1
|
Zabala-Ferrera O, Beltramo PJ. Effects of Ion Concentration and Headgroup Chemistry on Thin Lipid Film Drainage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16294-16302. [PMID: 37939040 DOI: 10.1021/acs.langmuir.3c01795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
While the use of lipid nanoparticles in drug delivery applications has grown over the past few decades, much work remains to be done toward the characterization and rational design of the drug carriers. A key feature of delivery is the interaction of the exterior leaflet of the LNP with the outer leaflet of the cell membrane, which relies in part on the fusogenicity of the lipids and the ionic environment. In this paper, we study the interactions between two lipid monolayers using a thin film balance to create lipid thin films and interferometry to measure film evolution. We probe the role of lipid headgroup chemistry and charge, along with ionic solution conditions, in either promoting or hindering film drainage and stability. Specific headgroups phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylserine (PS) are chosen to represent a combination of charge and fusogenicity. We quantify each film's drainage characteristics over a range of capillary numbers. Qualitatively, we find that films transition from drainage via a large dimple to drainage via channels and vortices as the capillary number increases. Additionally, we observe a transition from electrostatically dominated film drainage at low CaCl2 concentrations to fusogenic-dominated film drainage at higher CaCl2 concentrations for anionic fusogenic (PS) films. Understanding the role of headgroup composition, ionic composition, and ionic concentration will pave the way for the design of tunable vesicle and buffer systems that behave desirably across a range of ex vivo and in vivo environments.
Collapse
Affiliation(s)
- Oscar Zabala-Ferrera
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Peter J Beltramo
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Sharma R, Yadav S, Yadav V, Akhtar J, Katari O, Kuche K, Jain S. Recent advances in lipid-based long-acting injectable depot formulations. Adv Drug Deliv Rev 2023; 199:114901. [PMID: 37257756 DOI: 10.1016/j.addr.2023.114901] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Long-acting injectable (LAIs) delivery systems sustain the drug therapeutic action in the body, resulting in reduced dosage regimen, toxicity, and improved patient compliance. Lipid-based depots are biocompatible, provide extended drug release, and improve drug stability, making them suitable for systemic and localized treatment of various chronic ailments, including psychosis, diabetes, hormonal disorders, arthritis, ocular diseases, and cancer. These depots include oil solutions, suspensions, oleogels, liquid crystalline systems, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, phospholipid phase separation gel, vesicular phospholipid gel etc. This review summarizes recent advancements in lipid-based LAIs for delivering small and macromolecules, and their potential in managing chronic diseases. It also provides an overview of the lipid depots available in market or clinical phase, as well as patents for lipid-based LAIs. Furthermore, this review critically discusses the current scenario of using in vitro release methods to establish IVIVC and highlights the challenges involved in developing lipid-based LAIs.
Collapse
Affiliation(s)
- Reena Sharma
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Sheetal Yadav
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Vivek Yadav
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Junia Akhtar
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Oly Katari
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Kaushik Kuche
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Sanyog Jain
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India.
| |
Collapse
|
3
|
Wang X, Du H, Wang Z, Mu W, Han X. Versatile Phospholipid Assemblies for Functional Synthetic Cells and Artificial Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002635. [PMID: 32830387 DOI: 10.1002/adma.202002635] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The bottom-up construction of a synthetic cell from nonliving building blocks capable of mimicking cellular properties and behaviors helps to understand the particular biophysical properties and working mechanisms of a cell. A synthetic cell built in this way possesses defined chemical composition and structure. Since phospholipids are native biomembrane components, their assemblies are widely used to mimic cellular structures. Here, recent developments in the formation of versatile phospholipid assemblies are described, together with the applications of these assemblies for functional membranes (protein reconstituted giant unilamellar vesicles), spherical and nonspherical protoorganelles, and functional synthetic cells, as well as the high-order hierarchical structures of artificial tissues. Their biomedical applications are also briefly summarized. Finally, the challenges and future directions in the field of synthetic cells and artificial tissues based on phospholipid assemblies are proposed.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hang Du
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Marine Antifouling Engineering Technology Center of Shangdong Province, Harbin Institute of Technology, Weihai, 264209, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
4
|
Pippa N, Stangel C, Kastanas I, Triantafyllopoulou E, Naziris N, Stellas D, Zhang M, Yudasaka M, Demetzos C, Tagmatarchis N. Carbon nanohorn/liposome systems: Preformulation, design and in vitro toxicity studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110114. [PMID: 31546408 DOI: 10.1016/j.msec.2019.110114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/29/2019] [Accepted: 08/22/2019] [Indexed: 12/25/2022]
Abstract
In the present work, the convergence of two different drug delivery systems is investigated, namely the combination of carbon nanohorns (CNHs) and liposomes. Our effort initially included the synthesis of two conversely charged carbon nanohorns and their subsequent analysis through various methods. The study of their effect on the thermotropic behavior of artificial membranes provided an essential assistance for the upcoming liposome preparation, which were estimated for their physicochemical properties. The presence of CNHs alters the calorimetric parameters of the lipids. We also prepared CNHs:liposome systems. The characteristic morphology and secondary spherical superstructure of CNHs is retained in the chimeric materials, suggesting that the interactions with the liposomes do not alter the dahlia-flower-like aggregation of CNHs. Both CNHs-liposome systems exhibit a relatively small cellular cytotoxicity in vitro, tested in mouse embryonic fibroblasts. To summarize, we developed CNHs:liposome platforms with a complete knowledge of their thermotropic, physicochemical, morphological and nanotoxicological characteristics.
Collapse
Affiliation(s)
- Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Christina Stangel
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Ioannis Kastanas
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Efstathia Triantafyllopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Nikolaos Naziris
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Dimitris Stellas
- Biomedical Research Foundation, Academy of Athens, Athens, Greece; Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederic, MD, USA
| | - Minfang Zhang
- CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Masako Yudasaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece.
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| |
Collapse
|
5
|
Martín-Molina A, Lue L, Quesada-Pérez M, Bohinc K. Interaction between charged lipid vesicles and point- or rod-like trivalent ions. Colloids Surf B Biointerfaces 2019; 178:525-529. [PMID: 31004839 DOI: 10.1016/j.colsurfb.2019.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
Abstract
This work examines the influence of the charge distribution of trivalent cations on their interaction with soft anionic particles, using a combination of experimental measurements and theoretical modelling. In particular, we perform electrophoresis measurements to determine the zeta-potential of anionic liposomes in the presence of spermidine and lanthanum cations. We work in a range of electrolyte concentration where a reversal in the electrophoretic mobility of the liposomes is expected; however, unlike the case of lanthanum cations, spermidine does not induce mobility reversal of liposomes. As a result, the charge distribution within the counterion appears to be a key factor. This conclusion is supported by a theory that accounts for intra-ionic correlations, which has previously been successfully used to describe the colloidal electric double layer. It allows us to model spermidine as rod-like ions and lanthanum cations as point-like ions in order to test the importance of the ionic geometry in the interactions with soft particles such as lipid vesicles.
Collapse
Affiliation(s)
- Alberto Martín-Molina
- Departamento de Fisica Aplicada and Instituto Carlos I de Fisica Teorica y Computacional, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Leo Lue
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
| | - Manuel Quesada-Pérez
- Departamento de Fisica, Escuela Politecnica Superior de Linares, Universidad de Jaen, 23700 Linares, Jaen, Spain
| | - Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
6
|
De SK, Kanwa N, Chakraborty A. Influence of Trivalent Metal Ions on Lipid Vesicles: Gelation and Fusion Phenomena. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6429-6440. [PMID: 30983360 DOI: 10.1021/acs.langmuir.9b00682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this contribution, we report the interaction of 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) lipid vesicles with a series of trivalent metal ions of the same group, namely, Al3+, Ga3+, and In3+, to get a distinct view of the effect of size, effective charge, and hydration free energy of these metal ions on lipid vesicles. We employed steady-state and time-resolved spectroscopic techniques including time-resolved anisotropy measurement, confocal imaging, and dynamic light scattering (DLS) measurement to probe the interaction. Our study reveals that all of the three trivalent metal ions induce gelation in lipid vesicles by removing water molecules from the interfacial region. The extent of gelation induced by the metal ions follows the order of In3+ > Ga3+ ≥ Al3+. We explain this observation in light of different free-energy terms. Notably, the degree of interaction for trivalent metal ions is higher as compared to that for divalent metal ions at physiological pH (pH ∼ 7.0). Most importantly, we observe that unlike divalent metal ions, trivalent metal ions dehydrate the lipid vesicles even at lower pH. The DLS measurement and confocal imaging indicate that In3+ causes significant aggregation or fusion of the PC vesicles, while Al3+ and Ga3+ did not induce any aggregation at the experimental concentration. We employ Derjaguin-Landau-Vervey-Overbeek (DLVO) theory to explain the aggregation phenomena induced by In3+.
Collapse
Affiliation(s)
- Soumya Kanti De
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 452020 , Madhya Pradesh , India
| | - Nishu Kanwa
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 452020 , Madhya Pradesh , India
| | - Anjan Chakraborty
- Discipline of Chemistry , Indian Institute of Technology Indore , Indore 452020 , Madhya Pradesh , India
| |
Collapse
|
7
|
Roy S, Mandal S, Banerjee P, Sarkar N. Modification of fatty acid vesicle using an imidazolium-based surface active ionic liquid: a detailed study on its modified properties using spectroscopy and microscopy techniques
$$^{\S }$$
§. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1532-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Laudadio E, Minnelli C, Amici A, Massaccesi L, Mobbili G, Galeazzi R. Liposomal Formulations for an Efficient Encapsulation of Epigallocatechin-3-gallate: An in- Silico/Experimental Approach. Molecules 2018; 23:molecules23020441. [PMID: 29462955 PMCID: PMC6017453 DOI: 10.3390/molecules23020441] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 01/29/2023] Open
Abstract
As a part of research project aimed to optimize antioxidant delivery, here we studied the influence of both salts and lipid matrix composition on the interaction of epigallocatechin-3-gallate (EGCG) with bilayer leaflets. Thus, we combined in silico and experimental methods to study the ability of neutral and anionic vesicles to encapsulate EGCG in the presence of Ca2+ and Mg2+ divalent salts. Experimental and in silico results show a very high correlation, thus confirming the efficiency of the developed methodology. In particular, we found out that the presence of calcium ions hinders the insertion of EGCG in the liposome bilayer in both neutral and anionic systems. On the contrary, the presence of MgCl2 improves the insertion degree of EGCG molecules respect to the liposomes without divalent salts. The best and most efficient salt concentration is that corresponding to a 5:1 molar ratio between Mg2+ and EGCG, in both neutral and anionic vesicles. Concerning the lipid matrix composition, the anionic one results in better promotion of the catechin insertion within the bilayer since experimentally we achieved 100% EGCG encapsulation in the lipid carrier in the presence of a 5:1 molar ratio of magnesium. Thus, the combination of this anionic liposomal formulation with magnesium chloride, avoids time-consuming separation steps of unentrapped active principle and appears particularly suitable for EGCG delivery applications.
Collapse
Affiliation(s)
- Emiliano Laudadio
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Cristina Minnelli
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Adolfo Amici
- Dipartimento Scienze Cliniche Specialistiche ed Odontostomatologiche, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Luca Massaccesi
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Giovanna Mobbili
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Roberta Galeazzi
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
9
|
Rahnfeld L, Thamm J, Steiniger F, van Hoogevest P, Luciani P. Study on the in situ aggregation of liposomes with negatively charged phospholipids for use as injectable depot formulation. Colloids Surf B Biointerfaces 2018; 168:10-17. [PMID: 29478769 DOI: 10.1016/j.colsurfb.2018.02.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 01/09/2023]
Abstract
Compared to conventional parenteral formulations injectable depot formulations, owing to a sustained drug release, offer several advantages, such as a reduced dosing frequency - and consequent improved compliance - or a predictable release profile. Additionally, fluctuations in the drug blood level may be smoothened and consequently side effects reduced. Because of their capability to encapsulate water soluble drugs and their very low toxicity profile liposomes comprising phospholipids, most certainly represent a vehicle of choice for subcutaneous (s.c.) or intramuscular (i.m.) administration typical for depot injections too. In the past, especially liposomes containing negatively charged phosphatidylserines were investigated regarding their aggregation and fusion behavior upon addition of calcium ions. Liposomes need to have a large size to prevent fast removal from the s.c. or i.m. injection site to make them useful as depot vehicle. In order to obtain such large liposomes, aggregation of smaller liposomes may be considered. Aim of the present study was to induce and investigate controlled aggregation of vesicles containing other negatively charged phospholipids besides phosphatidylserines upon mixing with a solution of divalent cations. L-α-phosphatidylcholine from egg (EPC) liposomes formulated with 25 mol% of 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA) or 1,2-distearoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DSPG) proved to be possible lipid-based depot candidates due to their strong aggregation induced by calcium and magnesium cations. Different aggregation profiles with both cations could be observed. Morphological investigations of the aggregates showed that individual liposomes remain stable in the aggregates and no fusion occurred. A fluorescence-based fusion assay confirmed these results. Differential scanning calorimetry measurements supported the findings of the diverse aggregation profiles with calcium or magnesium owing to different binding sites of the cations to the lipid molecules.
Collapse
Affiliation(s)
- Lisa Rahnfeld
- Department of Pharmaceutical Technology, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Jana Thamm
- Department of Pharmaceutical Technology, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Frank Steiniger
- Electron Microscopy Center, University Hospital Jena, Friedrich Schiller University Jena, Ziegelmuehlenweg 1, 07743 Jena, Germany
| | - Peter van Hoogevest
- Phospholipid Research Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Paola Luciani
- Department of Pharmaceutical Technology, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany.
| |
Collapse
|
10
|
García-Jimeno S, Estelrich J, Callejas-Fernández J, Roldán-Vargas S. Reversible and irreversible aggregation of magnetic liposomes. NANOSCALE 2017; 9:15131-15143. [PMID: 28972615 DOI: 10.1039/c7nr05301k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding stabilization and aggregation in magnetic nanoparticle systems is crucial to optimizing the functionality of these systems in real physiological applications. Here we address this problem for a specific, yet representative, system. We present an experimental and analytical study on the aggregation of superparamagnetic liposomes in suspension in the presence of a controllable external magnetic field. We study the aggregation kinetics and report an intermediate time power law evolution and a long time stationary value for the average aggregate diffusion coefficient, both depending on the magnetic field intensity. We then show that the long time aggregate structure is fractal with a fractal dimension that decreases upon increasing the magnetic field intensity. By scaling arguments we also establish an analytical relation between the aggregate fractal dimension and the power law exponent controlling the aggregation kinetics. This relation is indeed independent on the magnetic field intensity. Despite the superparamagnetic character of our particles, we further prove the existence of a population of surviving aggregates able to maintain their integrity after switching off the external magnetic field. Finally, we suggest a schematic interaction scenario to rationalize the observed coexistence between reversible and irreversible aggregation.
Collapse
Affiliation(s)
- Sonia García-Jimeno
- Secció de Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 17-31, E-08028, Barcelona, Catalonia, Spain
| | | | | | | |
Collapse
|
11
|
Kundu N, Banerjee P, Kundu S, Dutta R, Sarkar N. Sodium Chloride Triggered the Fusion of Vesicle Composed of Fatty Acid Modified Protic Ionic Liquid: A New Insight into the Membrane Fusion Monitored through Fluorescence Lifetime Imaging Microscopy. J Phys Chem B 2016; 121:24-34. [PMID: 27959558 DOI: 10.1021/acs.jpcb.6b09298] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of stable vesicular assemblies and the understanding of their interaction and dynamics in aqueous solution are long-standing topics in the research of chemistry and biology. Fatty acids are known to form vesicle structure in aqueous solution depending on the pH of the medium. Protic ionic liquid of fatty acid with ethyl amine (oleate ethyl amine, OEA) as a component spontaneously forms a vesicle in aqueous solution. The general comparison of dynamics and interaction of these two vesicles have been drawn using fluorescence correlation spectroscopy (FCS) and fluorescence lifetime imaging microscopy (FLIM) measurements. Further, FLIM images of a single vesicle are taken at multiple wavelengths, and the solvation of the probe molecules has been observed from the multiwavelength FLIM images. The lifetime of the probe molecule in OEA vesicle is higher than that in simple fatty acid vesicles. Therefore, it suggests that the membrane of the OEA vesicle is more dehydrated compared to that of fatty acid vesicles, and it facilitates OEA vesicles to fuse themselves in the presence of electrolyte, sodium chloride (NaCl). However, under the same conditions, only fatty acid vesicles do not fuse. The fusion of OEA vesicles is successfully demonstrated by the time scan FLIM measurements. The different events in the fusion process are analyzed in the light of the reported model of vesicle fusion. Finally, the local viscosity of the water pool of the vesicle is determined using kiton red, as a molecular rotor. With addition of NaCl, the fluidity in the interior of the vesicle is increased which leads to disassembly of vesicle. The rich dynamic properties of this vesicular assembly and the FLIM based approach of vesicle fusion will provide better insight into the growth of a protocell membrane.
Collapse
Affiliation(s)
- Niloy Kundu
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302 WB, India
| | - Pavel Banerjee
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302 WB, India
| | - Sangita Kundu
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302 WB, India
| | - Rupam Dutta
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302 WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302 WB, India
| |
Collapse
|
12
|
Choi DH, Son H, Jeong JY, Park GS. Correlation between salt-induced change in water structure and lipid structure of multi-lamellar vesicles observed by terahertz time-domain spectroscopy. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Henderson IM, Collins AM, Quintana HA, Montaño GA, Martinez JA, Paxton WF. Lights on: Dye dequenching reveals polymersome fusion with polymer, lipid and stealth lipid vesicles. POLYMER 2016. [DOI: 10.1016/j.polymer.2015.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Pippa N, Kalinova R, Dimitrov I, Pispas S, Demetzos C. Insulin/poly(ethylene glycol)-block-poly(l-lysine) Complexes: Physicochemical Properties and Protein Encapsulation. J Phys Chem B 2015; 119:6813-9. [DOI: 10.1021/acs.jpcb.5b01664] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Natassa Pippa
- Department
of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
- Theoretical
and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave, Athens 11635, Greece
| | - Radostina Kalinova
- Institute
of Polymers, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Ivaylo Dimitrov
- Institute
of Polymers, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stergios Pispas
- Theoretical
and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave, Athens 11635, Greece
| | - Costas Demetzos
- Department
of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| |
Collapse
|
15
|
Liu W, Ye A, Liu W, Liu C, Han J, Singh H. Behaviour of liposomes loaded with bovine serum albumin during in vitro digestion. Food Chem 2015; 175:16-24. [DOI: 10.1016/j.foodchem.2014.11.108] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/22/2014] [Accepted: 11/18/2014] [Indexed: 12/27/2022]
|
16
|
Henderson IM, Paxton WF. Control of mechanically activated polymersome fusion: Factors affecting fusion. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/polb.23650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ian M. Henderson
- Center for Integrated Nanotechnologies, Sandia National LaboratoriesAlbuquerque New Mexico87185
| | - Walter F. Paxton
- Center for Integrated Nanotechnologies, Sandia National LaboratoriesAlbuquerque New Mexico87185
| |
Collapse
|
17
|
Pippa N, Mariaki M, Pispas S, Demetzos C. Preparation, development and in vitro release evaluation of amphotericin B-loaded amphiphilic block copolymer vectors. Int J Pharm 2014; 473:80-6. [PMID: 24998505 DOI: 10.1016/j.ijpharm.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 01/08/2023]
Abstract
The aim of this work is to design and develop a suitable polymeric formulation incorporating amphotericin B (Ampho B) in order to overcome its water insolubility problem. To this end, we have chosen the poly(isoprene-b-ethylene oxide) amphiphilic block copolymer (IEO) family. We investigate the self assembly behavior and the stability kinetics of IEO copolymer based nanostructures formed in HPLC grade water and in phosphate buffer saline (PBS). The IEO block copolymer samples investigated have different molecular weights and compositions. A gamut of light scattering techniques (static, dynamic and electrophoretic) were used in order to extract information on the size, ζ-potential and morphological characteristics of the structures formed, as a function of the molar ratio of incorporated lipophilic drug Ampho B. The amphiphilic character and the colloidal stability of the particular polymeric drug vectors indicate that these nanostructures can be utilized as effective containers for the particular hydrophobic drug. The incorporation of Ampho B led to alteration of the physicochemical and morphological characteristics of the pure polymeric carriers. It is observed that the in vitro release of Ampho B from the prepared vectors IEO-b:Ampho B was quite slow, while the IEO-a carriers did not release Ampho B.
Collapse
Affiliation(s)
- Natassa Pippa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Maria Mariaki
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Costas Demetzos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
18
|
Henderson IM, Paxton WF. Salt, Shake, Fuse-Giant Hybrid Polymer/Lipid Vesicles through Mechanically Activated Fusion. Angew Chem Int Ed Engl 2014; 53:3372-6. [DOI: 10.1002/anie.201309433] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Indexed: 11/09/2022]
|
19
|
Henderson IM, Paxton WF. Salt, Shake, Fuse-Giant Hybrid Polymer/Lipid Vesicles through Mechanically Activated Fusion. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Novel methods for liposome preparation. Chem Phys Lipids 2014; 177:8-18. [DOI: 10.1016/j.chemphyslip.2013.10.011] [Citation(s) in RCA: 373] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 12/18/2022]
|
21
|
Ollila OHS, Lamberg A, Lehtivaara M, Koivuniemi A, Vattulainen I. Interfacial tension and surface pressure of high density lipoprotein, low density lipoprotein, and related lipid droplets. Biophys J 2013; 103:1236-44. [PMID: 22995496 DOI: 10.1016/j.bpj.2012.08.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/02/2012] [Accepted: 08/06/2012] [Indexed: 10/27/2022] Open
Abstract
Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively) are essentially lipid droplets surrounded by specific proteins, their main function being to transport cholesterol. Interfacial tension and surface pressure of these particles are of great interest because they are related to the shape and the stability of the droplets and to protein adsorption at the interface. Here we use coarse-grained molecular-dynamics simulations to consider a number of related issues by calculating the interfacial tension in protein-free lipid droplets, and in HDL and LDL particles mimicking physiological conditions. First, our results suggest that the curvature dependence of interfacial tension becomes significant for particles with a radius of ∼5 nm, when the area per molecule in the surface region is <1.4 nm(2). Further, interfacial tensions in the used HDL and LDL models are essentially unaffected by single apo-proteins at the surface. Finally, interfacial tensions of lipoproteins are higher than in thermodynamically stable droplets, suggesting that HDL and LDL are kinetically trapped into a metastable state.
Collapse
|
22
|
Effect of calcium and magnesium on phosphatidylserine membranes: experiments and all-atomic simulations. Biophys J 2012; 102:2095-103. [PMID: 22824273 DOI: 10.1016/j.bpj.2012.03.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/17/2012] [Accepted: 03/02/2012] [Indexed: 11/23/2022] Open
Abstract
It is known that phosphatidylserine (PS(-)) lipids have a very similar affinity for Ca(2+) and Mg(2+) cations, as revealed by electrokinetic and stability experiments. However, despite this similar affinity, experimental evidence shows that the presence of Ca(2+) or Mg(2+) induces very different aggregation behavior for PS(-) liposomes as characterized by their fractal dimensions. Also, turbidity measurements confirm substantial differences in aggregation behavior depending on the presence of Ca(2+) or Mg(2+) cations. These puzzling results suggest that although these two cations have a similar affinity for PS(-) lipids, they induce substantial structural differences in lipid bilayers containing each of these cations. In other words, these cations have strong ion-specific effects on the structure of PS(-) membranes. This interpretation is supported by all-atomic molecular-dynamics simulations showing that Ca(2+) and Mg(2+) cations have different binding sites and induce different membrane hydration. We show that although both ions are incorporated deep into the hydrophilic region of the membrane, they have different positions and configurations at the membrane. Absorbed Ca(2+) cations present a peak at a distance ~2 nm from the center of the lipid bilayer, and their most probable binding configuration involves two oxygen atoms from each of the charged moieties of the PS molecule (phosphate and carboxyl groups). In contrast, the distribution of absorbed Mg(2+) cations has two different peaks, located a few angstroms before and after the Ca(2+) peak. The most probable configurations (corresponding to these two peaks) involve binding to two oxygen atoms from carboxyl groups (the most superficial binding peak) or two oxygen atoms from phosphate groups (the most internal peak). Moreover, simulations also show differences in the hydration structure of the membrane: we obtained a hydration of 7.5 and 9 water molecules per lipid in simulations with Ca(2+) and Mg(2+), respectively.
Collapse
|
23
|
Pippa N, Pispas S, Demetzos C. The delineation of the morphology of charged liposomal vectors via a fractal analysis in aqueous and biological media: physicochemical and self-assembly studies. Int J Pharm 2012; 437:264-74. [PMID: 22939965 DOI: 10.1016/j.ijpharm.2012.08.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/24/2012] [Accepted: 08/09/2012] [Indexed: 01/09/2023]
Abstract
The present study deals with the physicochemical characterization of DPPC:DPPG (9:1 molar ratio) and DPPC:DODAP (9:1 molar ratio) liposomes, and the determination of their fractal dimension in HPLC-grade water, PBS and in FBS. Light scattering techniques were used in order to extract information on the structure, morphology, size and surface charge of liposomes in an ageing study and their structural response to changes in concentration and temperature. Fluorescence spectroscopy showed that the microviscosity of cationic liposomes changed by an increase of temperature. The fractal dimension, d(f), was found equal to 1.8 for reconstituted DPPC:DPPG (9:1) and DPPC:DODAP (9:1) liposomes in aqueous media. Aggregation of reconstituted DPPC:DPPG (9:1) and DPPC:DODAP (9:1) liposomes in FBS was observed. Their fractal dimensions were 1.46 and 2.45, respectively. The first order aggregation kinetics of DPPC:DODAP (9:1) liposomes in the presence of serum proteins was determined; the aggregates of cationic liposomes with serum components remained stable during 20 days with fractal dimension 2.5. The responsiveness of cationic liposomes to changes in temperature in the three dispersion media has revealed the self-assembly and the morphological complexity of cationic vectors. Finally, we suggest that these studies could be used for developing effective advanced drug delivery nano-systems (aDDnSs) based on their fractal characteristics which effectively draw their morphological profile.
Collapse
Affiliation(s)
- Natassa Pippa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | | | | |
Collapse
|
24
|
The fractal hologram and elucidation of the structure of liposomal carriers in aqueous and biological media. Int J Pharm 2012; 430:65-73. [DOI: 10.1016/j.ijpharm.2012.03.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/23/2012] [Indexed: 12/13/2022]
|
25
|
Wang X, Shindel MM, Wang SW, Ragan R. Elucidating driving forces for liposome rupture: external perturbations and chemical affinity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7417-7427. [PMID: 22509939 DOI: 10.1021/la300127m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Atomic force microscopy (AFM) studies under aqueous buffer probed the role of chemical affinity between liposomes, consisting of large unilamellar vesicles, and substrate surfaces in driving vesicle rupture and tethered lipid bilayer membrane (tLBM) formation on Au surfaces. 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol)-2000-N-[3-(2-pyridyldithio) propionate] (DSPE-PEG-PDP) was added to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles to promote interactions via Au-thiolate bond formation. Forces induced by an AFM tip leading to vesicle rupture on Au were quantified as a function of DSPE-PEG-PDP composition with and without osmotic pressure. The critical forces needed to initiate rupture of vesicles with 2.5, 5, and 10 mol % DSPE-PEG-PDP are approximately 1.1, 0.8, and 0.5 nN, respectively. The critical force needed for tLBM formation decreases from 1.1 nN (without osmotic pressure) to 0.6 nN (with an osmotic pressure due to 5 mM of CaCl(2)) for vesicles having 2.5 mol % DSPE-PEG-PDP. Forces as high as 5 nN did not lead to LBM formation from pure POPC vesicles on Au. DSPE-PEG-PDP appears to be important to anchor and deform vesicles on Au surfaces. This study demonstrates how functional lipids can be used to tune vesicle-surface interactions and elucidates the role of vesicle-substrate interactions in vesicle rupture.
Collapse
Affiliation(s)
- Xi Wang
- Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697-2575, USA
| | | | | | | |
Collapse
|
26
|
Pippa N, Demetzos C, Danezis E. The formalism of fractal aggregation phenomena of colloidal drug delivery systems. J Liposome Res 2011; 22:55-61. [DOI: 10.3109/08982104.2011.590142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Walde P, Cosentino K, Engel H, Stano P. Giant Vesicles: Preparations and Applications. Chembiochem 2010; 11:848-65. [DOI: 10.1002/cbic.201000010] [Citation(s) in RCA: 556] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Bostick DL, Brooks CL. Statistical determinants of selective ionic complexation: ions in solvent, transport proteins, and other "hosts". Biophys J 2009; 96:4470-92. [PMID: 19486671 DOI: 10.1016/j.bpj.2009.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 03/09/2009] [Accepted: 03/11/2009] [Indexed: 10/20/2022] Open
Abstract
To provide utility in understanding the molecular evolution of ion-selective biomembrane channels/transporters, globular proteins, and ionophoric compounds, as well as in guiding their modification and design, we present a statistical mechanical basis for deconstructing the impact of the coordination structure and chemistry of selective multidentate ionic complexes. The deconstruction augments familiar ideas in liquid structure theory to realize the ionic complex as an open ion-ligated system acting under the influence of an "external field" provided by the host (or surrounding medium). Using considerations derived from this basis, we show that selective complexation arises from exploitation of a particular ion's coordination preferences. These preferences derive from a balance of interactions much like that which dictates the Hofmeister effect. By analyzing the coordination-state space of small family IA and VIIA ions in simulated fluid media, we derive domains of coordinated states that confer selectivity for a given ion upon isolating and constraining particular attributes (order parameters) of a complex comprised of a given type of ligand. We demonstrate that such domains may be used to rationalize the ion-coordinated environments provided by selective ionophores and biological ion channels/transporters of known structure, and that they can serve as a means toward deriving rational design principles for ion-selective hosts.
Collapse
Affiliation(s)
- David L Bostick
- Department of Chemistry and Program in Biophysics, The University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
29
|
|
30
|
Roldán-Vargas S, Barnadas-Rodríguez R, Quesada-Pérez M, Estelrich J, Callejas-Fernández J. Surface fractals in liposome aggregation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:011905. [PMID: 19257067 DOI: 10.1103/physreve.79.011905] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Indexed: 05/17/2023]
Abstract
In this work, the aggregation of charged liposomes induced by magnesium is investigated. Static and dynamic light scattering, Fourier-transform infrared spectroscopy, and cryotransmission electron microscopy are used as experimental techniques. In particular, multiple intracluster scattering is reduced to a negligible amount using a cross-correlation light scattering scheme. The analysis of the cluster structure, probed by means of static light scattering, reveals an evolution from surface fractals to mass fractals with increasing magnesium concentration. Cryotransmission electron microscopy micrographs of the aggregates are consistent with this interpretation. In addition, a comparative analysis of these results with those previously reported in the presence of calcium suggests that the different hydration energy between lipid vesicles when these divalent cations are present plays a fundamental role in the cluster morphology. This suggestion is also supported by infrared spectroscopy data. The kinetics of the aggregation processes is also analyzed through the time evolution of the mean diffusion coefficient of the aggregates.
Collapse
Affiliation(s)
- Sándalo Roldán-Vargas
- Grupo de Física de Fluidos y Biocoloides, Departamento de Física Aplicada, Universidad de Granada, E-18071 Granada, Spain
| | | | | | | | | |
Collapse
|
31
|
Roldán-Vargas S, Barnadas-Rodríguez R, Martín-Molina A, Quesada-Pérez M, Estelrich J, Callejas-Fernández J. Growth of lipid vesicle structures: from surface fractals to mass fractals. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:010902. [PMID: 18763912 DOI: 10.1103/physreve.78.010902] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Indexed: 05/26/2023]
Abstract
We study fractal vesicle aggregates whose morphology is conditioned by the interaction between the lipid vesicle membranes and calcium and magnesium ions. These morphologies are probed by means of static light scattering using a cross-correlation scheme that avoids the multiple intracluster scattering. In contrast to the branched structures induced by calcium, we report a singular surface- to mass-fractal transition controlled by the magnesium concentration. From infrared spectroscopy data we conclude that the specific dehydration of the lipid membranes due to these cations plays an essential role in short-range intervesicle interactions.
Collapse
Affiliation(s)
- Sándalo Roldán-Vargas
- Grupo de Física de Fluidos y Biocoloides, Departamento de Física Aplicada, Universidad de Granada, Granada, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Ohki S, Arnold K. Experimental evidence to support a theory of lipid membrane fusion. Colloids Surf B Biointerfaces 2008; 63:276-81. [PMID: 18242963 DOI: 10.1016/j.colsurfb.2007.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 12/10/2007] [Accepted: 12/14/2007] [Indexed: 11/30/2022]
Abstract
Membrane fusion between two lipid membranes with different curvatures was measured by using a fluorescence fusion assay for lipid vesicle systems and was also obtained by measuring lipid monolayer surface tension upon the fusion of vesicles to monolayer membranes. For such membrane systems, it was found that when lysolipid was incorporated only in the membrane with a greater curvature, membrane fusion was more suppressed than those for the case where the same amount (molar ratio of lysolipid to non-lysolipids) of lysolipid was incorporated only in the membrane with a lower curvature. When lysolipid was incorporated only in a flat membrane (e.g., monolayer) and the fusion of small vesicles (SUV) to the monolayer was measured, suppression of membrane fusion by lysolipid was minimal. It is known that lysolipid lowers the surface energy of curved membranes, which stabilizes energetically such membrane surfaces, and thus suppresses membrane fusion. Our results support our theory of lipid membrane fusion where the membrane fusion occurs through the most curved membrane region at the contact area of two interacting membranes.
Collapse
Affiliation(s)
- Shinpei Ohki
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| | | |
Collapse
|
33
|
Alves M, Bales BL, Peric M. Effect of lysophosphatidylcholine on the surface hydration of phospholipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1778:414-22. [PMID: 18070590 PMCID: PMC2696207 DOI: 10.1016/j.bbamem.2007.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 11/03/2007] [Accepted: 11/09/2007] [Indexed: 11/21/2022]
Abstract
The interfacial properties of the negatively charged dimyristoyl-phosphatidylglycerol (DMPG) and the zwitterionic dimyristoyl-phosphatidylcholine (DMPC) vesicles mixed with the fusion inhibitor lysomyristoylphosphatidylcholine (LMPC) are investigated by electron paramagnetic resonance (EPR). At 35 degrees C, addition of 20 mol% of LMPC to the DMPG vesicles increases the effective concentration of water in the interfacial layer of DMPG vesicles from 19.3 M to 27.7 M, whereas in the case of mixed DMPC-LMPC vesicle the effective water concentration in the interfacial layer of DMPC vesicles only changes from 15.1 M to 18.4 M. The hydrogen bonding structure in both mixed DMPG-LMPC and mixed DMPC-LMPC vesicles becomes stronger with an increasing fraction of LMPC in the vesicles. The average area per phospholipid decreases in mixed DMPC-LMPC vesicles, while it increases in mixed DMPG-LMPC vesicles as the proportion of LMPC in the vesicle increases. The inhibitory nature of LMPC in both vesicle and biological fusion comes from the increase in surface hydration, as well as from the dynamic cone shape of LMPC in the phospholipid bilayer.
Collapse
Affiliation(s)
- Marilene Alves
- Department of Physics and Astronomy and The Center for Supramolecular Studies, California State University at Northridge, Northridge, CA 91330-8268
| | - Barney L. Bales
- Department of Physics and Astronomy and The Center for Supramolecular Studies, California State University at Northridge, Northridge, CA 91330-8268
| | - Miroslav Peric
- Department of Physics and Astronomy and The Center for Supramolecular Studies, California State University at Northridge, Northridge, CA 91330-8268
| |
Collapse
|
34
|
Yao J, Feng Y, Zhao Y, Li Z, Huang J, Fu H. Vesicle aggregation in aqueous mixtures of negatively charged polyelectrolyte and conventional cationic surfactant. J Colloid Interface Sci 2007; 314:523-30. [PMID: 17604041 DOI: 10.1016/j.jcis.2007.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/05/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
Vesicle aggregation induced by different environmental factors, including the addition of divalent metal ions, decrease of pH, and increase of temperature--was investigated through turbidity measurement, fluorescence measurement, and transmission electron microscope observation in aqueous solutions of hydrolyzed styrene-maleic anhydride copolymer (HSMA) mixed with dodecyltriethylammonium bromide (C(12)Et(3)). The vesicle aggregation can be explained by the dehydration of the vesicle surface through cations addition or temperature increase based on an analysis of the interaction between vesicles. Moreover, the steric repulsion was introduced to the system and the control of vesicle aggregation was achieved.
Collapse
Affiliation(s)
- Jingxia Yao
- Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
35
|
Fukuma T, Higgins MJ, Jarvis SP. Direct imaging of lipid-ion network formation under physiological conditions by frequency modulation atomic force microscopy. PHYSICAL REVIEW LETTERS 2007; 98:106101. [PMID: 17358548 DOI: 10.1103/physrevlett.98.106101] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Indexed: 05/14/2023]
Abstract
Various metal cations in physiological solutions interact with lipid headgroups in biological membranes, having an impact on their structure and stability, yet little is known about the molecular-scale dynamics of the lipid-ion interactions. Here we directly investigate the extensive lipid-ion interaction networks and their transient formation between headgroups in a dipalmitoylphosphatidylcholine bilayer under physiological conditions. The spatial distribution of ion occupancy is imaged in real space by frequency modulation atomic force microscopy with sub-Angstrom resolution.
Collapse
Affiliation(s)
- Takeshi Fukuma
- Centre for Research on Adaptive Nanostructures and Nanodevices, Lincoln Place Gate, Trinity College Dublin, Dublin 2, Ireland
| | | | | |
Collapse
|
36
|
Ohki S, Baker GA, Page PM, McCarty TA, Epand RM, Bright FV. Interaction of influenza virus fusion peptide with lipid membranes: effect of lysolipid. J Membr Biol 2006; 211:191-200. [PMID: 17091213 DOI: 10.1007/s00232-006-0862-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 07/12/2006] [Indexed: 11/29/2022]
Abstract
The effect of lysophosphatidylcholine (LPC) on lipid vesicle fusion and leakage induced by influenza virus fusion peptides and the peptide interaction with lipid membranes were studied by using fluorescence spectroscopy and monolayer surface tension measurements. It was confirmed that the wild-type fusion peptide-induced vesicle fusion rate increased several-fold between pH 7 and 5, unlike a mutated peptide, in which valine residues were substituted for glutamic acid residues at positions 11 and 15. This mutated peptide exhibited a much greater ability to induce lipid vesicle fusion and leakage but in a less pH-dependent manner compared to the wild-type fusion peptide. The peptide-induced vesicle fusion and leakage were well correlated with the degree of interaction of these peptides with lipid membranes, as deduced from the rotational correlation time obtained for the peptide tryptophan fluorescence. Both vesicle fusion and leakage induced by the peptides were suppressed by LPC incorporated into lipid vesicle membranes in a concentration-dependent manner. The rotational correlation time associated with the peptide's tryptophan residue, which interacts with lipid membranes containing up to 25 mole % LPC, was virtually the same compared to lipid membranes without LPC, indicating that LPC-incorporated membrane did not affect the peptide interaction with the membrane. The adsorption of peptide onto a lipid monolayer also showed that the presence of LPC did not affect peptide adsorption.
Collapse
Affiliation(s)
- S Ohki
- Department of Physiology & Biophysics, School of Medicine & Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Fan TH, Vinogradova OI. Electrostatic stretching of a charged vesicle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:9418-26. [PMID: 17042563 DOI: 10.1021/la061308s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We present a closed-form solution of electrostatic potential self-induced by a uniformly charged micro/nanovesicle and the corresponding elastic deformation of the vesicle membrane due to Maxwell stress. At equilibrium, the electrostatic force induced on both sides of the membrane is balanced by the elastic force of the stretched membrane. We develop differential and integral solutions of the coupled Poisson-Boltzmann system for a spherical vesicle and demonstrate that the integral solution is relatively flexible in formulating asymmetric configurations. Analytical results are formulated in terms of vesicle size, Debye length, and the surface charge density. The membrane stretching is characterized by the dimensionless group that defines the relative strength of the net electric force with respect to the membrane stiffness. We found that the self-induced electrostatic interaction will lead to a pre-stressed membrane although the small displacement is often negligible compared with the vesicle size. Quantitative analysis also reveals that the electric force can assist the vesicle in recovering its opening pore.
Collapse
Affiliation(s)
- Tai-Hsi Fan
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269-3139, USA.
| | | |
Collapse
|
38
|
Jin Y, Tong L, Ai P, Li M, Hou X. Self-assembled drug delivery systems. Int J Pharm 2006; 309:199-207. [PMID: 16377106 DOI: 10.1016/j.ijpharm.2005.11.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 11/08/2005] [Accepted: 11/15/2005] [Indexed: 11/19/2022]
Abstract
Self-assembled drug delivery systems (SADDS) were designed in the paper. They can be prepared from the amphiphilic conjugates of hydrophilic drugs and lipids through self-assembling into small-scale aggregates in aqueous media. The outstanding characteristic of SADDS is that they are nearly wholly composed of amphiphilic prodrugs. The self-assembled nanoparticles (SAN) as one of SADDS had been prepared from the lipid derivative of acyclovir (SGSA) in the previous paper. They were further studied on the properties and the in vitro/in vivo behavior in this paper. The SAN kept the physical state stable upon centrifugation or some additives including some inorganic salts, alkaline solutions, surfactants and liposomes except for HCl solution, CaCl(2) solution and animal plasma. Autoclave and bath heat for sterilization hardly influenced the SAN. However, gamma-irradiation strongly destroyed the structure of SAN and SGSA was degraded. SGSA in SAN showed good stability in weak acidic or neutral buffers although it was very sensitive to alkaline solutions and carboxylester enzymes, the half-lives (t(1/2)) of which in the buffer at pH 7.4, the alkaline solution at pH 12.0, pig liver carboxylester enzyme solution, rabbit plasma, and rabbit liver tissue homogenate were 495, 21, 4.7, 25 and 8.7 h, respectively. Compared with SGSA in a disordered state, the specific bilayer structures of SAN could protect SGSA from hydrolysis through hiding the sensitive ester bonds. The SAN showed hemolytic action because the amphiphilic SGSA could insert into rabbit erythrocyte membranes. Both the high concentration of SGSA in samples and the long incubation time improved hemolysis. No hemolysis was observed if the additional volume of the SAN was less than 10% of rabbit whole blood in spite of the high concentration of SGSA. Plasma proteins could interfere the interaction between the SAN and erythrocytes by binding the SAN. The in vitro antiviral activity of acyclovir SAN was limited possibly because of the weak hydrolysis of SGSA in Vero cells, and the SAN showed a little cell toxicity possible due to the amphiphilicity of SGSA. A macrophage cell line of QXMSC1 cells showed uptake of the SAN but not significantly. The SAN were rapidly removed from blood circulation after bolus iv administration to rabbits with the very short distribution t(1/2) (1.5 min) and the elimination t(1/2) (47 min). The SAN were mainly distributed in liver, spleen and lung after iv administration, and SGSA was eliminated slowly in these tissues (t(1/2), about 7 h). It would appear that the nanosized SAN were trapped by the mononuclear phagocyte system. SADDS including SAN combine prodrugs, molecular self-assembly with nanotechnology, and hopefully become novel drug delivery approaches.
Collapse
Affiliation(s)
- Yiguang Jin
- Department of Pharmaceutical Chemistry, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | | | | | | | | |
Collapse
|
39
|
Gurtovenko AA, Miettinen M, Karttunen M, Vattulainen I. Effect of Monovalent Salt on Cationic Lipid Membranes As Revealed by Molecular Dynamics Simulations. J Phys Chem B 2005; 109:21126-34. [PMID: 16853736 DOI: 10.1021/jp053667m] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An atomic-scale understanding of cationic lipid membranes is required for development of gene delivery agents based on cationic liposomes. To address this problem, we recently performed molecular dynamics (MD) simulations of mixed lipid membranes comprised of cationic dimyristoyltrimethylammonium propane (DMTAP) and zwitterionic dimyristoylphosphatidylcholine (DMPC) (Biophys. J. 2004, 86, 3461-3472). Given that salt ions are always present under physiological conditions, here we focus on the effects of monovalent salt (NaCl) on cationic (DMPC/DMTAP) membranes. Using atomistic MD simulations, we found that salt-induced changes in membranes depend strongly on their composition. When the DMTAP mole fraction is small (around 6%), the addition of monovalent salt leads to a considerable compression of the membrane and to a concurrent enhancement of the ordering of lipid acyl chains. That is accompanied by reorientation of phosphatidylcholine headgroups in the outward normal direction and slight changes in electrostatic properties. We attribute these changes to complexation of DMPC lipids with Na(+) ions which penetrate deep into the membrane and bind to the carbonyl region of the DMPC lipids. In contrast, at medium and high molar fractions of cationic DMTAP (50 and 75%) a substantial positive surface charge density of the membranes prevents the binding of Na(+) ions, making such membranes almost insensitive to monovalent salt. Finally, we compare our results to the Poisson-Boltzmann theory. With the exception of the immediate vicinity of the bilayer plane, we found excellent agreement with the theory. This is as expected since unlike in the theoretical description the surface is now structured due to its atomic scale nature.
Collapse
Affiliation(s)
- Andrey A Gurtovenko
- Laboratory of Physics and Helsinki Institute of Physics, Helsinki University of Technology, P.O. Box 1100, FI-02015 HUT, Finland
| | | | | | | |
Collapse
|
40
|
Gurtovenko AA. Asymmetry of lipid bilayers induced by monovalent salt: Atomistic molecular-dynamics study. J Chem Phys 2005; 122:244902. [PMID: 16035811 DOI: 10.1063/1.1942489] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Interactions between salt ions and lipid components of biological membranes are essential for the structure, stability, and functions of the membranes. The specific ionic composition of aqueous buffers inside and outside of the cell is known to differ considerably. To model such a situation we perform atomistic molecular-dynamics (MD) simulations of a single-component phosphatidylcholine lipid bilayer which separates two aqueous reservoirs with and without NaCl salt. To implement the difference in electrolyte composition near two membrane sides, a double bilayer setup (i.e., two bilayers in a simulation box) is employed. It turns out that monovalent salt, being in contact with one leaflet only, induces a pronounced asymmetry in the structural, electrostatic, and dynamical properties of bilayer leaflets after 50 ns of MD simulations. Binding of sodium ions to the carbonyl region of the leaflet which is in contact with salt results in the formation of "Na-lipids" complexes and, correspondingly, reduces mobility of lipids of this leaflet. In turn, attractive interactions of chloride ions (mainly located in the aqueous phase close to the water-lipid interface) with choline lipid groups lead to a substantial (more vertical) reorientation of postphatidylcholine headgroups of the leaflet adjoined to salt. The difference in headgroup orientation on two sides of a bilayer, being coupled with salt-induced reorientation of water dipoles, leads to a notable asymmetry in the charge-density profiles and electrostatic potentials of bilayer constitutes of the two leaflets. Although the overall charge density of the bilayer is found to be almost insensitive to the presence of salt, a slight asymmetry in the charge distribution between the two bilayer leaflets results in a nonzero potential difference of about 85 mV between the two water phases. Thus, a transmembrane potential of the order of the membrane potential in a cell can arise without ionic charge imbalance between two aqueous compartments.
Collapse
Affiliation(s)
- Andrey A Gurtovenko
- Laboratory of Physics and Helsinki Institute of Physics, Helsinki University of Technology, Finland.
| |
Collapse
|
41
|
Ichikawa S, Walde P. Phospholipase D-mediated aggregation, fusion, and precipitation of phospholipid vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:941-9. [PMID: 15773127 DOI: 10.1021/la030357r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Large unilamellar vesicles with a diameter of 100 nm were prepared from the zwitterionic phospholipid POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) at pH 8.0. After addition to these vesicles of the enzyme phospholipase D (PLD) from Streptomyces sp. AA586 at 40 degrees C, the terminal phosphate ester bond of POPC was hydrolyzed, yielding the negatively charged POPA (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidic acid) and the positively charged choline. While the reaction yield in the presence of 1 mM Ca2+ reached 100%, the yield was only approximately 68% in the absence of Ca2+. Furthermore, in the absence of Ca2+, the size of the vesicles did not change significantly with time upon PLD addition, as judged from turbidity, dynamic light scattering, and electron microscopy measurements. In the presence of 1 mM Ca2+, however, PLD addition resulted in vesicle aggregation, fusion, and precipitation, originating from the interaction of Ca2+ ions with the negatively charged phospholipids formed in the membranes. Vesicle fusion was monitored by using a novel fusion assay system involving vesicles containing entrapped trypsin and vesicles containing entrapped chymotrypsinogen A. After vesicle fusion, chymotrypsinogen A transformed into a-chymotrypsin, catalyzed by trypsin inside the fused vesicles. The alpha-chymotrypsin formed could be detected with benzoyl-L-Tyr-p-nitroanilide as a membrane permeable chymotrypsin substrate. The observed vesicle precipitation occurring after vesicle fusion in the presence of 1 mM Ca2+ was correlated with an increase of the main phase transition temperature, Tm, of POPA to values above 40 degrees C.
Collapse
Affiliation(s)
- Sosaku Ichikawa
- Departement Materialwissenschaft, Eidgenössische Technische Hochschule (ETH) Zürich, Universitätstrasse 6, CH-8092 Zürich, Switzerland.
| | | |
Collapse
|
42
|
Pandit SA, Bostick D, Berkowitz ML. Molecular dynamics simulation of a dipalmitoylphosphatidylcholine bilayer with NaCl. Biophys J 2003; 84:3743-50. [PMID: 12770880 PMCID: PMC1302956 DOI: 10.1016/s0006-3495(03)75102-9] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Molecular dynamics simulations are performed on two hydrated dipalmitoylphosphatidylcholine bilayer systems: one with pure water and one with added NaCl. Due to the rugged nature of the membrane/electrolyte interface, ion binding to the membrane surface is characterized by the loss of ion hydration. Using this structural characterization, binding of Na(+) and Cl(-) ions to the membrane is observed, although the binding of Cl(-) is seen to be slightly weaker than that of Na(+). Dehydration is seen to occur to a different extent for each type of ion. In addition, the excess binding of Na(+) gives rise to a net positive surface charge density just outside the bilayer. The positive density produces a positive electrostatic potential in this region, whereas the system without salt shows an electrostatic potential of zero.
Collapse
Affiliation(s)
- Sagar A Pandit
- Department of Chemistry, Program in Molecular/Cell Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
43
|
Abstract
Phospholipid vesicles are well-studied biomembrane mimics that are of increasing interest in drug delivery, immunoassays, and sensor chips. In a number of biosensor applications it is desirable to be able to adhere vesicles to a surface in a manner which does not result in their rupture or fusion. Such behavior should, in principle, be achievable by controlling the vesicle-surface and vesicle-vesicle interactions. We have varied vesicle composition and charge (phosphatidylcholine, phosphatidylcholine-phosphatidic acid 18 mol%) and solution ionic strength, to study the adhesion of fluorescent vesicles to glass, gold, and gold modified with chemisorbed acetyl-cysteine. The extent of chemisorption was characterized with angle-resolved X-ray photoelectron spectroscopy (ARXPS), and vesicle integrity and behavior was studied using entrapped and lipophilic fluorescent markers, together and in separate measurements. Vesicle fusion (by energy transfer), adhesion of intact vesicles (with entrapped calcein) and diffusion coefficients (by photobleaching recovery) were monitored using confocal fluorescence microscopy. Acetyl-cysteine modified gold surfaces were shown to be appropriate substrates for adhesion of intact vesicles. Finally, as a 'proof of principle' for fluorescence amplification, release of a self-quenching entrapped reporter dye (calcein) by the detergent Triton X-100 was followed in real time.
Collapse
Affiliation(s)
- Stavroula Sofou
- Department of Chemical Engineering and Applied Chemistry, Columbia University, 500 West 120th Street, # 4721, New York, NY 10027, USA
| | | |
Collapse
|
44
|
Ohki S, Arnold K. Determination of Liposome Surface Dielectric Constant and Hydrophobicity. Methods Enzymol 2003; 367:253-72. [PMID: 14611069 DOI: 10.1016/s0076-6879(03)67016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- S Ohki
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | |
Collapse
|
45
|
Binder H, Zschörnig O. The effect of metal cations on the phase behavior and hydration characteristics of phospholipid membranes. Chem Phys Lipids 2002; 115:39-61. [PMID: 12047897 DOI: 10.1016/s0009-3084(02)00005-1] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To characterize the specificity of ion binding to phospholipids in terms of headgroup structure, hydration and lyotropic phase behavior we studied 1-palmitoyl-2-oleoyl-phosphatidylcholine as a function of relative humidity (RH) at 25 degrees C in the presence and absence of Li+, Na+, K+, Be2+, Mg2+, Ca2+, Sr2+, Ba2+, Zn2+ and Cu2+ ions by means of infrared (IR) spectroscopy. All divalent cations and Li+ shift the gel-to-liquid crystalline phase transition towards bigger RH values indicating stabilization of the gel state. The observed shift correlates in a linearly fashion with the electrostatic solvation free energy for most of the ions in water that in turn, is inversely related to the ionic radius. This interesting result was interpreted in terms of the excess chemical potential of mixing of hydrated ions and lipids. Calcium, zinc and partially lithium, cause a positive deviation from the linear relationship. IR spectral analysis shows that the carbonyl groups become more accessible to the water in the presence of Mg2+, Ca2+, Sr2+ and Ba2+ probably because of their involvement into the hydration shell of the ions. In contrast, Be2+, Zn2+ and Cu2+ dehydrate the carbonyl groups at small and medium RH. The ability of the lipid to take up water is distinctly reduced in the presence of Zn2+ and, partially, of Cu2+ meaning that the headgroups have become less hydrophilic. The binding mode of Be2+ to lipid headgroups involves hydrolyzed water. Polarized IR spectra show that complex formation of the phosphate groups with divalent ions gives rise to conformational changes and immobilization of the headgroups. The results are discussed in terms of the lyotropic Hofmeister series and of fusogenic activity of the ionic species.
Collapse
Affiliation(s)
- Hans Binder
- Department of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Liebigstr. 27, Leipzig, Germany.
| | | |
Collapse
|