained by DLVO theory, combining the contributions of screened Coulomb repulsion with the van der Waals attraction. The addition of mono or divalent salts in protein solution reduces the repulsive barrier and hence the overall interaction becomes attractive, but the system remains in one-phase for the entire concentration range of the salts, added in the system. However, contrary to DLVO theory, the protein solution undergoes a reentrant phase transition from one-phase to a two-phase system and then back to the one-phase system in the presence of tri and tetravalent counterions. The results show that tri and tetravalent (unlike mono and divalent) counterions induce short-range attraction between the protein molecules, leading to the transformation from one-phase to two-phase system. The two-phase is characterized by the fractal structure of protein aggregates. The excess condensation of these higher-valent counterions in the double layer around the BSA causes the reversal of charge of the protein molecules resulting into reentrant of the one-phase, at higher salt concentrations. The complete phase behavior with mono and multivalent ions has been explained in terms of the interplay of electrostatic repulsion and ion-induced short-range attraction between the protein molecules.
Collapse
Affiliation(s)
- Sugam Kumar
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India.,Division of Materials and Environmental Chemistry , Stockholm University , Frescativagen 8 , Stockholm 10691 , Sweden
| | - Indresh Yadav
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India
| | - Debes Ray
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India
| | - Sohrab Abbas
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India
| | - Debasish Saha
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India.,Department of Science and Technology , New Delhi 110016 , India
| | - Vinod K Aswal
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India.,Homi Bhabha National Institute , Mumbai 400 094 , India
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering, Paul Scherrer Institut , CH-5232 PSI Villigen , Switzerland
| |
Collapse
|
14
|
Pathological transitions in myelin membranes driven by environmental and multiple sclerosis conditions. Proc Natl Acad Sci U S A 2018; 115:11156-11161. [PMID: 30322944 PMCID: PMC6217380 DOI: 10.1073/pnas.1804275115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In demyelination diseases, such as multiple sclerosis, the structure of the axons’ protective sheaths is disrupted. Due to the proximity of cytoplasmic myelin membrane to structural phase transition, minor alterations in the local environmental conditions can have devastating results. Using small-angle X-ray scattering and cryogenic transmission electron microscopy, we show that drastic structural reorganization and instabilities of myelin membrane are linked to specific environmental conditions and molecular composition in healthy and diseased states. These instabilities involve phase transition from the healthy lamellar membranes to pathological inverted hexagonal phase. These results highlight that local environmental conditions are critical for myelin function and should be considered as alternative routes for early pathology and as a means to avoid the initiation of demyelination. Multiple sclerosis (MS) is an autoimmune disease, leading to the destruction of the myelin sheaths, the protective layers surrounding the axons. The etiology of the disease is unknown, although there are several postulated environmental factors that may contribute to it. Recently, myelin damage was correlated to structural phase transition from a healthy stack of lamellas to a diseased inverted hexagonal phase as a result of the altered lipid stoichiometry and low myelin basic protein (MBP) content. In this work, we show that environmental conditions, such as buffer salinity and temperature, induce the same pathological phase transition as in the case of the lipid composition in the absence of MBP. These phase transitions have different transition points, which depend on the lipid’s compositions, and are ion specific. In extreme environmental conditions, we find an additional dense lamellar phase and that the native lipid composition results in similar pathology as the diseased composition. These findings demonstrate that several local environmental changes can trigger pathological structural changes. We postulate that these structural modifications result in myelin membrane vulnerability to the immune system attacks and thus can help explain MS etiology.
Collapse
|
15
|
Sabri F, Berthomier K, Marion A, Fradette L, Tavares JR, Virgilio N. Sodium alginate-grafted submicrometer particles display enhanced reversible aggregation/disaggregation properties. Carbohydr Polym 2018; 194:61-68. [DOI: 10.1016/j.carbpol.2018.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 01/05/2023]
|
16
|
Rahnfeld L, Thamm J, Steiniger F, van Hoogevest P, Luciani P. Study on the in situ aggregation of liposomes with negatively charged phospholipids for use as injectable depot formulation. Colloids Surf B Biointerfaces 2018; 168:10-17. [PMID: 29478769 DOI: 10.1016/j.colsurfb.2018.02.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 01/09/2023]
Abstract
Compared to conventional parenteral formulations injectable depot formulations, owing to a sustained drug release, offer several advantages, such as a reduced dosing frequency - and consequent improved compliance - or a predictable release profile. Additionally, fluctuations in the drug blood level may be smoothened and consequently side effects reduced. Because of their capability to encapsulate water soluble drugs and their very low toxicity profile liposomes comprising phospholipids, most certainly represent a vehicle of choice for subcutaneous (s.c.) or intramuscular (i.m.) administration typical for depot injections too. In the past, especially liposomes containing negatively charged phosphatidylserines were investigated regarding their aggregation and fusion behavior upon addition of calcium ions. Liposomes need to have a large size to prevent fast removal from the s.c. or i.m. injection site to make them useful as depot vehicle. In order to obtain such large liposomes, aggregation of smaller liposomes may be considered. Aim of the present study was to induce and investigate controlled aggregation of vesicles containing other negatively charged phospholipids besides phosphatidylserines upon mixing with a solution of divalent cations. L-α-phosphatidylcholine from egg (EPC) liposomes formulated with 25 mol% of 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA) or 1,2-distearoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DSPG) proved to be possible lipid-based depot candidates due to their strong aggregation induced by calcium and magnesium cations. Different aggregation profiles with both cations could be observed. Morphological investigations of the aggregates showed that individual liposomes remain stable in the aggregates and no fusion occurred. A fluorescence-based fusion assay confirmed these results. Differential scanning calorimetry measurements supported the findings of the diverse aggregation profiles with calcium or magnesium owing to different binding sites of the cations to the lipid molecules.
Collapse
Affiliation(s)
- Lisa Rahnfeld
- Department of Pharmaceutical Technology, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Jana Thamm
- Department of Pharmaceutical Technology, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Frank Steiniger
- Electron Microscopy Center, University Hospital Jena, Friedrich Schiller University Jena, Ziegelmuehlenweg 1, 07743 Jena, Germany
| | - Peter van Hoogevest
- Phospholipid Research Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Paola Luciani
- Department of Pharmaceutical Technology, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany.
| |
Collapse
|
17
|
Naziris N, Pippa N, Meristoudi A, Pispas S, Demetzos C. Design and development of pH-responsive HSPC:C 12H 25-PAA chimeric liposomes. J Liposome Res 2017; 27:108-117. [PMID: 27558454 DOI: 10.3109/08982104.2016.1166512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/13/2016] [Indexed: 01/07/2023]
Abstract
The application of stimuli-responsive medical practices has emerged, in which pH-sensitive liposomes figure prominently. This study investigates the impact of the incorporation of different amounts of pH-sensitive polymer, C12H25-PAA (poly(acrylic acid) with a hydrophobic end group) in l-α-phosphatidylcholine, hydrogenated (Soy) (HSPC) phospholipidic bilayers, with respect to biomimicry and functionality. PAA is a poly(carboxylic acid) molecule, classified as a pH-sensitive polymer, whose pH-sensitivity is attributed to its regulative -COOH groups, which are protonated under acidic pH (pKa ∼4.2). Our concern was to fully characterize, in a biophysical and thermodynamical manner, the mixed nanoassemblies arising from the combination of the two biomaterials. At first, we quantified the physicochemical characteristics and physical stability of the prepared chimeric nanosystems. Then, we studied their thermotropic behavior, through measurement of thermodynamical parameters, using Differential Scanning Calorimetry (DSC). Finally, the loading and release of indomethacin (IND) were evaluated, as well as the physicochemical properties and stability of the nanocarriers incorporating it. As expected, thermodynamical findings are in line with physicochemical results and also explain the loading and release profiles of IND. The novelty of this investigation is the utilization of these pH-sensitive chimeric advanced Drug Delivery nano Systems (aDDnSs) in targeted drug delivery which relies entirely on the biophysics and thermodynamics between such designs and the physiological membranes and environment of living organisms.
Collapse
Affiliation(s)
- Nikolaos Naziris
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , National and Kapodistrian University of Athens , Athens , Greece and
| | - Natassa Pippa
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , National and Kapodistrian University of Athens , Athens , Greece and
- b Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation , Athens , Greece
| | - Anastasia Meristoudi
- b Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation , Athens , Greece
| | - Stergios Pispas
- b Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation , Athens , Greece
| | - Costas Demetzos
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , National and Kapodistrian University of Athens , Athens , Greece and
| |
Collapse
|
18
|
Tashiro Y, Hasegawa Y, Shintani M, Takaki K, Ohkuma M, Kimbara K, Futamata H. Interaction of Bacterial Membrane Vesicles with Specific Species and Their Potential for Delivery to Target Cells. Front Microbiol 2017; 8:571. [PMID: 28439261 PMCID: PMC5383704 DOI: 10.3389/fmicb.2017.00571] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/20/2017] [Indexed: 12/01/2022] Open
Abstract
Membrane vesicles (MVs) are secreted from a wide range of microbial species and transfer their content to other cells. Although MVs play critical roles in bacterial communication, whether MVs selectively interact with bacterial cells in microbial communities is unclear. In this study, we investigated the specificity of the MV-cell interactions and evaluated the potential of MVs to target bacterial cells for delivery. MV association with bacterial cells was examined using a fluorescent membrane dye to label MVs. MVs derived from the enterobacterium Buttiauxella agrestis specifically interacted with cells of the parent strain but interacted less specifically with those of other genera tested in this study. Electron microscopic analyses showed that MVs were not only attached on B. agrestis cells but also fused to them. The interaction energy, which was characterized by hydrodynamic diameter and zeta potential based on the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory, was significant low between MVs and cells in B. agrestis, compared to those between B. agrestis MVs and cells of other genera. Similar specific interaction was also occurred between B. agrestis MVs and cells of six other species belonging to Buttiauxella spp. B. agrestis harboring plasmid pBBR1MCS-1 secreted plasmid-containing MVs (p-MVs), and plasmid DNA in p-MVs was transferred to the same species. Moreover, antibiotic-associated MVs enabled effective killing of target species; the survival rate of B. agrestis was lower than those of Escherichia coli and Pseudomonas aeruginosa in the presence of gentamicin-associated MVs derived from B. agrestis. Altogether, we provide the evidence that MVs selectively interact with target bacterial cells and offer a new avenue for controlling specific bacterial species using bacterial MVs in microbial communities.
Collapse
Affiliation(s)
- Yosuke Tashiro
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka UniversityHamamatsu, Japan
| | - Yusuke Hasegawa
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka UniversityHamamatsu, Japan
| | - Masaki Shintani
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka UniversityHamamatsu, Japan.,Graduate School of Science and Technology, Shizuoka UniversityHamamatsu, Japan.,Japan Collection of Microorganisms, RIKEN BioResource CenterTsukuba, Japan
| | - Kotaro Takaki
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka UniversityHamamatsu, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource CenterTsukuba, Japan
| | - Kazuhide Kimbara
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka UniversityHamamatsu, Japan.,Graduate School of Science and Technology, Shizuoka UniversityHamamatsu, Japan
| | - Hiroyuki Futamata
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka UniversityHamamatsu, Japan.,Graduate School of Science and Technology, Shizuoka UniversityHamamatsu, Japan.,Research Institute of Green Science and Technology, Shizuoka UniversityShizuoka, Japan
| |
Collapse
|
19
|
Zhdanov VP. Interpretation of amperometric kinetics of content release during contacts of vesicles with a lipid membrane. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:461-470. [PMID: 27942741 DOI: 10.1007/s00249-016-1189-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/21/2016] [Accepted: 11/28/2016] [Indexed: 11/25/2022]
Abstract
The exocytotic pathway of secretion of molecules from cells includes transport by vesicles, tether-mediated fusion of vesicles with the plasma membrane accompanied by pore formation, and diffusion-mediated release of their contents via a pore to the outside. In related basic biophysical studies, vesicle-content release is tracked by measuring corresponding amperometric spikes. Although experiments of this type have a long history, the understanding of the underlying physics is still elusive. The present study elucidates the likely contribution of line energy, membrane tension and bending, osmotic pressure, hydration forces, and tethers to the potential energy for fusion-related pore formation and evolution. The overdamped Langevin equation is used to describe the pore dynamics, which are in turn employed to calculate the kinetics of content release and to interpret the shape of amperometric spikes.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
20
|
Lundgren A, Agnarsson B, Zirbs R, Zhdanov VP, Reimhult E, Höök F. Nonspecific Colloidal-Type Interaction Explains Size-Dependent Specific Binding of Membrane-Targeted Nanoparticles. ACS NANO 2016; 10:9974-9982. [PMID: 27783496 DOI: 10.1021/acsnano.6b04160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Emerging biomedical applications such as molecular imaging and drug delivery often require directed binding of nanoparticles to cell-membrane receptors. The specific apparent affinity of such ligand-functionalized particles is size-dependent, an observation so far solely attributed to multivalent receptor-ligand interaction. We question the universality of this explanation by demonstrating that the binding kinetics also depends on weak, attractive colloidal-type interaction between nanoparticles and a lipid membrane. Applying label-free single-particle imaging, we correlate binding of nanoparticles targeted to a cell-mimetic lipid membrane with the distribution of nontargeted particles freely diffusing close to the membrane interface. This analysis shows that already a weak, kBT-scale attraction present between 50 nm gold nanoparticles and the membrane renders these particles an order of magnitude higher avidity compared to 20 nm particles. A stronger emphasis on nonspecific particle-membrane interaction might thus be required to accurately predict nanoparticle targeting and other similar processes such as cellular uptake of exosomes and viruses.
Collapse
Affiliation(s)
- Anders Lundgren
- Department of Physics, Chalmers University of Technology , Gothenburg 412 96, Sweden
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences , Vienna 1190, Austria
| | - Björn Agnarsson
- Department of Physics, Chalmers University of Technology , Gothenburg 412 96, Sweden
| | - Ronald Zirbs
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences , Vienna 1190, Austria
| | - Vladimir P Zhdanov
- Department of Physics, Chalmers University of Technology , Gothenburg 412 96, Sweden
- Boreskov Institute of Catalysis, Russian Academy of Sciences , Novosibirsk 630090, Russia
| | - Erik Reimhult
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences , Vienna 1190, Austria
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology , Gothenburg 412 96, Sweden
| |
Collapse
|
21
|
Chountoulesi M, Kyrili A, Pippa N, Meristoudi A, Pispas S, Demetzos C. The modulation of physicochemical characterization of innovative liposomal platforms: the role of the grafted thermoresponsive polymers. Pharm Dev Technol 2015; 22:330-335. [DOI: 10.3109/10837450.2015.1121497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Maria Chountoulesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Athens, Panepistimioupolis Zografou, Athens, Greece and
| | - Aimilia Kyrili
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Athens, Panepistimioupolis Zografou, Athens, Greece and
| | - Natassa Pippa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Athens, Panepistimioupolis Zografou, Athens, Greece and
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens, Greece
| | - Anastasia Meristoudi
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens, Greece
| | - Costas Demetzos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Athens, Panepistimioupolis Zografou, Athens, Greece and
| |
Collapse
|
22
|
Pippa N, Kalinova R, Dimitrov I, Pispas S, Demetzos C. Insulin/poly(ethylene glycol)-block-poly(l-lysine) Complexes: Physicochemical Properties and Protein Encapsulation. J Phys Chem B 2015; 119:6813-9. [DOI: 10.1021/acs.jpcb.5b01664] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Natassa Pippa
- Department
of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
- Theoretical
and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave, Athens 11635, Greece
| | - Radostina Kalinova
- Institute
of Polymers, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Ivaylo Dimitrov
- Institute
of Polymers, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stergios Pispas
- Theoretical
and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave, Athens 11635, Greece
| | - Costas Demetzos
- Department
of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| |
Collapse
|
23
|
Shah R, Eldridge D, Palombo E, Harding I. Physicochemical Stability. LIPID NANOPARTICLES: PRODUCTION, CHARACTERIZATION AND STABILITY 2015. [DOI: 10.1007/978-3-319-10711-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Pippa N, Mariaki M, Pispas S, Demetzos C. Preparation, development and in vitro release evaluation of amphotericin B-loaded amphiphilic block copolymer vectors. Int J Pharm 2014; 473:80-6. [PMID: 24998505 DOI: 10.1016/j.ijpharm.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 01/08/2023]
Abstract
The aim of this work is to design and develop a suitable polymeric formulation incorporating amphotericin B (Ampho B) in order to overcome its water insolubility problem. To this end, we have chosen the poly(isoprene-b-ethylene oxide) amphiphilic block copolymer (IEO) family. We investigate the self assembly behavior and the stability kinetics of IEO copolymer based nanostructures formed in HPLC grade water and in phosphate buffer saline (PBS). The IEO block copolymer samples investigated have different molecular weights and compositions. A gamut of light scattering techniques (static, dynamic and electrophoretic) were used in order to extract information on the size, ζ-potential and morphological characteristics of the structures formed, as a function of the molar ratio of incorporated lipophilic drug Ampho B. The amphiphilic character and the colloidal stability of the particular polymeric drug vectors indicate that these nanostructures can be utilized as effective containers for the particular hydrophobic drug. The incorporation of Ampho B led to alteration of the physicochemical and morphological characteristics of the pure polymeric carriers. It is observed that the in vitro release of Ampho B from the prepared vectors IEO-b:Ampho B was quite slow, while the IEO-a carriers did not release Ampho B.
Collapse
Affiliation(s)
- Natassa Pippa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Maria Mariaki
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Costas Demetzos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
25
|
Cai Y, Liu M, Hui L. Observations and Mechanism of CaSO4 Fouling on Hydrophobic Surfaces. Ind Eng Chem Res 2014. [DOI: 10.1021/ie402308m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yongwei Cai
- Collaborative Innovation Center of Chemical Science and
Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mingyan Liu
- Collaborative Innovation Center of Chemical Science and
Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin 300072, China
| | - Longfei Hui
- Collaborative Innovation Center of Chemical Science and
Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
26
|
Hatayama H, Toyota T, Hayashi H, Nomoto T, Fujinami M. Application of a novel near infrared-fluorescence giant vesicle- and polymerasome-based tissue marker for endoscopic and laparoscopic navigation. ANAL SCI 2014; 30:225-30. [PMID: 24521908 DOI: 10.2116/analsci.30.225] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, we describe the development of a novel tissue marker that can be injected from within the digestive tract by using an endoscopic instrument, and visualized using near-infrared (NIR) fluorescence imaging. The marker was prepared in three steps, (i) mixing NIR-fluorescent indocyanine green (ICG) with giant vesicles (GVs) of lecithin, (ii) suspending the ICG-containing giant vesicles (ICG-GV) in an oil phase dissolving polyglycerol-polyricinoleate (PGPR), and (iii) centrifugation of the suspension layered on a buffered solution to obtain a giant polymer vesicle (polymerasome) containing ICG-GV. We injected the tissue marker into the inner gastric surface of an anesthetized pig using an endoscopic syringe, and observed the injection site using a fluorescence laparoscopic camera. The diameter of the spot blur was approximately 2 cm over a 5-h period, demonstrating the utility of this procedure as a tissue marker for tumor marking, and suggesting its potential for assisting navigation during surgical procedures.
Collapse
Affiliation(s)
- Hirosuke Hatayama
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University
| | | | | | | | | |
Collapse
|
27
|
Optimization of selected liposome-encapsulated diketopiperazines. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Braunger JA, Kramer C, Morick D, Steinem C. Solid supported membranes doped with PIP2: influence of ionic strength and pH on bilayer formation and membrane organization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14204-13. [PMID: 24199623 DOI: 10.1021/la402646k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Phosphoinositides and in particular L-α-phosphatidylinositol-4,5-bisphosphate (PIP2) are key lipids controlling many cellular events and serve as receptors for a large number of intracellular proteins. To quantitatively analyze protein-PIP2 interactions in vitro in a time-resolved manner, planar membranes on solid substrates are highly desirable. Here, we describe an optimized protocol to form PIP2 containing planar solid supported membranes on silicon surfaces by vesicle spreading. Supported lipid bilayers (SLBs) were obtained by spreading POPC/PIP2 (92:8) small unilamellar vesicles onto hydrophilic silicon substrates at a low pH of 4.8. These membranes were capable of binding ezrin, resulting in large protein coverage as concluded from reflectometric interference spectroscopy and fluorescence microscopy. As deduced from fluorescence microscopy, only under low pH conditions, a homogeneously appearing distribution of fluorescently labeled PIP2 molecules in the membrane was achieved. Fluorescence recovery after photobleaching experiments revealed that PIP2 is not mobile in the bottom layer of the SLBs, while PIP2 is fully mobile in the top layer with diffusion coefficients of about 3 μm(2)/s. This diffusion coefficient was considerably reduced by a factor of about 3 if ezrin has been bound to PIP2 in the membrane.
Collapse
Affiliation(s)
- Julia A Braunger
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität , Tammannstr. 2, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
29
|
Yi P, Chen KL. Interaction of multiwalled carbon nanotubes with supported lipid bilayers and vesicles as model biological membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5711-5719. [PMID: 23647313 DOI: 10.1021/es4002604] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The influence of solution chemistry on the kinetics and reversibility of the deposition of multiwalled carbon nanotubes (MWNTs) on model biological membranes was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Supported lipid bilayers (SLBs) comprised of zwitterionic 1,2-dioleoyl-sn-glyero-3-phosphocholine (DOPC), as well as DOPC vesicles, were used as model cell membranes. Under neutral pH conditions, the deposition kinetics of MWNTs on SLBs increased with increasing electrolyte (NaCl and CaCl2) concentrations. In the presence of NaCl, favorable deposition was not achieved even at a concentration of 1 M, which is attributed to the presence of strong repulsive hydration forces due to the highly hydrophilic headgroups of SLBs. Conversely, favorable deposition was observed at CaCl2 concentrations above 0.5 mM when the charge of SLBs was reversed from negative to positive through the binding of Ca(2+) cations to the exposed phosphate headgroups. Favorable nanotube deposition was also observed at pH 2, at which the DOPC SLBs exhibited positive surface charge, since the isoelectric point of DOPC is ca. 4. When MWNTs on SLBs were rinsed with low ionic strength solutions at pH 7.3, only ca. 20% of deposited nanotubes were released, indicating that nanotube deposition was mostly irreversible. The deposition of MWNTs on DOPC vesicles under favorable deposition conditions did not result in any detectable leakage of solution from the vesicles, indicating that MWNTs did not severely disrupt the DOPC bilayers upon attachment.
Collapse
Affiliation(s)
- Peng Yi
- Department of Geography and Environmental Engineering, Johns Hopkins University, Baltimore, Maryland 21218-2686, United States
| | | |
Collapse
|
30
|
Hadjidemetriou M, Pippa N, Pispas S, Demetzos C. Incorporation of dimethoxycurcumin into charged liposomes and the formation kinetics of fractal aggregates of uncharged vectors. J Liposome Res 2013; 23:94-100. [DOI: 10.3109/08982104.2012.747534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Effect of calcium and magnesium on phosphatidylserine membranes: experiments and all-atomic simulations. Biophys J 2012; 102:2095-103. [PMID: 22824273 DOI: 10.1016/j.bpj.2012.03.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/17/2012] [Accepted: 03/02/2012] [Indexed: 11/23/2022] Open
Abstract
It is known that phosphatidylserine (PS(-)) lipids have a very similar affinity for Ca(2+) and Mg(2+) cations, as revealed by electrokinetic and stability experiments. However, despite this similar affinity, experimental evidence shows that the presence of Ca(2+) or Mg(2+) induces very different aggregation behavior for PS(-) liposomes as characterized by their fractal dimensions. Also, turbidity measurements confirm substantial differences in aggregation behavior depending on the presence of Ca(2+) or Mg(2+) cations. These puzzling results suggest that although these two cations have a similar affinity for PS(-) lipids, they induce substantial structural differences in lipid bilayers containing each of these cations. In other words, these cations have strong ion-specific effects on the structure of PS(-) membranes. This interpretation is supported by all-atomic molecular-dynamics simulations showing that Ca(2+) and Mg(2+) cations have different binding sites and induce different membrane hydration. We show that although both ions are incorporated deep into the hydrophilic region of the membrane, they have different positions and configurations at the membrane. Absorbed Ca(2+) cations present a peak at a distance ~2 nm from the center of the lipid bilayer, and their most probable binding configuration involves two oxygen atoms from each of the charged moieties of the PS molecule (phosphate and carboxyl groups). In contrast, the distribution of absorbed Mg(2+) cations has two different peaks, located a few angstroms before and after the Ca(2+) peak. The most probable configurations (corresponding to these two peaks) involve binding to two oxygen atoms from carboxyl groups (the most superficial binding peak) or two oxygen atoms from phosphate groups (the most internal peak). Moreover, simulations also show differences in the hydration structure of the membrane: we obtained a hydration of 7.5 and 9 water molecules per lipid in simulations with Ca(2+) and Mg(2+), respectively.
Collapse
|
32
|
Michel* R, Gradzielski* M. Experimental aspects of colloidal interactions in mixed systems of liposome and inorganic nanoparticle and their applications. Int J Mol Sci 2012; 13:11610-11642. [PMID: 23109874 PMCID: PMC3472766 DOI: 10.3390/ijms130911610] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/01/2012] [Accepted: 09/06/2012] [Indexed: 12/03/2022] Open
Abstract
In the past few years, growing attention has been devoted to the study of the interactions taking place in mixed systems of phospholipid membranes (for instance in the form of vesicles) and hard nanoparticles (NPs). In this context liposomes (vesicles) may serve as versatile carriers or as a model system for biological membranes. Research on these systems has led to the observation of novel hybrid structures whose morphology strongly depends on the charge, composition and size of the interacting colloidal species as well as on the nature (pH, ionic strength) of their dispersing medium. A central role is played by the phase behaviour of phospholipid bilayers which have a tremendous influence on the liposome properties. Another central aspect is the incorporation of nanoparticles into vesicles, which is intimately linked to the conditions required for transporting a nanoparticle through a membrane. Herein, we review recent progress made on the investigations of the interactions in liposome/nanoparticle systems focusing on the particularly interesting structures that are formed in these hybrid systems as well as their potential applications.
Collapse
Affiliation(s)
- Raphael Michel*
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Berlin D-10623, Germany; E-Mails: (R.M.); (M.G.); Tel.: +49-30-314-22822 (R.M.); +49-30-314-24934 (M.G.); Fax: +49-30-314-26602 (M.G.)
| | - Michael Gradzielski*
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Berlin D-10623, Germany; E-Mails: (R.M.); (M.G.); Tel.: +49-30-314-22822 (R.M.); +49-30-314-24934 (M.G.); Fax: +49-30-314-26602 (M.G.)
| |
Collapse
|
33
|
Pippa N, Pispas S, Demetzos C. The delineation of the morphology of charged liposomal vectors via a fractal analysis in aqueous and biological media: physicochemical and self-assembly studies. Int J Pharm 2012; 437:264-74. [PMID: 22939965 DOI: 10.1016/j.ijpharm.2012.08.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/24/2012] [Accepted: 08/09/2012] [Indexed: 01/09/2023]
Abstract
The present study deals with the physicochemical characterization of DPPC:DPPG (9:1 molar ratio) and DPPC:DODAP (9:1 molar ratio) liposomes, and the determination of their fractal dimension in HPLC-grade water, PBS and in FBS. Light scattering techniques were used in order to extract information on the structure, morphology, size and surface charge of liposomes in an ageing study and their structural response to changes in concentration and temperature. Fluorescence spectroscopy showed that the microviscosity of cationic liposomes changed by an increase of temperature. The fractal dimension, d(f), was found equal to 1.8 for reconstituted DPPC:DPPG (9:1) and DPPC:DODAP (9:1) liposomes in aqueous media. Aggregation of reconstituted DPPC:DPPG (9:1) and DPPC:DODAP (9:1) liposomes in FBS was observed. Their fractal dimensions were 1.46 and 2.45, respectively. The first order aggregation kinetics of DPPC:DODAP (9:1) liposomes in the presence of serum proteins was determined; the aggregates of cationic liposomes with serum components remained stable during 20 days with fractal dimension 2.5. The responsiveness of cationic liposomes to changes in temperature in the three dispersion media has revealed the self-assembly and the morphological complexity of cationic vectors. Finally, we suggest that these studies could be used for developing effective advanced drug delivery nano-systems (aDDnSs) based on their fractal characteristics which effectively draw their morphological profile.
Collapse
Affiliation(s)
- Natassa Pippa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | | | | |
Collapse
|
34
|
The fractal hologram and elucidation of the structure of liposomal carriers in aqueous and biological media. Int J Pharm 2012; 430:65-73. [DOI: 10.1016/j.ijpharm.2012.03.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/23/2012] [Indexed: 12/13/2022]
|
35
|
Oleson TA, Sahai N. Interaction energies between oxide surfaces and multiple phosphatidylcholine bilayers from extended-DLVO theory. J Colloid Interface Sci 2010; 352:316-26. [DOI: 10.1016/j.jcis.2010.08.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 11/27/2022]
|
36
|
Sasai M, Tadokoro S, Hirashima N. Artificial exocytotic system that secretes intravesicular contents upon Ca2+ influx. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:14788-14792. [PMID: 20722459 DOI: 10.1021/la102737e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exocytosis is a crucial process of secreting various signaling molecules such as neurotransmitters, hormones, and other chemical mediators into the extracellular space. Exocytotic release is caused by membrane fusion of intracellular vesicles with the plasma membrane triggered by an increase in intracellular Ca(2+). In the present study, we developed an artificial system of exocytosis that secretes intravesicular contents upon Ca(2+) influx. We prepared artificial secretory cells using cell-sized giant unilamellar liposomal vesicles (GUVs) that contain small liposomes (SUVs) that correspond to secretory vesicles. To observe exocytosis-like secretion in an artificial system, we labeled both an intra-SUV solution and an SUV membrane with a soluble fluorescent dye and a rhodamine-labeled phospholipid, respectively. To induce membrane fusion between SUVs and a GUV as observed in exocytosis, the Ca(2+) concentration of intra-GUV was elevated by incorporating ionomycin (a Ca(2+) ionophore) into the GUV membrane. We succeeded in inducing exocytosis-like secretion by Ca(2+) elevation in a GUV together with the osmolarity difference between the intra-GUV and extra-GUV solutions.
Collapse
Affiliation(s)
- Masao Sasai
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | | | | |
Collapse
|
37
|
Haidara H, Vonna L, Vidal L. Unrevealed Self-Assembly and Crystallization Structures of Na−Alginate, Induced by the Drying Dynamics of Wetting Films of the Aqueous Polymer Solution. Macromolecules 2010. [DOI: 10.1021/ma902363p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- H. Haidara
- Institut de Science des Matériaux de Mulhouse (IS2M), LRC 7228-CNRS/UHA 15, rue Jean Starcky B.P. 2488, 68057 Mulhouse Cedex, France
| | - L. Vonna
- Institut de Science des Matériaux de Mulhouse (IS2M), LRC 7228-CNRS/UHA 15, rue Jean Starcky B.P. 2488, 68057 Mulhouse Cedex, France
| | - L. Vidal
- Institut de Science des Matériaux de Mulhouse (IS2M), LRC 7228-CNRS/UHA 15, rue Jean Starcky B.P. 2488, 68057 Mulhouse Cedex, France
| |
Collapse
|
38
|
Nabika H, Takimoto B, Murakoshi K. Molecular separation in the lipid bilayer medium: electrophoretic and self-spreading approaches. Anal Bioanal Chem 2008; 391:2497-506. [DOI: 10.1007/s00216-008-2140-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/01/2008] [Accepted: 04/15/2008] [Indexed: 11/29/2022]
|
39
|
Nabika H, Fukasawa A, Murakoshi K. Tuning the dynamics and molecular distribution of the self-spreading lipid bilayer. Phys Chem Chem Phys 2008; 10:2243-8. [DOI: 10.1039/b715983h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Yao J, Feng Y, Zhao Y, Li Z, Huang J, Fu H. Vesicle aggregation in aqueous mixtures of negatively charged polyelectrolyte and conventional cationic surfactant. J Colloid Interface Sci 2007; 314:523-30. [PMID: 17604041 DOI: 10.1016/j.jcis.2007.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/05/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
Vesicle aggregation induced by different environmental factors, including the addition of divalent metal ions, decrease of pH, and increase of temperature--was investigated through turbidity measurement, fluorescence measurement, and transmission electron microscope observation in aqueous solutions of hydrolyzed styrene-maleic anhydride copolymer (HSMA) mixed with dodecyltriethylammonium bromide (C(12)Et(3)). The vesicle aggregation can be explained by the dehydration of the vesicle surface through cations addition or temperature increase based on an analysis of the interaction between vesicles. Moreover, the steric repulsion was introduced to the system and the control of vesicle aggregation was achieved.
Collapse
Affiliation(s)
- Jingxia Yao
- Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
41
|
Nabika H, Fukasawa A, Murakoshi K. Control of the structure of self-spreading lipid membrane by changing electrolyte concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:10927-31. [PMID: 17154567 DOI: 10.1021/la062459y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We have controlled the structure of self-spreading lipid bilayer membranes prepared on surface-oxidized silicon substrates by changing electrolyte concentration. Analysis of the fluorescence intensity, considering the optical interference effect, clarified the stacking structure of the lipid membrane. By varying the electrolyte concentration, we can vary the number of single multilamellar lobes adsorbed on the underlying self-spreading bilayer. This dependence of the stacking ability on the electrolyte concentration was investigated on the basis of changes in the bilayer-lobe interaction energies, including van der Waals, electrostatic double layer, and hydration interaction energies. Theoretical estimation suggests that the observed electrolyte concentration dependence can be explained by the combination of the van der Waals attractive interaction energy and the repulsive double-layer interaction energy.
Collapse
Affiliation(s)
- Hideki Nabika
- Division of Chemistry, Graduate School of Science, Hokkaido University, N10 W8, Kita, Sapporo, Hokkaido 060-0810, Japan
| | | | | |
Collapse
|
42
|
Solier J, Galera-Cortés E, Sabaté R, Estelrich J. Translational diffusion in charged phospholipid bilayer membranes. Colloids Surf A Physicochem Eng Asp 2005. [DOI: 10.1016/j.colsurfa.2005.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Thorén PEG, Persson D, Lincoln P, Nordén B. Membrane destabilizing properties of cell-penetrating peptides. Biophys Chem 2005; 114:169-79. [PMID: 15829350 DOI: 10.1016/j.bpc.2004.11.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 11/25/2004] [Accepted: 11/26/2004] [Indexed: 11/28/2022]
Abstract
Although cell-penetrating peptides (CPPs), also denoted protein transduction domains (PTDs), have been widely used for intracellular delivery of large and hydrophilic molecules, the mechanism of uptake is still poorly understood. In a recent live cell study of the uptake of penetratin and tryptophan-containing analogues of Tat(48-60) and oligoarginine, denoted TatP59W, TatLysP59W and R(7)W, respectively, it was found that both endocytotic and non-endocytotic uptake pathways are involved [Thoren et al., Biochem. Biophys. Res. Commun. 307 (2003) 100-107]. Non-endocytotic uptake was only observed for the arginine-rich peptides TatP59W and R(7)W. In this paper, the interactions of penetratin, R(7)W, TatP59W and TatLysP59W with phospholipid vesicles are compared in the search for an understanding of the mechanisms for cellular uptake. While R(7)W, TatP59W and TatLysP59W are found to promote vesicle fusion, indicated by mixing of membrane components, penetratin merely induces vesicle aggregation. Studies of the leakage from dye-loaded vesicles indicate that none of the peptides forms membrane pores and that vesicle fusion is not accompanied by leakage of the aqueous contents of the vesicles. These observations are important for a proper interpretation of future experiments on the interactions of these peptides with model membranes. We suggest that the discovered variations in propensity to destabilize phospholipid bilayers between the peptides investigated, in some cases sufficient to induce fusion, may be related to their different cellular uptake properties.
Collapse
Affiliation(s)
- Per E G Thorén
- Department of Chemistry and Bioscience, Chalmers University of Technology, Gothenburg, Sweden.
| | | | | | | |
Collapse
|
44
|
Rossetto M. A colloid perspective of hair cell cilia: a selective literature review. Colloids Surf B Biointerfaces 2003. [DOI: 10.1016/s0927-7765(03)00004-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Abstract
Phospholipid vesicles are well-studied biomembrane mimics that are of increasing interest in drug delivery, immunoassays, and sensor chips. In a number of biosensor applications it is desirable to be able to adhere vesicles to a surface in a manner which does not result in their rupture or fusion. Such behavior should, in principle, be achievable by controlling the vesicle-surface and vesicle-vesicle interactions. We have varied vesicle composition and charge (phosphatidylcholine, phosphatidylcholine-phosphatidic acid 18 mol%) and solution ionic strength, to study the adhesion of fluorescent vesicles to glass, gold, and gold modified with chemisorbed acetyl-cysteine. The extent of chemisorption was characterized with angle-resolved X-ray photoelectron spectroscopy (ARXPS), and vesicle integrity and behavior was studied using entrapped and lipophilic fluorescent markers, together and in separate measurements. Vesicle fusion (by energy transfer), adhesion of intact vesicles (with entrapped calcein) and diffusion coefficients (by photobleaching recovery) were monitored using confocal fluorescence microscopy. Acetyl-cysteine modified gold surfaces were shown to be appropriate substrates for adhesion of intact vesicles. Finally, as a 'proof of principle' for fluorescence amplification, release of a self-quenching entrapped reporter dye (calcein) by the detergent Triton X-100 was followed in real time.
Collapse
Affiliation(s)
- Stavroula Sofou
- Department of Chemical Engineering and Applied Chemistry, Columbia University, 500 West 120th Street, # 4721, New York, NY 10027, USA
| | | |
Collapse
|
46
|
Haro-Pérez C, Quesada-Pérez M, Callejas-Fernández J, Casals E, Estelrich J, Hidalgo-Álvarez R. Liquidlike structures in dilute suspensions of charged liposomes. J Chem Phys 2003. [DOI: 10.1063/1.1553759] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Abstract
We studied the aggregation of a rod-shaped bacteria, Bifidobacterium infantis, during capillary electrophoresis (CE). A microscope with an intensified CCD camera was employed to monitor the migration and aggregation of bacteria, which are labeled with fluorescent dye Syto 9 and excited with a 488-nm argon ion laser. A collision-based aggregation mechanism is proposed, in which collisions between microbes result from different mobilities and migration directions in the electric field. Individual microbes are aligned differently with respect to the direction of the electric field and exhibit different drag coefficients. The long-range forces include van der Waals attraction and electrostatic repulsion as qualitatively described by DLVO theory. Collisions in CE produce sufficient energy to overcome electrostatic repulsion, thus improving the efficiency of aggregation. This is supported by the fact that higher electric fields always resulted in faster aggregation. Also, when sodium phosphate buffer was used, increasing the ionic strength resulted in faster aggregation. However, when Tris-boric acid-EDTA (TBE, pH 9.1) buffer was used, the aggregation speed decreased when the ionic strength increased. We attribute this to the change of the surface of the bacteria at high borate and EDTA concentration, such as the loss of polysaccharides or the presence of complexation. This reduces the hydrophobicity of the surface and, thus, the short-range attractive forces. The addition of 0.05% poly(ethylene oxide) (PEO) into high ionic strength TBE buffer increased the aggregation rate. This can be attributed to the bridging effect of PEO between microbes. Further increase in the concentration of polymer reduced the aggregation rate, especially when the electric field was low, due in part to the increase in viscosity. The decrease in migration velocity produced lower collision energies and lower aggregation efficiencies as well.
Collapse
Affiliation(s)
- Jinjian Zheng
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
48
|
Ohki S, Arnold K. Determination of Liposome Surface Dielectric Constant and Hydrophobicity. Methods Enzymol 2003; 367:253-72. [PMID: 14611069 DOI: 10.1016/s0076-6879(03)67016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- S Ohki
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | |
Collapse
|
49
|
Hsu JP, Huang SW, Kuo YC, Tseng S. Effect of Ionic Sizes on Critical Coagulation Concentration: Particles Covered by a Charge-Regulated Membrane. J Phys Chem B 2002. [DOI: 10.1021/jp012282a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 10617, R.O.C
| | - Shih-Wei Huang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 10617, R.O.C
| | - Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, R.O.C
| | - Shiojenn Tseng
- Department of Mathematics, Tamkang University, Tamsui, Taipei, Taiwan 25137, R.O.C
| |
Collapse
|
50
|
Mao M, Huang J, Zhu B, Ye J. The Transition from Vesicles to Micelles Induced by Octane in Aqueous Surfactant Two-Phase Systems. J Phys Chem B 2001. [DOI: 10.1021/jp0107255] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Min Mao
- Institute of Physical Chemistry, Peking University, Beijing 100871, P.R. China
| | - Jianbin Huang
- Institute of Physical Chemistry, Peking University, Beijing 100871, P.R. China
| | - Buyao Zhu
- Institute of Physical Chemistry, Peking University, Beijing 100871, P.R. China
| | - Jianping Ye
- Institute of Physical Chemistry, Peking University, Beijing 100871, P.R. China
| |
Collapse
|