1
|
Alejo T, Sebastian V, Mendoza G, Arruebo M. Hybrid thermoresponsive nanoparticles containing drug nanocrystals for NIR-triggered remote release. J Colloid Interface Sci 2021; 607:1466-1477. [PMID: 34592544 DOI: 10.1016/j.jcis.2021.09.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/23/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022]
Abstract
The on-demand administration of anaesthetic drugs can be a promising alternative for chronic pain management. To further improve the efficacy of drug delivery vectors, high drug loadings combined with a spatiotemporal control on the release can not only relief the pain according to patient's needs, but also improve the drawbacks of conventional burst release delivery systems. In this study, a hybrid nanomaterial was developed by loading bupivacaine nanocrystals (BNCs) into oligo(ethylene glycol) methyl ether methacrylate (OEGMA)-based thermoresponsive nanogels and coupling them to NIR-absorbing biodegradable copper sulphide nanoparticles (CuS NPs). Those CuS NPs were surface modified with polyelectrolytes using layer-by-layer techniques to be efficiently attached to the surface of nanogels by means of supramolecular interactions. The encapsulation of bupivacaine in the form of nanocrystals allowed to achieve CuS@BNC-nanogels having drug loadings as high as 65.5 wt%. The nanocrystals acted as long-lasting drug reservoirs, leading to an elevated localized drug content, which was useful for their application in prolonged pain relief. The CuS@BNC-nanogels exhibited favorable photothermal transducing properties upon NIR-light irradiation. The photothermal effect granted by the CuS NPs triggered the nano-crystallized drug release to be boosted by the collapse of the thermoresponsive nanogels upon heating. Remote control was achieved for on-demand release at a specific time and place, indicating their potential use as an externally activated triggerable drug-delivery system. Furthermore, cell viability tests and flow cytometry analysis were performed showing satisfactory cytocompatibility in the dose-ranging study having a subcytotoxic concentration of 0.05 mg/mL for CuS@BNC-nanogels. This remotely activated nanoplatform is a promising strategy for long-lasting controlled analgesia and a potential alternative for clinical pain management.
Collapse
Affiliation(s)
- Teresa Alejo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro - Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain.
| | - Victor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro - Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain; Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Gracia Mendoza
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain; Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro - Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain; Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
2
|
Alejo T, Uson L, Landa G, Prieto M, Yus Argón C, Garcia-Salinas S, de Miguel R, Rodríguez-Largo A, Irusta S, Sebastian V, Mendoza G, Arruebo M. Nanogels with High Loading of Anesthetic Nanocrystals for Extended Duration of Sciatic Nerve Block. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17220-17235. [PMID: 33821601 PMCID: PMC8892441 DOI: 10.1021/acsami.1c00894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The development of thermoresponsive nanogels loaded with nanocrystals of the local anesthetic bupivacaine nanocrystals (BNCs) for prolonged peripheral nerve pain relief is reported here. BNCs were prepared using the antisolvent precipitation method from the hydrophobic form of bupivacaine (bupivacaine free base). The as-prepared BNCs were used stand-alone or encapsulated in temperature-responsive poly(ethylene glycol) methyl ether methacrylate (OEGMA)-based nanogels, resulting in bupivacaine NC-loaded nanogels (BNC-nanogels) of monodisperse size. The synthesis protocol has rendered high drug loadings (i.e., 93.8 ± 1.5 and 84.8 ± 1.2 wt % for the NC and BNC-nanogels, respectively) and fast drug dissolution kinetics in the resulting composite material. In vivo tests demonstrated the efficacy of the formulation along with an extended duration of sciatic nerve block in murine models of more than 8 h with a formulation containing only 2 mg of the local anesthetic thanks to the thermoresponsive character of the polymer, which, at body temperature, becomes hydrophobic and acts as a diffusion barrier for the encapsulated drug nanocrystals. The hydrophobicity of the encapsulated bupivacaine free base probably facilitates its pass through cell membranes and also binds strongly to their hydrophobic lipid bilayer, thereby protecting molecules from diffusion to extracellular media and to the bloodstream, reducing their clearance. When using BNC-nanogels, the duration of the anesthetic blockage lasted twice as long as compared to the effect of just BNCs or a conventional bupivacaine hydrochloride solution both containing equivalent amounts of the free drug. Results of the in vivo tests showed enough sensory nerve block to potentially relieve pain, but still having mobility in the limb, which enables motor function when required. The BNC-nanogels presented minimal toxicity in the in vivo study due to their sustained drug release and excellent biocompatibility. The encapsulation of nano-sized crystals of bupivacaine provides a prolonged regional anesthesia with reduced toxicity, which could be advantageous in the management of chronic pain.
Collapse
Affiliation(s)
- Teresa Alejo
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Laura Uson
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Guillermo Landa
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Martin Prieto
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Cristina Yus Argón
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Sara Garcia-Salinas
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Ricardo de Miguel
- Department
of Animal Pathology, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain
| | - Ana Rodríguez-Largo
- Department
of Animal Pathology, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain
| | - Silvia Irusta
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
- Aragon
Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Victor Sebastian
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
- Aragon
Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Gracia Mendoza
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
- Aragon
Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Manuel Arruebo
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro—Edificio
I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
- Aragon
Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
3
|
In vitro dissolution testing of parenteral aqueous solutions and oily suspensions of paracetamol and prednisolone. Int J Pharm 2017; 532:519-527. [DOI: 10.1016/j.ijpharm.2017.09.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/24/2017] [Accepted: 09/18/2017] [Indexed: 12/31/2022]
|
4
|
Xie L, Beyer S, Vogel V, Wacker MG, Mäntele W. Assessing the drug release from nanoparticles: Overcoming the shortcomings of dialysis by using novel optical techniques and a mathematical model. Int J Pharm 2015; 488:108-19. [DOI: 10.1016/j.ijpharm.2015.03.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 12/21/2022]
|
5
|
Chiang PC, Wong H. Incorporation of physiologically based pharmacokinetic modeling in the evaluation of solubility requirements for the salt selection process: a case study using phenytoin. AAPS J 2013; 15:1109-18. [PMID: 23943382 PMCID: PMC3787220 DOI: 10.1208/s12248-013-9519-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/26/2013] [Indexed: 11/30/2022] Open
Abstract
In the pharmaceutical industry, salt is commonly used to improve the oral bioavailability of poorly soluble compounds. Currently, there is a limited understanding on the solubility requirement for salts that will translate to improvement in oral exposure. Despite the obvious need, there is very little research reported in this area mainly due to the complexity of such a system. To our knowledge, no report has been published to guide this important process and salt solubility requirement still remains unanswered. Physiologically based pharmacokinetic (PBPK) modeling offers a means to dynamically integrate the complex interplay of the processes determining oral absorption. A sensitivity analysis was performed using a PBPK model describing phenytoin to determine a solubility requirement for phenytoin salts needed to achieve optimal oral bioavailability for a given dose. Based on the analysis, it is predicted that phenytoin salts with solubility greater than 0.3 mg/mL would show no further increases in oral bioavailability. A salt screen was performed using a variety of phenytoin salts. The piperazine and sodium salts showed the lowest and highest aqueous solubility and were tested in vivo. Consistent with our analysis, we observed no significant differences in oral bioavailability for these two salts despite an approximate 60 fold difference in solubility. Our study illustrates that higher solubility salts sometimes provide no additional improvements in oral bioavailability and PBPK modeling can be utilized as an important tool to provide guidance to the salt selection and define a salt solubility requirement.
Collapse
Affiliation(s)
- Po-Chang Chiang
- />Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080 USA
| | - Harvey Wong
- />Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, California 94080 USA
| |
Collapse
|
6
|
Drug release testing methods of polymeric particulate drug formulations. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2013. [DOI: 10.1007/s40005-013-0072-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Use of in vitro release models in the design of sustained and localized drug delivery systems for subcutaneous and intra-articular administration. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50048-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Ajazuddin, Alexander A, Khan J, Giri TK, Tripathi DK, Saraf S, Saraf S. Advancement in stimuli triggered in situ gelling delivery for local and systemic route. Expert Opin Drug Deliv 2012; 9:1573-92. [PMID: 23075325 DOI: 10.1517/17425247.2013.734806] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Current research efforts focused on the design and evaluation of drug delivery systems that are easy to administer require decreased administration frequency, and provide sustained drug release in order to increase clinical efficacy and compliance of the patients. The gel forming smart polymeric formulations offer numerous applications resemble sustained and prolonged action in contrast to conventional drug delivery systems. AREAS COVERED Article summarizes type of bioactive, sol-gel triggering factors, dose, rationales, and polymers involved in gelation with respect to their route of administration. A lot of work has been done with smart polymeric gelling system taking the advantage of stimuli (temperature and pH) triggered sol-gel phase-transition in the administered area that have great prospective in biomedical and pharmaceutical applications, particularly in target-specific controlled drug delivery systems. EXPERT OPINION Although the principle of gelation is so attractive, key issues remain to be solved which include (i) variability of the drug release, (ii) avoidance of burst release in case of depot formulation, and (iii) issues related to toxicity. Unfortunately, till now area concerning the detailed processes of the gelling formation is still not much explored. Despite this proclamation, many efforts are made in industry and institutions to improve concerned approaches. New materials and approaches enter the preclinical and clinical phases and one can be sure that this strategy will gain further clinical importance within the next years. Thus, this review article will assuredly serve as an informative tool for the innovators working in the concern area.
Collapse
Affiliation(s)
- Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, C.G., 490024, India
| | | | | | | | | | | | | |
Collapse
|
9
|
Larsen SW, Frost AB, Østergaard J, Thomsen MH, Jacobsen S, Skonberg C, Hansen SH, Jensen HE, Larsen C. In vitro and in vivo characteristics of celecoxib in situ formed suspensions for intra-articular administration. J Pharm Sci 2011; 100:4330-7. [DOI: 10.1002/jps.22630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/02/2010] [Accepted: 04/27/2011] [Indexed: 11/08/2022]
|
10
|
Chiang PC, South SA, Daniels J, Anderson DR, Wene SP, Albin LA, Mourey RJ, Selbo JG. Aqueous versus non-aqueous salt delivery strategies to enhance oral bioavailability of a mitogen-activated protein kinase-activated protein kinase (MK-2) inhibitor in rats. J Pharm Sci 2009; 98:248-56. [DOI: 10.1002/jps.21425] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Solid dispersion of meloxicam: factorially designed dosage form for geriatric population. ACTA PHARMACEUTICA 2008; 58:99-110. [PMID: 18337211 DOI: 10.2478/v10007-007-0048-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The objective of the present work was to improve the dissolution properties of the poorly water-soluble drug meloxicam by preparing solid dispersions with hydroxyethyl cellulose (HEC), mannitol and polyethylene glycol (PEG) 4000 and to develop a dosage form for geriatric population. Differential scanning calorimetry, X-ray diffractometry, Fourier transform infrared spectroscopy and scanning electron microscopy were used to investigate the solid-state physical structure of the prepared solid dispersions. Higher in vitro dissolution of solid dispersions was recorded compared to their corresponding physical mixtures and the pure drug. PEG 4000 in 1: 9 drug to carrier ratio exhibited the highest drug release (100.2%), followed by mannitol (98.2%) and HEC (89.5%) in the same ratio. Meloxicam-PEG 4000 solid dispersion was formulated into suspension and optimization was carried out by 23 factorial design. Formulations containing higher levels of methyl cellulose and higher levels of either sodium citrate or Tween 80 exhibited the highest drug release.
Collapse
|
12
|
Larsen SW, Østergaard J, Poulsen SV, Schulz B, Larsen C. Diflunisal salts of bupivacaine, lidocaine and morphine. Eur J Pharm Sci 2007; 31:172-9. [PMID: 17462869 DOI: 10.1016/j.ejps.2007.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/12/2007] [Accepted: 03/12/2007] [Indexed: 10/23/2022]
Abstract
The present work describes the characterization of diflunisal salts of the analgesic agents bupivacaine, lidocaine, and morphine including their solubility behaviour and release characteristics from solutions and selected salt suspensions in vitro using the rotating dialysis cell model. The solubility of the 1:1 salts at pH 7.4 differed by a factor of 9 with the bupivacaine and lidocaine salts representing the poorest and most soluble salt (0.73 and 6.6mM, respectively). Common ion effects were observed for the diflunisal salts of bupivacaine and morphine when various concentrations of the lidocaine-diflunisal salt were present in aqueous buffer (pH 7.4). The most pronounced salting-out effect was observed for the poorest soluble salt. From Setschenow type plots apparent salting-out constants of 265 M(-1) (bupivacaine) and 54.7 M(-1) (morphine) were calculated. After instillation of mixed salt suspensions comprising the diflunisal salts of bupivacaine and lidocaine into the donor cell of the release model, lidocaine appeared rapidly in the acceptor phase. After clearance of lidocaine from the donor cell, equal and constant fluxes of bupivacaine and diflunisal were observed. The residence times of bupivacaine within the donor compartment was prolonged with increasing lidocaine-diflunisal salt load in the mixed suspensions whereas the slopes of the linear part of the bupivacaine release profiles were affected to a minor extent only. The obtained data indicate that local multimodal analgesia, characterized by rapid onset and extended duration of action, can be achieved upon injection of mixed suspensions of salts differing with respect to aqueous solubility comprising a common ion into a small body compartment (such as the joint cavity).
Collapse
Affiliation(s)
- Susan W Larsen
- Department of Pharmaceutics and Analytical Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
13
|
Söderberg L, Dyhre H, Roth B, Björkman S. The "inverted cup" -- a novel in vitro release technique for drugs in lipid formulations. J Control Release 2006; 113:80-8. [PMID: 16697069 DOI: 10.1016/j.jconrel.2006.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 03/21/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022]
Abstract
The aim of this study was to develop a membrane-free in vitro release method for drugs in lipid formulations. It was intended to be applicable to as wide a range as possible of preparations, independently of their polarity and viscosity. The principle of the novel technique is to keep the sample suspended in the release medium in an inverted glass cup, allowing a possible phase transition or swelling. Thirteen formulations containing bupivacaine, lidocaine and/or prilocaine in lipid vehicles with different physical properties were prepared and examined. When possible, in vitro release profiles obtained by the new method were compared to profiles obtained by earlier techniques. For three formulations of either bupivacaine or lidocaine in polar lipid formulations, in vitro release profiles were evaluated in relation to in vivo data, from nerve block and pharmacokinetic studies in rats. Preparations that could be investigated both by the "inverted cup" and by the earlier published "single drop" technique generally showed good agreement between the two release profiles. In the case of the polar lipid formulations, arterial blood concentration curves in rats could reasonably be predicted from the in vitro release profiles. In conclusion, the "inverted cup" technique should potentially be applicable to a wide range of lipid formulations of drugs, both for physico-chemical characterisation and for obtaining in vitro -- in vivo correlations.
Collapse
Affiliation(s)
- Lars Söderberg
- Hospital Pharmacy, Malmö University Hospital, Malmö, Sweden; Department of Food Technology, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
14
|
D'Souza SS, DeLuca PP. Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm Res 2006; 23:460-74. [PMID: 16400516 DOI: 10.1007/s11095-005-9397-8] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 11/03/2005] [Indexed: 10/25/2022]
Abstract
This review provides a compilation of the methods used to study real-time (37 degrees C) drug release from parenteral microparticulate drug delivery systems administered via the subcutaneous or intramuscular route. Current methods fall into three broad categories, viz., sample and separate, flow-through cell, and dialysis techniques. The principle of the specific method employed along with the advantages and disadvantages are described. With the "sample and separate" technique, drug-loaded microparticles are introduced into a vessel, and release is monitored over time by analysis of supernatant or drug remaining in the microspheres. In the "flow-through cell" technique, media is continuously circulated through a column containing drug-loaded microparticles followed by analysis of the eluent. The "dialysis" method achieves a physical separation of the drug-loaded microparticles from the release media by use of a membrane, which allows for sampling without interference of the microspheres. With all these methods, the setup and sampling techniques seem to influence in vitro release; the results are discussed in detail, and criteria to aid in selection of a method are stated. Attempts to establish in vitro-in vivo correlation for these injectable dosage forms are also discussed. It would be prudent to have an in vitro test method for microparticles that satisfies compendial and regulatory requirements, is user friendly, robust, and reproducible, and can be used for quality-control purposes at real-time and elevated temperatures.
Collapse
Affiliation(s)
- Susan S D'Souza
- University of Kentucky College of Pharmacy, Lexington, Kentucky, 40536, USA
| | | |
Collapse
|
15
|
Østergaard J, Larsen SW, Parshad H, Larsen C. Bupivacaine salts of diflunisal and other aromatic hydroxycarboxylic acids: aqueous solubility and release characteristics from solutions and suspensions using a rotating dialysis cell model. Eur J Pharm Sci 2005; 26:280-7. [PMID: 16087321 DOI: 10.1016/j.ejps.2005.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 05/24/2005] [Accepted: 06/21/2005] [Indexed: 10/25/2022]
Abstract
In the search for poorly soluble bupivacaine salts potentially enabling prolonged postoperative pain relief after local joint administration in the form of suspensions the solubility of bupivacaine salts of diflunisal and other aromatic hydroxycarboxylic acids were investigated together with the release characteristics of selected 1:1 salts from solutions and suspensions using a rotating dialysis cell model. The poorest soluble bupivacaine salts were obtained from the aromatic ortho-hydroxycarboxylic acids diflunisal, 5-iodosalicylic acid, and salicylic acid (aqueous solubilities: 0.6-1.9 mM at 37 degrees C). Diffusant appearance rates in the acceptor phase upon instillation of solutions of various salts in the donor cell applied to first-order kinetics. Calculated permeability coefficients for bupivacaine and the counterions diflunisal, 5-iodosalicylic acid, and mandelic acid were found to be correlated with the molecular size of the diffusants. Release experiments at physiological pH involving suspensions of the bupivacaine-diflunisal salt revealed that at each sampling point the diflunisal concentration exceeded that of bupivacaine in the acceptor phase. However, after an initial lag period, a steady state situation was attained resulting in equal and constant fluxes of the two diffusants controlled by the permeability coefficients in combination with the solubility product of the salt. Due to the fact that the saturation solubility of the bupivacaine-salicylic acid salt in water exceeded that of bupivacaine at pH 7.4, suspensions of the latter salt were unable to provide simultaneous release of the cationic and anionic species at pH 7.4. The release profiles were characterised by a rapid release of salicylate accompanied by a much slower appearance of bupivacaine in the acceptor phase caused by precipitation of bupivacaine base from the solution upon dissolution of the salt in the donor cell.
Collapse
Affiliation(s)
- Jesper Østergaard
- Department of Analytical Chemistry, The Danish University of Pharmaceutical Sciences, Copenhagen, Denmark
| | | | | | | |
Collapse
|
16
|
Pedersen BT, Ostergaard J, Larsen SW, Larsen C. Characterization of the rotating dialysis cell as an in vitro model potentially useful for simulation of the pharmacokinetic fate of intra-articularly administered drugs. Eur J Pharm Sci 2005; 25:73-9. [PMID: 15854803 DOI: 10.1016/j.ejps.2005.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 01/20/2005] [Accepted: 01/28/2005] [Indexed: 11/26/2022]
Abstract
The rotating dialysis cell consisting of a donor and an acceptor compartment with volumes of 10 and 1000 ml, respectively, separated by a dialysis membrane is proposed as an in vitro model potentially useful for simulation of the events influencing drug residence time in the knee joint cavity after intra-articular instillation. The purpose of this study was to characterize the rotating dialysis cell model with respect to basic model and drug related factors affecting the rate of drug appearance in the acceptor phase after initial instillation of the solutes into the donor cell. A total of 15 model compounds were included in the study and it was revealed that the transport processes were governed by (i) the volume of the donor solution and (ii) the molecular weight of the diffusants. A relationship between the donor volume-independent permeability coefficient and the molecular weight of the diffusants has been established. Additionally, the model was robust with release kinetics being insensitive to changes in pH, ionic strength, viscosity of the release medium, and revolution speed of the donor cell. The characteristics of the rotating dialysis cell model suggest that it may be a useful tool in the design of innovative depot injectables in the area of local joint delivery.
Collapse
Affiliation(s)
- Brian Thoning Pedersen
- Department of Pharmaceutics, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|