1
|
Gaspard JC, Bauer GB, Mann DA, Boerner K, Denum L, Frances C, Reep RL. Detection of hydrodynamic stimuli by the postcranial body of Florida manatees (Trichechus manatus latirostris). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:111-120. [PMID: 28194485 DOI: 10.1007/s00359-016-1142-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Manatees live in shallow, frequently turbid waters. The sensory means by which they navigate in these conditions are unknown. Poor visual acuity, lack of echolocation, and modest chemosensation suggest that other modalities play an important role. Rich innervation of sensory hairs that cover the entire body and enlarged somatosensory areas of the brain suggest that tactile senses are good candidates. Previous tests of detection of underwater vibratory stimuli indicated that they use passive movement of the hairs to detect particle displacements in the vicinity of a micron or less for frequencies from 10 to 150 Hz. In the current study, hydrodynamic stimuli were created by a sinusoidally oscillating sphere that generated a dipole field at frequencies from 5 to 150 Hz. Go/no-go tests of manatee postcranial mechanoreception of hydrodynamic stimuli indicated excellent sensitivity but about an order of magnitude less than the facial region. When the vibrissae were trimmed, detection thresholds were elevated, suggesting that the vibrissae were an important means by which detection occurred. Manatees were also highly accurate in two-choice directional discrimination: greater than 90% correct at all frequencies tested. We hypothesize that manatees utilize vibrissae as a three-dimensional array to detect and localize low-frequency hydrodynamic stimuli.
Collapse
Affiliation(s)
- Joseph C Gaspard
- Science and Conservation, Pittsburgh Zoo & PPG Aquarium, 1 Wild Place, Pittsburgh, PA, 15206, USA
| | - Gordon B Bauer
- Division of Social Sciences, New College of Florida, 5800 Bay Shore Rd., Sarasota, FL, 34243, USA. .,Mote Marine Laboratory and Aquarium, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA.
| | - David A Mann
- Mote Marine Laboratory and Aquarium, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA.,Loggerhead Instruments, 6576 Palmer Park Circle, Sarasota, FL, 34238, USA
| | - Katharine Boerner
- Mote Marine Laboratory and Aquarium, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA
| | - Laura Denum
- Mote Marine Laboratory and Aquarium, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA
| | - Candice Frances
- Division of Social Sciences, New College of Florida, 5800 Bay Shore Rd., Sarasota, FL, 34243, USA
| | - Roger L Reep
- Department of Physiological Sciences, Aquatic Animal Health Program, University of Florida, College of Veterinary Medicine, Gainesville, FL, 32610, USA
| |
Collapse
|
2
|
Micro-Machined Flow Sensors Mimicking Lateral Line Canal Neuromasts. MICROMACHINES 2015. [DOI: 10.3390/mi6081189] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Abstract
As a research tool, virtual environments (VEs) hold immense promise for brain scientists. Yet to fully realize this potential in non-human systems, theoretical and conceptual perspectives must be developed. When selectively coupled to nervous systems, virtual environments can help us better understand the functional architecture of animals’ brains during naturalistic behaviors. While this will no doubt allow us to further our understanding of the neural basis of behavior, there is also an opportunity to uncover the diversity inherent in brain activity and behavior. This is due to two properties of virtual environments: the ability to create sensory illusions, and the ability to dilate space and/or time. These and other potential manipulations will be characterized as the effects of virtuality. In addition, the systems-level outcomes of virtual environment enhanced perception will be discussed in the context of the uncanny valley and other expected relationships between emotional valence, cognition, and training. These effects and their usefulness for brain science will be understood in the context of three types of neurobehavioral phenomena: sensorimotor integration, spatial navigation, and interactivity. For each of these behaviors, a combination of illusory and space/time dilation examples will be reviewed. Once these examples are presented, the implications for improving upon virtual models for more directly inducing the mental phenomena of illusion and space/time dilation will be considered. To conclude, future directions for integrating the use of VEs into a strategy of broader biological inquiry will be presented.
Collapse
|
4
|
Caputi AA, Aguilera PA, Carolina Pereira A, Rodríguez-Cattáneo A. On the haptic nature of the active electric sense of fish. Brain Res 2013; 1536:27-43. [PMID: 23727613 DOI: 10.1016/j.brainres.2013.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 11/18/2022]
Abstract
Electroreception is a sensory modality present in chondrichthyes, actinopterygii, amphibians, and mammalian monotremes. The study of this non-intuitive sensory modality has provided insights for better understanding of sensory systems in general and inspired the development of innovative artificial devices. Here we review evidence obtained from the analysis of electrosensory images, neurophysiological data from the recording of unitary activity in the electrosensory lobe, and psychophysical data from analysis of novelty responses provoked in well-defined stimulus conditions, which all confirm that active electroreception has a short range, and that the influence of exploratory movements on object identification is strong. In active electric images two components can be identified: a "global" image profile depending on the volume, shape and global impedance of an object and a "texture" component depending on its surface attributes. There is a short range of the active electric sense and the progressive "blurring" of object image with distance. Consequently, the lack of precision regarding object location, considered together, challenge the current view of this sense as serving long range electrolocation and the commonly used metaphor of "electric vision". In fact, the active electric sense shares more commonalities with human active touch than with teleceptive senses as vision or audition. Taking into account that other skin exteroceptors and proprioception may be congruently stimulated during fish exploratory movements we propose that electric, mechanoceptive and proprioceptive sensory modalities found in electric fish could be considered together as a single haptic sensory system. This article is part of a Special Issue entitled Neural Coding 2012.
Collapse
Affiliation(s)
- Angel A Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay.
| | | | | | | |
Collapse
|
5
|
Information Encoding and Processing by the Peripheral Lateral Line System. SPRINGER HANDBOOK OF AUDITORY RESEARCH 2013. [DOI: 10.1007/2506_2013_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Montgomery J, Bleckmann H, Coombs S. Sensory Ecology and Neuroethology of the Lateral Line. SPRINGER HANDBOOK OF AUDITORY RESEARCH 2013. [DOI: 10.1007/2506_2013_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Farris SM. Are mushroom bodies cerebellum-like structures? ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:368-79. [PMID: 21371566 DOI: 10.1016/j.asd.2011.02.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/08/2011] [Accepted: 02/19/2011] [Indexed: 05/20/2023]
Abstract
The mushroom bodies are distinctive neuropils in the protocerebral brain segments of many protostomes. A defining feature of mushroom bodies is their intrinsic neurons, masses of cytoplasm-poor globuli cells that form a system of lobes with their densely-packed, parallel-projecting axon-like processes. In insects, the role of the mushroom bodies in olfactory processing and associative learning and memory has been studied in depth, but several lines of evidence suggest that the function of these higher brain centers cannot be restricted to these roles. The present account considers whether insight into an underlying function of mushroom bodies may be provided by cerebellum-like structures in vertebrates, which are similarly defined by the presence of masses of tiny granule cells that emit thin parallel fibers forming a dense molecular layer. In vertebrates, the shared neuroarchitecture of cerebellum-like structures has been suggested to underlie a common functional role as adaptive filters for the removal of predictable sensory elements, such as those arising from reafference, from the total sensory input. Cerebellum-like structures include the vertebrate cerebellum, the electrosensory lateral line lobe, dorsal and medial octavolateral nuclei of fish, and the dorsal cochlear nucleus of mammals. The many architectural and physiological features that the insect mushroom bodies share with cerebellum-like structures suggest that it might be fruitful to consider mushroom body function in light of a possible role as adaptive sensory filters. The present account thus presents a detailed comparison of the insect mushroom bodies with vertebrate cerebellum-like structures.
Collapse
Affiliation(s)
- Sarah M Farris
- Department of Biology, West Virginia University, 3139 Life Sciences Building, 53 Campus Drive, Morgantown, WV 26505, USA.
| |
Collapse
|
8
|
Amato V, Viña E, Calavia MG, Guerrera MC, Laurà R, Navarro M, De Carlos F, Cobo J, Germanà A, Vega JA. TRPV4 in the sensory organs of adult zebrafish. Microsc Res Tech 2011; 75:89-96. [PMID: 21678526 DOI: 10.1002/jemt.21029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 04/13/2011] [Indexed: 11/11/2022]
Abstract
TRPV4 is a nonselective cation channel that belongs to the vanilloid (V) subfamily of transient receptor potential (TRP) ion channels. While TRP channels have been found to be involved in sensing temperature, light, pressure, and chemical stimuli, TPRV4 is believed to be primarily a mechanosensor although it can also respond to warm temperatures, acidic pH, and several chemical compounds. In zebrafish, the expression of trpv4 has been studied during embryonic development, whereas its pattern of TPRV4 expression during the adult life has not been thoroughly analyzed. In this study, the occurrence of TRPV4 was addressed in the zebrafish sensory organs at the mRNA (RT-PCR) and protein (Westernblot) levels. Once the occurrence of TRPV4 was demonstrated, the TRPV4 positive cells were identified by using immunohistochemistry. TPRV4 was detected in mantle and sensory cells of neuromasts, in a subpopulation of hair sensory cells in the macula and in the cristae ampullaris of the inner ear, in sensory cells in the taste buds, in crypt neurons and ciliated sensory neurons of the olfactory epithelium, and in cells of the retina. These results demonstrate the presence of TRPV4 in all sensory organs of adult zebrafish and are consistent with the multiple physiological functions suspected for TRPV4 in mammals (mechanosensation, hearing, and temperature sensing), but furthermore suggest potential roles in olfaction and vision in zebrafish.
Collapse
Affiliation(s)
- V Amato
- Dipartimento di MORBIFIPA, Sezione di Morfología, Università degli Studi di Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bouffanais R, Weymouth GD, Yue DKP. Hydrodynamic object recognition using pressure sensing. Proc Math Phys Eng Sci 2010. [DOI: 10.1098/rspa.2010.0095] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hydrodynamic sensing is instrumental to fish and some amphibians. It also represents, for underwater vehicles, an alternative way of sensing the fluid environment when visual and acoustic sensing are limited. To assess the effectiveness of hydrodynamic sensing and gain insight into its capabilities and limitations, we investigated the forward and inverse problem of detection and identification, using the hydrodynamic pressure in the neighbourhood, of a stationary obstacle described using a general shape representation. Based on conformal mapping and a general normalization procedure, our obstacle representation accounts for all specific features of progressive perceptual hydrodynamic imaging reported experimentally. Size, location and shape are encoded separately. The shape representation rests upon an asymptotic series which embodies the progressive character of hydrodynamic imaging through pressure sensing. A dynamic filtering method is used to invert noisy nonlinear pressure signals for the shape parameters. The results highlight the dependence of the sensitivity of hydrodynamic sensing not only on the relative distance to the disturbance but also its bearing.
Collapse
Affiliation(s)
- Roland Bouffanais
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gabriel D. Weymouth
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dick K. P. Yue
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Anderson KD, Lu D, McConney ME, Han T, Reneker DH, Tsukruk VV. Hydrogel microstructures combined with electrospun fibers and photopatterning for shape and modulus control. POLYMER 2008. [DOI: 10.1016/j.polymer.2008.09.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Pluta SR, Kawasaki M. Multisensory enhancement of electromotor responses to a single moving object. J Exp Biol 2008; 211:2919-30. [DOI: 10.1242/jeb.016154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Weakly electric fish possess three cutaneous sensory organs structured in arrays with overlapping receptive fields. Theoretically, these tuberous electrosensory, ampullary electrosensory and mechanosensory lateral line receptors receive spatiotemporally congruent stimulation in the presence of a moving object. The current study is the first to quantify the magnitude of multisensory enhancement across these mechanosensory and electrosensory systems during moving-object recognition. We used the novelty response of a pulse-type weakly electric fish to quantitatively compare multisensory responses to their component unisensory responses. Principally, we discovered that multisensory novelty responses are significantly larger than their arithmetically summed component unisensory responses. Additionally, multimodal stimulation yielded a significant increase in novelty response amplitude,probability and the rate of a high-frequency burst, known as a `scallop'. Supralinear multisensory enhancement of the novelty response may signify an augmentation of perception driven by the ecological significance of multimodal stimuli. Scalloping may function as a sensory scan aimed at rapidly facilitating the electrolocation of novel stimuli.
Collapse
Affiliation(s)
- Scott R. Pluta
- Department of Biology, University of Virginia, Charlottesville, VA 22904,USA
| | - Masashi Kawasaki
- Department of Biology, University of Virginia, Charlottesville, VA 22904,USA
| |
Collapse
|
12
|
Pusch R, von der Emde G, Hollmann M, Bacelo J, Nöbel S, Grant K, Engelmann J. Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation. J Exp Biol 2008; 211:921-34. [DOI: 10.1242/jeb.014175] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Weakly electric fish generate electric fields with an electric organ and perceive them with cutaneous electroreceptors. During active electrolocation,nearby objects are detected by the distortions they cause in the electric field. The electrical properties of objects, their form and their distance,can be analysed and distinguished. Here we focus on Gnathonemus petersii (Günther 1862), an African fish of the family Mormyridae with a characteristic chin appendix, the Schnauzenorgan. Behavioural and anatomical results suggest that the mobile Schnauzenorgan and the nasal region serve special functions in electroreception, and can therefore be considered as electric foveae. We investigated passive pre-receptor mechanisms that shape and enhance the signal carrier. These mechanisms allow the fish to focus the electric field at the tip of its Schnauzenorgan where the density of electroreceptors is highest (tip-effect). Currents are funnelled by the open mouth (funnelling-effect), which leads to a homogenous voltage distribution in the nasal region. Field vectors at the trunk, the nasal region and the Schnauzenorgan are collimated but differ in the angle at which they are directed onto the sensory surface. To investigate the role of those pre-receptor effects on electrolocation, we recorded electric images of objects at the foveal regions. Furthermore, we used a behavioural response(novelty response) to assess the sensitivity of different skin areas to electrolocation stimuli and determined the receptor densities of these regions. Our results imply that both regions – the Schnauzenorgan and the nasal region – can be termed electric fovea but they serve separate functions during active electrolocation.
Collapse
Affiliation(s)
- Roland Pusch
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 43115 Bonn, Germany
| | - Gerhard von der Emde
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 43115 Bonn, Germany
| | - Michael Hollmann
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 43115 Bonn, Germany
| | - Joao Bacelo
- UNIC, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Sabine Nöbel
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 43115 Bonn, Germany
| | - Kirsty Grant
- UNIC, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Jacob Engelmann
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 43115 Bonn, Germany
| |
Collapse
|
13
|
Giassi ACC, Corrêa SAL, Hoffmann A. Fiber connections of the diencephalic nucleus tuberis anterior in the weakly electric fish,Gymnotus cf. carapo: An in vivo tract-tracing study. J Comp Neurol 2007; 503:655-67. [PMID: 17559100 DOI: 10.1002/cne.21413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transport of biotinylated dextran amine shows the spatial segregation of mechanosensory afferents in the nucleus tuberis anterior (TA) of a gymnotiform fish, Gymnotus cf. carapo. Only the intermediate subdivision of this nucleus receives projections from the lateral region of the ventral torus semicircularis (TSv), which represents the principal midbrain center for mechanosensory information processing, and from the ventral nucleus praeeminentialis, which receives collaterals of ascending second order mechanosensory fibers that emerge from the mechanosensory lateral line lobe. Considering this aspect, a rostrocaudal subdivision of the TA is proposed. The TA also receives input from regions subserving other sensory modalities, suggesting a role in multisensory interaction. Another important finding of this work consisted in the demonstration of reciprocal connections between the TA and the inferior lobe of the hypothalamus, which is known to receive gustatory, visual, and electrosensory input and is therefore considered a multisensory integration center involved in feeding and aggressive behavior. Furthermore, reciprocal connections between the TA and the preelectromotor central-posterior/prepacemaker complex may provide an access for the processed mechanosensory information to interact with the transient modulations of the electric organ discharge that accompany different behaviors.
Collapse
Affiliation(s)
- Ana Catarina Casari Giassi
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | |
Collapse
|
14
|
Caputi AA, Budelli R. Peripheral electrosensory imaging by weakly electric fish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:587-600. [PMID: 16501980 DOI: 10.1007/s00359-006-0100-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 12/04/2005] [Accepted: 12/26/2005] [Indexed: 10/25/2022]
Abstract
Different species have developed different solutions to the problem of constructing a representation of the environment from sensory images projected onto sensory surfaces. Comprehension of how these images are formed is an essential first step in understanding the representation of external reality by a given sensory system. Modeling of the electrical sensory images of objects began with the discovery of electroreception and continues to provide general insights into the mechanisms of imaging. Progress in electric image research has made it possible to establish the physical basis of electric imaging, as well as methods to accurately predict the electric images of objects alone and as a part of a natural electric scene. In this review, we show the following. (1) The internal low resistance of the fish's body shapes the image in two different ways: by funneling the current generated by the electric organ to the sensory surface, it increases the fields rostrally, thus enhancing the perturbation produced by nearby objects; and by increasing the projected image. (2) The electric fish's self-generated currents are modified by capacitive objects in a distinctive manner. These modulations can be detected by different receptor types, yielding the possibility of "electric color." (3) The effects of different objects in a scene interact with each other, generating an image that is different from the simple addition of the images of individual objects, thus causing strong contextual effects.
Collapse
Affiliation(s)
- A A Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Unidad Asociada de la Facultad de Ciencias, Universidad de la República, Av. Italia 3318, 11600, Montevideo, Uruguay.
| | | |
Collapse
|
15
|
Behrend O, Branoner F, Zhivkov Z, Ziehm U. Neural responses to water surface waves in the midbrain of the aquatic predatorXenopus laevis laevis. Eur J Neurosci 2006; 23:729-44. [PMID: 16487154 DOI: 10.1111/j.1460-9568.2006.04577.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many aquatic vertebrates use mechano-sensory lateral lines to decipher water movements. The peripheral and central organization of the lateral line system has much in common with the auditory system. Therefore, it was hypothesized that the information processing of both systems could be related. Analogous to acoustic objects, for instance, object representations along the central lateral line pathway must be generated from patterns of particle motion across peripheral receivers. Thus, the lateral line offers insight into key features of neural computation beyond a specific sensory system. Here, central processing of water surface waves was described in the African clawed frog which depends on wave signals for prey detection, recognition and localization. Neural responses to surface wave stimuli were recorded in the brainstem and midbrain of Xenopus. A total of 109 units displayed either excitatory or inhibitory responses to surface waves. The response pattern distribution differed significantly across the optic tectum and torus semicircularis magnocellularis (chi-square test, P < 0.05). Stimulus frequencies from 10 to 40 Hz were represented equally across lateral line nuclei but best frequencies were systematically distributed along the rostrocaudal axis of the midbrain (chi-square test, P < 0.05). Forty-one percent of 102 widely distributed units phase locked significantly to stimulus frequencies (Rayleigh test, P < 0.05; vector strength > 0.3) and 41% of 39 tested units featured non-monotone rate-level functions. These neurones were registered mainly in the dorsal tectum and magnocellular torus semicircularis (chi-square test, P < 0.05). Across all tested nuclei, 16 of 17 discreetly distributed units showed a directional response to spatial stimulation. The results suggest midbrain subdivisions with respect to processing of stimulus timing, frequency and amplitude.
Collapse
Affiliation(s)
- Oliver Behrend
- Aquatic Bioacoustics Laboratory, Institute of Biology, Humboldt University Berlin, Invalidenstrasse 43, 10115 Berlin, Germany.
| | | | | | | |
Collapse
|
16
|
Abstract
Vertebrates have evolved electrosensory receptors that detect electrical stimuli on the surface of the skin and transmit them somatotopically to the brain. In chondrichthyans, the electrosensory system is composed of a cephalic network of ampullary organs, known as the ampullae of Lorenzini, that can detect extremely weak electric fields during hunting and navigation. Each ampullary organ consists of a gel-filled epidermal pit containing sensory hair cells, and synaptic connections with primary afferent neurons at the base of the pit that facilitate detection of voltage gradients over large regions of the body. The developmental origin of electroreceptors and the mechanisms that determine their spatial arrangement in the vertebrate head are not well understood. We have analyzed electroreceptor development in the lesser spotted catshark (Scyliorhinus canicula) and show that Sox8 and HNK1, two markers of the neural crest lineage, selectively mark sensory cells in ampullary organs. This represents the first evidence that the neural crest gives rise to electrosensory cells. We also show that pathfinding by cephalic mechanosensory and electrosensory axons follows the expression pattern of EphA4, a well-known guidance cue for axons and neural crest cells in osteichthyans. Expression of EphrinB2, which encodes a ligand for EphA4, marks the positions at which ampullary placodes are initiated in the epidermis, and EphA4 is expressed in surrounding mesenchyme. These results suggest that Eph-Ephrin signaling may establish an early molecular map for neural crest migration, axon guidance and placodal morphogenesis during development of the shark electrosensory system.
Collapse
Affiliation(s)
- Renata Freitas
- Department of Zoology, University of Florida, PO Box 118525, Gainesville, FL 32611-8525, USA
| | | | | | | | | |
Collapse
|
17
|
McElligott MB, O'malley DM. Prey tracking by larval zebrafish: axial kinematics and visual control. BRAIN, BEHAVIOR AND EVOLUTION 2005; 66:177-96. [PMID: 16088102 DOI: 10.1159/000087158] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 12/13/2004] [Indexed: 11/19/2022]
Abstract
High-speed imaging was used to record the prey-tracking behavior of larval zebrafish as they fed upon paramecium. Prey tracking is comprised of a variable set of discrete locomotor movements that together align the larva with the paramecium and bring it into close proximity, usually within one body length. These tracking behaviors are followed by a brief capture swim bout that was previously described [Borla et al., 2002]. Tracking movements were classified as either swimming or turning bouts. The swimming bouts were similar to a previously characterized larval slow swim [Budick and O'Malley, 2000], but the turning movements consisted of unique J-shaped bends which appear to minimize forward hydrodynamic disturbance when approaching the paramecium. Such J-turn tracking bouts consisted of multiple unilateral contractions to one side of the body. J-turns slowly and moderately alter the orientation of the larva - this is in contrast to previously described escape and routine turns. Tracking behaviors appear to be entirely visually guided. Infra-red (IR) imaging of locomotor behaviors in a dark environment revealed a complete absence of tracking behaviors, even though the normal repertoire of other locomotive behaviors was recorded. Concomitantly, such larvae were greatly impaired in consuming paramecia. The tracking behavior is of interest because it indicates the presence of sophisticated locomotor control circuitry in this relatively simple model organism. Such locomotor strategies may be conserved and elaborated upon by other larval and adult fishes.
Collapse
|
18
|
Gómez L, Budelli R, Grant K, Caputi AA. Pre-receptor profile of sensory images and primary afferent neuronal representation in the mormyrid electrosensory system. J Exp Biol 2004; 207:2443-53. [PMID: 15184516 DOI: 10.1242/jeb.01053] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Afferent responses to the fish's own electric organ discharge were explored in the electrosensory lobe of the mormyrid fish Gnathonemus petersii. In order to understand the neural encoding of natural sensory images,responses were examined while objects of different conductivities were placed at different positions along the skin of the fish, i.e. at different points within, and also outside, peripheral receptive fields. The presence of an object in the fish's self-generated electric field produces local modulation of transcutaneous current density. Measurement of the local electric organ discharge shows that object images formed at the electroreceptive sensory surface have an opposing center-surround, `Mexican hat' profile. This is a pre-receptor phenomenon intrinsic to the physical nature of the sensory stimulus that takes place prior to neural lateral inhibition and is independent of such central inhibition.
Stimulus intensity is encoded in the latency and number of action potentials in the response of primary afferent fibers. It is also reflected in changes in the amplitude and area of extracellular field potentials recorded in the deep granular layer of the electrosensory lobe. Since the object image consists of a redistribution of current density over the receptive surface,its presence is coded by change in the activity of receptors over an area much larger than the skin surface facing the object. We conclude that each receptor encodes information coming from the whole scene in a manner that may seem ambiguous when seen from a single point and that, in order to extract specific object features, the brain must process the electric image represented over the whole sensory surface.
Collapse
Affiliation(s)
- Leonel Gómez
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | | | | | | |
Collapse
|
19
|
Caputi AA, Castelló ME, Aguilera P, Trujillo-Cenóz O. Electrolocation and electrocommunication in pulse gymnotids: signal carriers, pre-receptor mechanisms and the electrosensory mosaic. ACTA ACUST UNITED AC 2004; 96:493-505. [PMID: 14692497 DOI: 10.1016/s0928-4257(03)00005-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Constraints introduced by signal carriers, pre-receptor mechanisms and receptor transduction are fundamental for shaping the signals used by the brain to build up perceptual images. This review analyses some of these constraints in the electrosensory system of pulse Gymnotids. First, it describes the characteristics and differences of electrolocation and electrocommunication carriers. Second, it analyses the role of electrogenic and non-electrogenic tissues of the fish body in the generation and conditioning of these carriers. Two pre-receptor mechanisms are discussed: (a) the funneling of currents to the perioral region and (b) a Mexican-hat profile involved in edge detection. Finally, some characteristics of the electroreceptor structure and the sensory mosaic are examined. We conclude that there is an electrosensory fovea at the perioral region where a large density and variety of receptors is stimulated by self- and conspecific-generated currents funneled there by non electrogenic tissues. Differences in carrier waveform may be used to distinguish between reafferent and communication signals.
Collapse
Affiliation(s)
- Angel A Caputi
- Departmento de Neurofisiología Comparada y Departamento de Neuroanatomía Comparada, Unidad Asociada a Facultad de Ciencias, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay.
| | | | | | | |
Collapse
|
20
|
Abstract
We review modelling and experimental work dealing with the mechanisms of generation of electric image. We discuss: (1) the concept of electric image in the context of the reafference principle; (2) how waveform codes an impedance related qualia of the object image, referred to as "electric colour"; (3) that some characteristics of the spatial profiles generated by pre-receptor mechanisms are suitable for edge detection; (4) which parameters of the spatial profiles provide information for distance discrimination; (5) that electric images are distributed representations of the scene.
Collapse
Affiliation(s)
- R Budelli
- Sciences Biomatemáitica y Neurociencias, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, Uruguay.
| | | | | | | | | |
Collapse
|