1
|
Hu Z, Zhang R, Xu S, Wang J, Li X, Hu J, Reheman A. Construction of nano-drug delivery and antitumor system of stimuli-responsive polypeptides. Colloids Surf B Biointerfaces 2023; 226:113310. [PMID: 37054465 DOI: 10.1016/j.colsurfb.2023.113310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/06/2023] [Accepted: 04/08/2023] [Indexed: 04/15/2023]
Abstract
The size of the nanoparticles is moderate and the dispersion is well, which will not be recognized nonspecifically and clearance by the endothelial reticular system. In this study, stimuli-responsive polypeptides nano-delivery system has been constructed, which can realize the response to various stimuli in the tumor microenvironment. Tertiary amine groups are grafted to the side chain of polypeptides as the point of charge reversal and particle expansion. In addition, a new kind of liquid crystal monomer was prepared by substituting cholesterol-cysteamine, which can promote polymers to realize the transformation of spatial conformation by adjusting the ordered arrangement of macromolecules. The introduction of hydrophobic elements greatly enhanced the self-assembly performance of polypeptides, which could effectively improve the drug loading and encapsulation rate of nanoparticles. Nanoparticles could achieve targeted aggregation in tumor tissues, and there were no toxicity and side effects on normal bodies during treatment, with good safety in vivo.
Collapse
Affiliation(s)
- Zhuang Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Rui Zhang
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Shiying Xu
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian 352100, PR China
| | - Jiwei Wang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian 352100, PR China; Fujian Province University Engineering Research Center of Mindong She Medicine, Medical College, Ningde Normal University, Ningde, Fujian 352100, PR China
| | - Xianjun Li
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian 352100, PR China; Fujian Province University Engineering Research Center of Mindong She Medicine, Medical College, Ningde Normal University, Ningde, Fujian 352100, PR China.
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China.
| | - Aikebaier Reheman
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian 352100, PR China; Fujian Province University Engineering Research Center of Mindong She Medicine, Medical College, Ningde Normal University, Ningde, Fujian 352100, PR China
| |
Collapse
|
2
|
Hu Z, Wang G, Zhang R, Wang L, Wang J, Hu J, Reheman A. Construction of poly(amino acid)s nano-delivery system and sustained release with redox-responsive. Colloids Surf B Biointerfaces 2023; 224:113232. [PMID: 36868182 DOI: 10.1016/j.colsurfb.2023.113232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
A series of novel poly(amino acid)s materials were designed to prepare drug-loaded nanoparticles by physical encapsulation and chemical bonding. The side chain of the polymer contains a large number of amino groups, which effectively increases the loading rate of doxorubicin (DOX). The structure contains disulfide bonds that showing a strong response to the redox environment, which can achieve targeted drug release in the tumor microenvironment. Nanoparticles mainly present spherical morphology with the suitable size for participating in systemic circulation. cell experiments demonstrate the non-toxicity and good cellular uptake behavior of polymers. In vivo anti-tumor experiments shows nanoparticles could inhibit tumor growth and effectively reduce the side effects of DOX.
Collapse
Affiliation(s)
- Zhuang Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Gongshu Wang
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Rui Zhang
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Lijuan Wang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian 352100, PR China
| | - Jiwei Wang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian 352100, PR China; Fujian Province University Engineering Research Center of Mindong She Medicine, Medical College, Ningde Normal University, Ningde, Fujian 352100, PR China
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China.
| | - Aikebaier Reheman
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian 352100, PR China; Fujian Province University Engineering Research Center of Mindong She Medicine, Medical College, Ningde Normal University, Ningde, Fujian 352100, PR China.
| |
Collapse
|
3
|
Hu Z, Wang G, Zhang R, Yang Y, Wang J, Hu J, Reheman A. Sustained-release behavior and the antitumor effect of charge-convertible poly(amino acid)s drug-loaded nanoparticles. Drug Deliv Transl Res 2023:10.1007/s13346-023-01323-w. [PMID: 36913103 DOI: 10.1007/s13346-023-01323-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Enhancing tissue permeability and achieving drug aggregation is the key to targeted tumor therapy. A series triblock copolymers of poly(ethylene glycol)-poly(L-lysine)-poly(L-glutamine) were synthesized by ring-opening polymerization, and charge-convertible nano-delivery system was constructed by loading doxorubicin (DOX) with 2-(hexaethylimide) ethanol on side chain. In normal environment (pH = 7.4), the zeta potential of the drug-loaded nanoparticle solution is negative, which is conducive to avoiding the identification and clearance of nanoparticles by the reticulo-endothelial system, while potential-reversal can be achieved in the tumor microenvironment, which effectively promotes cellular uptake. Nanoparticles could effectively reduce the distribution of DOX in normal tissues and achieve targeted aggregation at tumor sites, which can effectively improve the antitumor effect, while would not causing toxicity and damage to normal body.
Collapse
Affiliation(s)
- Zhuang Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Gongshu Wang
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Rui Zhang
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Yingyu Yang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, 352100, People's Republic of China
| | - Jiwei Wang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, 352100, People's Republic of China.
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China.
| | - Aikebaier Reheman
- Fujian Province University Engineering Research Center of Mindong She Medicine, Medical College, Ningde Normal University, Ningde, Fujian, 352100, People's Republic of China
| |
Collapse
|
4
|
Hu Z, Wang J, Han S, Jiang S, Hu J, Reheman A. Study on the sustained release properties of drug-loaded nanomicelles with amphiphilic poly(amino acid)s. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2155193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhuang Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, P. R. China
| | - Jiwei Wang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian 352100, P. R. China
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Siyu Han
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, P. R. China
| | - Shizhi Jiang
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, P. R. China
| | - Aikebaier Reheman
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian 352100, P. R. China
| |
Collapse
|
5
|
Sustained release properties of liquid crystal functionalized poly (amino acid)s nanoparticles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Erkoç T, Sevgili LM, Çavuş S. Hydroxypropyl cellulose/Polyvinylpyrrolidone Matrix Tablets Containing Ibuprofen: Infiltration, Erosion and Drug Release Characteristics. ChemistrySelect 2022. [DOI: 10.1002/slct.202202180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tuğba Erkoç
- Istanbul University-Cerrahpaşa Faculty of Engineering Department of Chemical Engineering 34320 Istanbul Turkey
| | - Lutfullah M. Sevgili
- Istanbul University-Cerrahpaşa Faculty of Engineering Department of Chemical Engineering 34320 Istanbul Turkey
| | - Selva Çavuş
- Istanbul University-Cerrahpaşa Faculty of Engineering Department of Chemical Engineering 34320 Istanbul Turkey
| |
Collapse
|
7
|
Yun L, Li K, Liu C, Deng L, Li J. Dual-modified starch micelles as a promising nanocarrier for doxorubicin. Int J Biol Macromol 2022; 219:685-693. [PMID: 35878670 DOI: 10.1016/j.ijbiomac.2022.07.141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
Natural amphiphilic polymer micelles have garnered considerable research attention as nanocarriers for delivering drugs. The objective of this study was to explore the possibility of applying biocompatible dual-modified starch micelles as drug delivery vehicles. To this end, a dual-modified corn starch polymer (SCD) was synthesized with zwitterionic sulfobetaine and deoxycholic acid; spherical micelles with an average particle size of ~200 nm were prepared through the self-assembly of SCD. The effects of dual modification on the degree of substitution, molecular structure, and functional properties of SCD were investigated. Further, doxorubicin was successfully incorporated into the micelles, and an in vitro drug release study was performed to confirm that the drug-loaded micelles displayed pH-sensitive properties with controlled and sustained release. The dissolve-diffuse-erosion-degradation release process was described according to the dynamic models of drug release for SCD micelles. The results can be used as reference information for further studies in the biotechnology and pharmaceutical domains.
Collapse
Affiliation(s)
- Linqi Yun
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; The Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, PR China
| | - Cancan Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Ligao Deng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China.
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
8
|
Li L, Zhu X, Yang H, Liang B, Yuan L, Hu Y, Chen F, Han X. Phase-Field Model for Drug Release of Water-Swellable Filaments for Fused Filament Fabrication. Mol Pharm 2022; 19:2854-2867. [PMID: 35801946 DOI: 10.1021/acs.molpharmaceut.2c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper treats the drug release process as a phase-field problem and a phase-field model capable of simulating the dynamics of multiple moving fronts, transient drug fluxes, and fractional drug release from swellable polymeric systems is proposed and validated experimentally. The model can not only capture accurately the positions and movements of the distinct fronts without tracking the locations of fronts explicitly but also predict well the release profile to the completion of the release process. The parametric study has shown that parameters including water diffusion coefficient, drug saturation solubility, drug diffusion coefficient, initial drug loading ratio, and initial porosity are critical in regulating the drug release kinetics. It has been also demonstrated that the model can be applied to the study of swellable filaments and has wide applicability for different materials. Due to explicit boundary position tracking being eliminated, the model paves the way for practical use and can be extended for dealing with geometrically complex drug delivery systems. It is a useful tool to guide the design of new controlled delivery systems fabricated by fused filament fabrication.
Collapse
Affiliation(s)
- Ling Li
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China.,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| | - Xiaolong Zhu
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China.,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| | - Huaiyu Yang
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, U.K
| | - Bangchao Liang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China.,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| | - Lei Yuan
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China.,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| | - Yueqiang Hu
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| | - Feng Chen
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| | - Xiaoxiao Han
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China.,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| |
Collapse
|
9
|
Gel Strength of Hydrophilic Matrix Tablets in Terms of In Vitro Robustness. Pharm Res 2021; 38:1297-1306. [PMID: 34152536 PMCID: PMC8292303 DOI: 10.1007/s11095-021-03068-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/27/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to correlate the gel strength of swollen matrix tablets with their in vitro robustness against agitation intensity and applied mechanical forces. Five commercial products, i.e. Glucophage®, Alfuzosin®, Tromphyllin®, Preductal® MR and Quetiapin® formulated as water-soluble/erodible matrix tablets were investigated. METHODS Effect of agitation speed (50-150 rpm) on drug release, hydration/erosion and gel strength was investigated using USP paddle apparatus II. The gel strength of matrix tablets during dissolution at different conditions was characterized by a texture analyzer. RESULTS Commercial tablets formulated with HPMC of higher viscosity, such as K15M or K100M, demonstrated the gel strength in swollen state >0.02 MPa. In this case, the release mechanism was predominantly diffusional and, therefore, not affected by stirring speed and mechanical stress. In contrast, the Quetiapin® matrix tablet, formulated with HPMC K 4 M in amount of approx. 25%, demonstrated the gel strength dropped below 0.02 MPa after 6 h of release. In this case, the drug was predominantly released via erosional mechanism and very susceptible to stirring speed. CONCLUSION Sufficient gel strength of swollen tablets is an important prerequisite for unchanged in vitro performance in consideration of mechanical stress.
Collapse
|
10
|
Biswal AK, Thodikayil AT, Saha S. pH-Sensitive Acetalated Dextran/PLGA-Based Double-Layered Microparticles and Their Application in Food Preservation. ACS APPLIED BIO MATERIALS 2021; 4:2429-2441. [PMID: 35014362 DOI: 10.1021/acsabm.0c01361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Double-layered microparticles (150-190 μm) composed of biodegradable poly(lactic-co-glycolic acid) (PLGA) and pH-responsive acetalated dextran were fabricated using a one-step emulsion solvent evaporation technique. Nearly 80% dextran was released from the microparticles after 20 days of incubation in pH ∼ 5 medium, and the complete disappearance of shell (Ac-dextran) layer was also evident from scanning electron microscopy (SEM) images after 20 days under the same condition. However, the Ac-dextran shell was found to remain unchanged in neutral pH. Dual actives such as antibacterial (benzoic acid) and antioxidant (tocopherol) were incorporated in the shell and core of the microparticles to exploit their applications as food-preserving materials. An accelerated release of antibacterial and a controlled release of antioxidant were found to be useful for prolonging the shelf life of a low-pH food such as pork broth (pH ∼ 5) over 20 days by providing complete bacterial growth inhibition and high radical scavenging efficiency (70-90%).
Collapse
Affiliation(s)
- Agni Kumar Biswal
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi 110016, India
| | | | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi 110016, India
| |
Collapse
|
11
|
Vanza JD, Patel RB, Dave RR, Patel MR. Polyethylene oxide and its controlled release properties in hydrophilic matrix tablets for oral administration. Pharm Dev Technol 2020; 25:1169-1187. [PMID: 32772604 DOI: 10.1080/10837450.2020.1808015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Polymers are excipients that modify the rate of drug release from pharmaceutical dosage forms. Hydrophilic polymer-based controlled drug delivery system is more advantageous as compared to the conventional delivery system as it reduces the dosing frequency, improves therapeutic efficacy, reduces side-effects, and probably enhances patient compliance. Polyethylene oxide (PEO), a nonionic hydrophilic polymer, is one of the most widely used polymers for extending the drug release. This review mainly focuses on the PEO marketed by, but not limited to, The Dow Chemical Company under the trade name of POLYOXTM. It is commercially available polyethylene oxide polymer existing in various molecular weight and viscosity grades depending upon the application. This study essentially discusses chemistry, physicochemical properties, and the impact of formulation and processing variables on the release of drug from hydrophilic PEO matrix tablets. Moreover, it also summarizes the stability, patents, and regulatory perspectives of POLYOX that can further influence the future developments of controlled release dosage forms.
Collapse
Affiliation(s)
- Jigar D Vanza
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), Changa, India
| | - Rashmin B Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), Changa, India
| | - Richa R Dave
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), Changa, India
| | - Mrunali R Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), Changa, India
| |
Collapse
|
12
|
Efficient and prolonged antibacterial activity from porous PLGA microparticles and their application in food preservation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110496. [PMID: 31923956 DOI: 10.1016/j.msec.2019.110496] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/14/2019] [Accepted: 11/26/2019] [Indexed: 12/28/2022]
Abstract
Simple addition of a minute quantity of non-toxic mustard oil in water/oil/water (W/O/W) double emulsion led to a porous morphology at the surface as well as in the interior of the biodegradable PLGA (Poly(l-lactide-co-glycolide)) microparticles. An attempt was made to understand the mechanism of pore formation by analyzing optical micrographs and SEM images in addition to solution viscosity of organic phase and interfacial tension values between organic and aqueous phases. The origin of surface porosity was thought to come from the inclusion of inner water droplet, stabilized by heteroaggregation of mustard oil and PLGA chains along with PVA (polyvinyl alcohol), to the solidifying polymer skin. The surface pores did not arise in absence of mustard oil. The encapsulation and release of antibacterial active (benzoic acid) from porous PLGA particles was studied in PBS buffer (pH 7) at 37 °C for 60 days. The release profiles were well-controlled in nature, and found to be influenced by surface porosity of the particles that can be manipulated by varying the amount of mustard oil. The release mechanism can well be explained with the help of power law model. Strikingly, in liquid medium, porous particles were found completely suppressing the growth of Escherichia coli and Staphylococcus aureus for a prolonged period of 60 days. The strong antimicrobial activity (100% inhibition of bacterial growth) in porous particles can be linked to the enhanced surface area due to the formation of micro/nano pores which accelerate the hydrolytic degradation of PLGA to release lactic acid/glycolic acid (antibacterial) in addition to encapsulated antibacterial (benzoic acid). In a food model system, the shelf life of the water melon juice was also found to be enhanced by suppressing the growth of the natural microbes in comparison to control.
Collapse
|
13
|
Bernal Rodriguez CA, Bassani VL, Castellanos L, Ramos Rodríguez FA, Baena Y. Development of an oral control release system from Physalis peruviana L. fruits extract based on the co-spray-drying method. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Biswal AK, Saha S. Prolonging food shelf-life by dual actives release from multi-layered polymer particles. Colloids Surf B Biointerfaces 2018; 175:281-290. [PMID: 30551015 DOI: 10.1016/j.colsurfb.2018.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 01/27/2023]
Abstract
Biodegradable polymer based 'controlled release packaging' technology has ability to release packaging actives in controlled manner to prolong the food shelf-life. Currently available systems are not sufficiently capable of releasing multiple actives in sustainable fashion. Hence, the purpose of this study was to develop dual actives (antioxidant and antibacterial) loaded multilayered microparticles in one step and to release them at rates suitable for long-term inhibition of bacterial growth as well as lipid oxidation in food. In order to achieve this goal, 2 kinds of multilayered polymer particles made up of PLLA (Poly(l-lactic acid)) and PLGA (Poly(dl-lactic-co-glycolic acid) with varying viscosity were developed using emulsion solvent evaporation method. Surprisingly, low viscous PLGA resulted tri-layered particles (PLGA/PLLA/PLGA: shell/middle/core) instead of bi-layered (PLGA/PLLA: shell/core) particles as observed for high viscous PLGA. The mechanism of formation of tri-layered particles was investigated in detail. The outermost layer consisted of relatively more hydrophilic polymer PLGA along with benzoic acid (antibacterial) and the inner core comprised of hydrophobic polymer PLLA and tocopherol (antioxidant). Release study demonstrated that release rate of dual actives were significantly accelerated from tri-layered particles in comparison to bi-layered one and their release profiles can be well explained with the help of Ridger-Peppas model. Both sets of particles exhibited long-term antibacterial (against both Escherichia coli and Staphylococcus aureus) as well as antioxidant effect over a period of 60 days. The results show for the first time the feasibility of using multilayered microparticles to prolong the food shelf-life by simultaneous release of multiple actives.
Collapse
Affiliation(s)
- Agni Kumar Biswal
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, 110016, India.
| |
Collapse
|
15
|
Li W, Wu D, Tan J, Liu Z, Lu L, Zhou C. A gene-activating skin substitute comprising PLLA/POSS nanofibers and plasmid DNA encoding ANG and bFGF promotes in vivo revascularization and epidermalization. J Mater Chem B 2018; 6:6977-6992. [DOI: 10.1039/c8tb02006j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A gene-activated porous nanofibrous scaffold for effectively promoting vascularization, epidermalization and dermal wound healing by sustained release of dual plasmid DNAs.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
- College of Life Science and Technology
| | - Dongwei Wu
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Jianwang Tan
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Zhibin Liu
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Lu Lu
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
- Engineering Research Center of Artificial Organs and Materials
| | - Changren Zhou
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
- Engineering Research Center of Artificial Organs and Materials
| |
Collapse
|
16
|
Janagam DR, Ananthula S, Chaudhry K, Wu L, Mandrell TD, Johnson JR, Lowe TL. Injectable In Situ Forming Depot Systems for Long-Acting Contraception. ACTA ACUST UNITED AC 2017; 1:e1700097. [PMID: 32646191 DOI: 10.1002/adbi.201700097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/12/2017] [Indexed: 01/03/2023]
Abstract
Up to date, no long-acting reversible contraceptive (LARC) is developed to be injectable through needles smaller than 18 G and can also provide contraception for more than 3 months after single injection. In this study, injectable polymeric in situ forming depot (ISD) systems are developed to have injectability through 21-23 G needles, and capability of sustained release of levonorgestrel (LNG) for at least 7 months in vitro and in vivo after single subcutaneous injection in rats. The systems are polymeric solutions composed of biodegradable poly(lactide-co-glycolide) and poly(lactic acid) polymers dissolved in a mixture of solvents like N-methyl-2-pyrrolidone and benzyl benzoate or triethyl citrate. LNG released from ISD systems successfully suppressed the estrous cycle of rats at plasma concentration above 0.35 ng mL-1 . At the end of the treatment, when LNG plasma concentration drops down to be nondetectable, predictable return of fertility is observed in rats. The designed ISD systems have great potential to be further developed into robust injectable LARCs that can be injected through a 21 G or smaller needle and achieve a variety of contraception durations with high patient compliance and low cost.
Collapse
Affiliation(s)
- Dileep R Janagam
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Suryatheja Ananthula
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Kamaljit Chaudhry
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Linfeng Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Timothy D Mandrell
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - James R Johnson
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| |
Collapse
|
17
|
Dai L, Liu R, Hu LQ, Wang JH, Si CL. Self-assembled PEG–carboxymethylcellulose nanoparticles/α-cyclodextrin hydrogels for injectable and thermosensitive drug delivery. RSC Adv 2017. [DOI: 10.1039/c6ra25793c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Novel cellulose hydrogels based on the inclusion complex between α-cyclodextrin and binary-drug loaded nanoparticles (carboxymethylcellulose–betulinic acid/hydroxycamptothecine nanoparticles) were prepared in aqueous media for the first time.
Collapse
Affiliation(s)
- Lin Dai
- Tianjin Key Laboratory of Pulp and Paper
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Rui Liu
- Tianjin Key Laboratory of Pulp and Paper
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Li-Qiu Hu
- Tianjin Key Laboratory of Pulp and Paper
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Jun-Hui Wang
- State Key Laboratory of Tree Genetics and Breeding
- Research Institute of Forestry
- Chinese Academy of Forestry
- Beijing 100091
- China
| | - Chuan-Ling Si
- Tianjin Key Laboratory of Pulp and Paper
- Tianjin University of Science and Technology
- Tianjin 300457
- China
- State Key Laboratory of Tree Genetics and Breeding
| |
Collapse
|
18
|
Janagam DR, Wang L, Ananthula S, Johnson JR, Lowe TL. An Accelerated Release Study to Evaluate Long-Acting Contraceptive Levonorgestrel-Containing in Situ Forming Depot Systems. Pharmaceutics 2016; 8:E28. [PMID: 27598191 PMCID: PMC5039447 DOI: 10.3390/pharmaceutics8030028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 12/02/2022] Open
Abstract
Biodegradable polymer-based injectable in situ forming depot (ISD) systems that solidify in the body to form a solid or semisolid reservoir are becoming increasingly attractive as an injectable dosage form for sustained (months to years) parenteral drug delivery. Evaluation of long-term drug release from the ISD systems during the formulation development is laborious and costly. An accelerated release method that can effectively correlate the months to years of long-term release in a short time such as days or weeks is economically needed. However, no such accelerated ISD system release method has been reported in the literature to date. The objective of the current study was to develop a short-term accelerated in vitro release method for contraceptive levonorgestrel (LNG)-containing ISD systems to screen formulations for more than 3-month contraception after a single subcutaneous injection. The LNG-containing ISD formulations were prepared by using biodegradable poly(lactide-co-glycolide) and polylactic acid polymer and solvent mixtures containing N-methyl-2-pyrrolidone and benzyl benzoate or triethyl citrate. Drug release studies were performed under real-time (long-term) conditions (PBS, pH 7.4, 37 °C) and four accelerated (short-term) conditions: (A) PBS, pH 7.4, 50 °C; (B) 25% ethanol in PBS, pH 7.4, 50 °C; (C) 25% ethanol in PBS, 2% Tween 20, pH 7.4, 50 °C; and (D) 25% ethanol in PBS, 2% Tween 20, pH 9, 50 °C. The LNG release profile, including the release mechanism under the accelerated condition D within two weeks, correlated (r² ≥ 0.98) well with that under real-time conditions at four months.
Collapse
Affiliation(s)
- Dileep R Janagam
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| | - Lizhu Wang
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| | - Suryatheja Ananthula
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| | - James R Johnson
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| |
Collapse
|
19
|
Kuentz M, Holm R, Elder DP. Methodology of oral formulation selection in the pharmaceutical industry. Eur J Pharm Sci 2016; 87:136-63. [DOI: 10.1016/j.ejps.2015.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/24/2015] [Accepted: 12/06/2015] [Indexed: 12/30/2022]
|
20
|
Pectin/anhydrous dibasic calcium phosphate matrix tablets for in vitro controlled release of water-soluble drug. Int J Pharm 2015; 494:235-43. [DOI: 10.1016/j.ijpharm.2015.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/06/2015] [Accepted: 08/08/2015] [Indexed: 01/09/2023]
|
21
|
Liu G, Hong Y, Gu Z, Li Z, Cheng L, Li C. Preparation and characterization of pullulanase debranched starches and their properties for drug controlled-release. RSC Adv 2015. [DOI: 10.1039/c5ra18701j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Linear short amylose and glucan tend to align and aggregate to form hydrogels that hold less water. The drug release properties of debranched starch based tablets can be controlled by the pullulanase modification conditions.
Collapse
Affiliation(s)
- Guodong Liu
- The State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi-214122
- P. R. China
- School of Food Science and Technology
| | - Yan Hong
- The State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi-214122
- P. R. China
- School of Food Science and Technology
| | - Zhengbiao Gu
- The State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi-214122
- P. R. China
- School of Food Science and Technology
| | - Zhaofeng Li
- The State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi-214122
- P. R. China
- School of Food Science and Technology
| | - Li Cheng
- The State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi-214122
- P. R. China
- School of Food Science and Technology
| | - Caiming Li
- The State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi-214122
- P. R. China
- School of Food Science and Technology
| |
Collapse
|
22
|
Aderibigbe B, Sadiku E, Jayaramudu J, Sinha Ray S. Controlled dual release study of curcumin and a 4-aminoquinoline analog from gum acacia containing hydrogels. J Appl Polym Sci 2014. [DOI: 10.1002/app.41613] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Emmanuel Sadiku
- Department of Chemical; Metallurgical and Material Engineering, Tshwane University of Technology; Pretoria South Africa
| | - Jarugala Jayaramudu
- Department of Chemical; Metallurgical and Material Engineering, Tshwane University of Technology; Pretoria South Africa
- DST/CSIR National Centre for Nanostructured Materials; Council for Scientific and Industrial Research; Pretoria 0001 South Africa
| | - Suprakas Sinha Ray
- DST/CSIR National Centre for Nanostructured Materials; Council for Scientific and Industrial Research; Pretoria 0001 South Africa
- Department of Applied Chemistry; University of Johannesburg; Doornfontein 2028 Johannesburg South Africa
| |
Collapse
|
23
|
Elviri L, DeRobertis S, Baldassarre S, Bettini R. Desorption electrospray ionization high-resolution mass spectrometry for the fast investigation of natural polysaccharide interactions with a model drug in controlled release systems. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1544-1552. [PMID: 24861606 DOI: 10.1002/rcm.6932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE The control of drug release involves gaining an understanding of the complex interaction networks among drug-excipients-matrix-biological fluids. Thus, novel analytical methods that will lead to a better understanding of these interaction networks are urgently required. METHODS Desorption electrospray ionization high-resolution mass spectrometry (DESI-HRMS) was used to evaluate the behaviour of four biocompatible polysaccharides (chondroitin sulfate, chitosan, sodium alginate and λ-carrageenan) in the release of atenolol (ATN) from drug tablets. An aqueous solution at three different pH values (pH 7.4, 4.5 and 1.2) was electrosprayed onto the tablets, allowing direct, fast, sensitive detection of atenolol as the protonated molecule in positive ion mode. Information about the desorption mechanism was obtained by analyzing the ATN [M+H](+) ion signal as a function of time. ATN-polymer interactions in the drug/polymer mixtures were also studied by Horizontal Attenuated Total Reflectance (HATR) Fourier transform infrared (FTIR) spectroscopy. RESULTS The DESI-MS results revealed statistically different ATN desorption trends as a function of the polysaccharide investigated and the pH of the desorbing solution. Different release kinetics were ascribed to the drug-polymer interactions, and to the diffusion process of the drug through the hydrated polymer mesh. In particular, the alginate and λ-carrageenan matrices were able to sustain drug release from the tablet even for a highly soluble drug. The HATR results confirmed the presence of ATN-polymer interactions that, depending on the polymer-drug-solvent combination used, might affect ATN diffusion. CONCLUSIONS These results suggest that DESI-MS has a potential role for the micro-environmental analysis of drug diffusion and surface distribution in polymeric matrices.
Collapse
Affiliation(s)
- Lisa Elviri
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | | | | | | |
Collapse
|
24
|
Wang X, Lü S, Gao C, Xu X, Wei Y, Bai X, Feng C, Gao N, Liu M, Wu L. Biomass-based multifunctional fertilizer system featuring controlled-release nutrient, water-retention and amelioration of soil. RSC Adv 2014. [DOI: 10.1039/c4ra00207e] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Synthesis, characterization and evaluation of release retardant modified starches of Lagenaria siceraria seeds. Int J Biol Macromol 2013; 61:396-403. [DOI: 10.1016/j.ijbiomac.2013.07.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/22/2013] [Accepted: 07/30/2013] [Indexed: 11/18/2022]
|
26
|
Xu Y, Jia Y, Wang Z, Wang Z. Mathematical Modeling and Finite Element Simulation of Slow Release of Drugs Using Hydrogels as Carriers with Various Drug Concentration Distributions. J Pharm Sci 2013; 102:1532-43. [DOI: 10.1002/jps.23497] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 11/07/2022]
|
27
|
Preparation of thermoresponsive Fe3O4/P(acrylic acid–methyl methacrylate–N-isopropylacrylamide) magnetic composite microspheres with controlled shell thickness and its releasing property for phenolphthalein. J Colloid Interface Sci 2013; 398:51-8. [DOI: 10.1016/j.jcis.2013.01.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/17/2013] [Accepted: 01/21/2013] [Indexed: 01/04/2023]
|
28
|
Losi E, Peppas N, Ketcham R, Colombo G, Bettini R, Sonvico F, Colombo P. Investigation of the swelling behavior of Dome Matrix drug delivery modules by high-resolution X-ray computed tomography. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50025-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Siepmann J, Peppas N. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 2012. [DOI: 10.1016/j.addr.2012.09.028] [Citation(s) in RCA: 519] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
YANG JINCHU, KUANG XUAN, LI BIN, ZHOU BIN, LI JING, CUI BING, MA MEIHU. STUDY ON RELEASE MECHANISM OF INHIBITORY COMPONENTS FROM CINNAMON AND CLOVE POWDERS. J Food Saf 2012. [DOI: 10.1111/j.1745-4565.2012.00367.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Rojas J, González C, Rico C, Saez O. Formulation of a modified release metformin. HCl matrix tablet: influence of some hydrophilic polymers on release rate and in-vitro evaluation. BRAZ J PHARM SCI 2011. [DOI: 10.1590/s1984-82502011000300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metformin hydrochloride is an antidiabetic agent which improves glucose tolerance in patients with type 2 diabetes and reduces basal plasma levels of glucose. In this study, a simplex centroid experimental design with 69 runs was used to select the best combination of some hydrophilic polymers that rendered a 24 h in-vitro release profile of metformin.HCl. The Korsmeyer-Peppas model was used to model the dissolution profiles since it presented the best fit to the experimental data. Further, a cubic model predicted the best formulation of metformin.HCl containing polyvinyl pyrrolidone, ethyl cellulose, hydroxypropyl methyl cellulose, carrageenan, sodium alginate, and gum arabic at 6.26, 68.7, 6.26, 6.26, 6.26 and 6.26 % levels, respectively. The validation runs confirmed the accuracy of the cubic model with six components for predicting the best set of components which rendered a once-a-day modified release hydrophilic matrix tablet in compliance with the USP specifications.
Collapse
|
32
|
Release of theophylline and carbamazepine from matrix tablets – Consequences of HPMC chemical heterogeneity. Eur J Pharm Biopharm 2011; 78:470-9. [DOI: 10.1016/j.ejpb.2011.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/01/2011] [Accepted: 02/04/2011] [Indexed: 11/23/2022]
|
33
|
Maderuelo C, Zarzuelo A, Lanao JM. Critical factors in the release of drugs from sustained release hydrophilic matrices. J Control Release 2011; 154:2-19. [DOI: 10.1016/j.jconrel.2011.04.002] [Citation(s) in RCA: 337] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/29/2011] [Indexed: 11/30/2022]
|
34
|
Tunable supramolecular hydrogel for in situ encapsulation and sustained release of bioactive lysozyme. J Colloid Interface Sci 2011; 359:399-406. [PMID: 21536304 DOI: 10.1016/j.jcis.2011.04.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/10/2011] [Accepted: 04/11/2011] [Indexed: 11/23/2022]
Abstract
To develop new matrices for the entrapment and sustained release of bioactive lysozyme, a series of supramolecular hydrogels based on α-cyclodextrin (α-CD) and water-soluble poly(ε-caprolactone)-poly(ethylene glycol) block copolymer (PCL-b-PEG) were prepared in the presence of chicken egg lysozyme. Different from commonly used polymeric microspheres and chemically crosslinked hydrogels for lysozyme encapsulation, such hydrogel matrices could be formed under mild conditions without high temperature and the use of chemical emulsifiers or crosslinkers. Their gelation rate, mechanical strength and shear viscosity as well as the release behavior for the encapsulated lysozyme could be tuned easily by the change of α-CD or PCL-b-PEG amount. For the encapsulated lysozyme, its conformation and biological activity could be well maintained when compared to native lysozyme. For the resultant supramolecular hydrogels, they were also confirmed to have a good biocompatibility by MTT assay using mice skin fibroblast (L929).
Collapse
|
35
|
Assemblage of drug release modules: Effect of module shape and position in the assembled systems on floating behavior and release rate. Eur J Pharm Biopharm 2011; 77:116-21. [DOI: 10.1016/j.ejpb.2010.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 11/17/2022]
|
36
|
Casas M, Strusi OL, Jiménez-Castellanos MR, Colombo P. Tapioca starch graft copolymers and Dome Matrix® modules II. Effect of modules assemblage on Riboflavin release kinetics. Eur J Pharm Biopharm 2011; 77:111-5. [DOI: 10.1016/j.ejpb.2010.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 12/01/2022]
|
37
|
Assaad E, Mateescu MA. The influence of protonation ratio on properties of carboxymethyl starch excipient at various substitution degrees: Structural insights and drug release kinetics. Int J Pharm 2010; 394:75-84. [DOI: 10.1016/j.ijpharm.2010.04.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/22/2010] [Accepted: 04/26/2010] [Indexed: 11/16/2022]
|
38
|
Dorożyński PP, Kulinowski P, Mendyk A, Młynarczyk A, Jachowicz R. Novel application of MRI technique combined with flow-through cell dissolution apparatus as supportive discriminatory test for evaluation of controlled release formulations. AAPS PharmSciTech 2010; 11:588-97. [PMID: 20352532 DOI: 10.1208/s12249-010-9418-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 03/09/2010] [Indexed: 11/30/2022] Open
Abstract
Dissolution studies cannot distinguish phenomena occurring inside the dosage forms when studying formulation with similar dissolution profiles-such formulations can behave differently when considering their physical changes. The application of flow-through dissolution apparatus integrated with magnetic resonance imaging (MRI) system for discriminative evaluation of controlled release dosage forms with similar dissolution profiles was presented. Hydrodynamically balanced systems (HBS) containing L: -dopa and various grades hydroxypropyl methylcelluloses were prepared. The dissolution studies of L: -dopa were performed at high field (4.7 T) MR system with MR-compatible flow-through cell. MRI was done with 0.14 x 0.14 x 1-mm spatial resolution and temporal resolution of 10 min to record changes of HBS parameters during dissolution in 0.1 M HCl. Structural and geometrical changes were evaluated using the following parameters: total area of HBS cross-section, its Feret's diameter, perimeter and circularity, area of hydrogel layer, and "dry core" area. While the dissolution profiles of L: -dopa were similar, the image analysis revealed differences in the structural and geometrical changes of the HBS. The mechanism of drug release from polymeric matrices is a result of synergy of several different phenomena occurring during dissolution and may differ between formulations, yet giving similar dissolution profiles. A multivariate analysis was performed to create a model taking into account dissolution data, data from MRI, information about chemical structure, and polymer viscosity. It provided a single model for all the formulations which was confirmed to be competent. The presented method has merit as a potential Process Analytical Technology tool.
Collapse
|
39
|
Vijay Kumar S, Shelke NB, Prasannakumar S, Sherigara BS, Aminabhavi TM. Microspheres of copolymeric N-vinylpyrrolidone and 2-ethoxyethyl methacrylate for the controlled release of nifedipine. JOURNAL OF POLYMER RESEARCH 2010. [DOI: 10.1007/s10965-010-9425-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Harisha RS, Hosamani KM, Keri RS, Shelke N, Wadi VK, Aminabhavi TM. Controlled release of 5-flurouracil from biomedical polyurethanes. J CHEM SCI 2010. [DOI: 10.1007/s12039-010-0024-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Zema L, Sangalli ME, Maroni A, Foppoli A, Bettero A, Gazzaniga A. Active packaging for topical cosmetic/drug products: a hot-melt extruded preservative delivery device. Eur J Pharm Biopharm 2010; 75:291-6. [PMID: 20304050 DOI: 10.1016/j.ejpb.2010.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/02/2010] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
Abstract
A delivery device intended for the prolonged release of antimicrobial agents, able to enhance the stability profile of liquid/semi-solid cosmetic/pharmaceutical products for topical application, was proposed in the present study. With the aid of a simulation program based on compartment models, the relevant kinetic and formulation parameters were defined using dehydroacetic acid sodium salt (DHA.Na, Prevan) as the model preservative. Indeed, the overall DHA.Na degradation rate is increased in the presence of formaldehyde releasers that are often employed as co-preservatives. Inert matrices (3 g weight and 18 mm diameter) based on high-density polyethylene (HDPE), possibly consistent with the design of an active packaging meant for preservative delivery, were prepared by hot-melt extrusion. Units with satisfactory physical-technological properties could be obtained up to 50%w/w loads of antimicrobial agent. In an attempt to modify the relevant Fickian release profiles by varying the area exposed to the medium, matrix systems coated with an impermeable film except for one base (CMs) or for the inner surface of a central drilled hole (PCMs) were investigated. On the basis of the n exponent of power equation and the outcome of linear fitting, PCMs were proven able to yield the zero-order release behaviour needed to ensure constant DHA.Na levels over a predetermined time period, as indicated by the simulation process.
Collapse
Affiliation(s)
- L Zema
- Dipartimento di Scienze Farmaceutiche P. Pratesi, Università degli Studi di Milano, Milano, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Lemieux M, Gosselin P, Mateescu MA. Carboxymethyl high amylose starch as excipient for controlled drug release: Mechanistic study and the influence of degree of substitution. Int J Pharm 2009; 382:172-82. [DOI: 10.1016/j.ijpharm.2009.08.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 08/14/2009] [Accepted: 08/24/2009] [Indexed: 11/28/2022]
|
44
|
Barba AA, d'Amore M, Cascone S, Chirico S, Lamberti G, Titomanlio G. On the Behavior of HPMC/Theophylline Matrices for Controlled Drug Delivery. J Pharm Sci 2009; 98:4100-10. [DOI: 10.1002/jps.21701] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Del Gaudio P, Russo P, Rosaria Lauro M, Colombo P, Aquino RP. Encapsulation of ketoprofen and ketoprofen lysinate by prilling for controlled drug release. AAPS PharmSciTech 2009; 10:1178-85. [PMID: 19856108 DOI: 10.1208/s12249-009-9309-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 09/18/2009] [Indexed: 11/30/2022] Open
Abstract
In this paper, ketoprofen and ketoprofen lysinate were used as model drugs in order to investigate release profiles of poorly soluble and very soluble drug from sodium alginate beads manufactured by prilling. The effect of polymer concentration, viscosity, and drug/polymer ratio on bead micromeritics and drug release rate was studied. Ketoprofen and ketoprofen lysinate loaded alginate beads were obtained in a very narrow dimensional range when the Cross model was used to set prilling operative conditions. Size distribution of alginate beads in the hydrated state was strongly dependent on viscosity of drug/polymer solutions and frequency of the vibration. The release kinetics of the drugs showed that drug release rate was related with alginate concentration and solubility of the drug. Alginate solutions with concentration higher than 0.50% (w/w) were suitable to prepare ketoprofen gastro-resistant formulation, while for ketoprofen lysinate alginate, concentration should be increased to 1.50% (w/w) in order to retain the drug in gastric environment. Differential scanning calorimetry thermograms and Fourier transform infrared analyses of drug-loaded alginate beads indicated complex chemical interactions between carboxyl groups of the drug and polymer matrix in drug-loaded beads that contribute to the differences in release profile between ketoprofen and ketoprofen lysinate. Total release of the drugs in intestinal medium was dependent on the solubility of the drug and was achieved between 4 and 6 h.
Collapse
|
46
|
Kumar SV, Shelke NB, Prasannakumar S, Rokhade AP, Sherigara BS, Aminabhavi TM. Synthesis, characterization and evaluation of novel methoxypolyethyleneglycol- grafted- poly(ester-urethane)s for controlled release of repaglinide. J Appl Polym Sci 2009. [DOI: 10.1002/app.29497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Tajarobi F, Abrahmsén-Alami S, Carlsson AS, Larsson A. Simultaneous probing of swelling, erosion and dissolution by NMR-microimaging—Effect of solubility of additives on HPMC matrix tablets. Eur J Pharm Sci 2009; 37:89-97. [DOI: 10.1016/j.ejps.2009.01.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/09/2009] [Accepted: 01/13/2009] [Indexed: 11/27/2022]
|
48
|
Shelke NB, Vijay Kumar S, Mahadevan KM, Sherigara BS, Aminabhavi TM. Synthesis, characterization, and evaluation of copolymers based onN-isopropylacrylamide and 2-ethoxyethyl methacrylate for the controlled release of felodipine. J Appl Polym Sci 2008. [DOI: 10.1002/app.28225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Moneghini M, Perissutti B, Kikic I, Grassi M, Cortesi A, Princivalle F. Preparation of Theophylline-Hydroxypropylmethylcellulose Matrices Using Supercritical Antisolvent Precipitation: A Preliminary Study. Drug Dev Ind Pharm 2008; 32:39-52. [PMID: 16455603 DOI: 10.1080/03639040500388037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Several controlled release systems of drugs have been elaborated using a supercritical fluid process. Indeed, recent techniques using a supercritical fluid as a solvent or as an antisolvent are considered to be useful alternatives to produce fine powders. In this preliminary study, the effect of Supercritical Anti Solvent process (SAS) on the release of theophylline from matrices manufactured with hydroxypropylmethylcellulose (HPMC) was investigated. Two grades of HPMC (HPMC E5 and K100) as carriers were considered in order to prepare a sustained delivery system for theophylline which was used as a model drug. The characterization of the drug before and after SAS treatment, and the coprecipitates with carriers, was performed by X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). The dissolution rate of theophylline, theophylline-coprecipitates, and matricial tablets prepared with coprecipitates were determined. The physical characterizations revealed a substantial correspondence of the drug solid state before and after supercritical fluid treatment while drug-polymer interactions in the SAS-coprecipitates were attested. The dissolution studies of the matrices prepared compressing the coprecipitated systems showed that the matrices based on HPMC K100 were able to promote a sustained release of the drug. Further, this advantageous dissolution performance was found to be substantially independent of the pH of the medium. The comparison with the matrices prepared with untreated substances demonstrated that matrices obtained with SAS technique can provide a slower theophylline release rate. A new mathematical model describing the in vitro dissolution kinetics was proposed and successfully tested on these systems.
Collapse
Affiliation(s)
- M Moneghini
- Department of Pharmaceutical Sciences, University of Trieste, Trieste, Italy.
| | | | | | | | | | | |
Collapse
|
50
|
Kulinowski P, Dorozyński P, Jachowicz R, Weglarz WP. An integrated system for dissolution studies and magnetic resonance imaging of controlled release, polymer-based dosage forms-a tool for quantitative assessment of hydrogel formation processes. J Pharm Biomed Anal 2008; 48:685-93. [PMID: 18715732 DOI: 10.1016/j.jpba.2008.06.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 06/27/2008] [Accepted: 06/27/2008] [Indexed: 10/21/2022]
Abstract
Controlled release (CR) dosage forms are often based on polymeric matrices, e.g., sustained-release tablets and capsules. It is crucial to visualise and quantify processes of the hydrogel formation during the standard dissolution study. A method for imaging of CR, polymer-based dosage forms during dissolution study in vitro is presented. Imaging was performed in a non-invasive way by means of the magnetic resonance imaging (MRI). This study was designed to simulate in vivo conditions regarding temperature, volume, state and composition of dissolution media. Two formulations of hydrodynamically balanced systems (HBS) were chosen as model CR dosage forms. HBS release active substance in stomach while floating on the surface of the gastric content. Time evolutions of the diffusion region, hydrogel formation region and "dry core" region were obtained during a dissolution study of L-dopa as a model drug in two simulated gastric fluids (i.e. in fed and fasted state). This method seems to be a very promising tool for examining properties of new formulations of CR, polymer-based dosage forms or for comparison of generic and originator dosage forms before carrying out bioequivalence studies.
Collapse
Affiliation(s)
- Piotr Kulinowski
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Kraków, Poland.
| | | | | | | |
Collapse
|