1
|
Zhou YA, Li P, Zhang Y, Xiong Q, Li C, Zhao Z, Wang Y, Xiao H. Identification of a novel compound heterozygous IDUA mutation underlies Mucopolysaccharidoses type I in a Chinese pedigree. Mol Genet Genomic Med 2019; 8:e1058. [PMID: 31758674 PMCID: PMC6978265 DOI: 10.1002/mgg3.1058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Mucopolysaccharidosis type I (MPS I) is a rare autosomal storage disorder resulting from the defective alpha-L-iduronidase (encoded by IDUA) enzyme activity and accumulation of glycosaminoglycans (GAGs) in lysosomes. So far, more than 100 IDUA causative mutations have been identified leading to three MPS I phenotypic subtypes: Hurler syndrome (severe form), Hurler/Scheie syndrome (intermediate form), and Scheie syndrome (mild form). METHODS Whole-exome sequencing (WES) was performed to identify the underlying genetic mutations. To verify the identified variations, Sanger sequencing was performed for all available family members following PCR amplification. The impact on IDUA protein was analyzed by sequential analysis and homology modeling. RESULTS A novel IDUA heterozygous single base insertion (c.1815dupT, p.V606Cfs51* ) and a known missence mutation (c.T1037G, p.L346R) were detected in our patient diagnosed as congenital heart disease with heart valve abnormalities. The novel frameshift mutation results in a complete loss of 48 amino acids in the Ig-like domain and causes the formation of a putative protein product which might affect the IDUA enzyme activity. CONCLUSIONS A novel compound heterozygous IDUA mutation (c.1815dupT, p.V606Cfs51* ) was found in a Chinese MPS I family. The identification of the mutation facilitated accurate genetic counseling and precise medical intervention for MPS I in China.
Collapse
Affiliation(s)
- Yong-An Zhou
- Bluttransfusion The Second Hospital, Shanxi Medical University, Shanxi Taiyuan, China
| | - Ping Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yanping Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Qiuhong Xiong
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Chao Li
- Bluttransfusion The Second Hospital, Shanxi Medical University, Shanxi Taiyuan, China
| | - Zhonghua Zhao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yuxian Wang
- Department of Obstetrics and Gynecology, The First Hospital, Shanxi Medical University, Taiyuan, China
| | - Han Xiao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
2
|
[Ehlers-Danlos syndromes]. Ann Dermatol Venereol 2017; 144:744-758. [PMID: 29032848 DOI: 10.1016/j.annder.2017.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 02/27/2017] [Accepted: 06/12/2017] [Indexed: 11/22/2022]
Abstract
Ehlers-Danlos syndromes (EDS) are a heterogeneous group of inheritable connective tissue disorders characterized by skin hyperextensibility, joint hypermobility and cutaneous fragility with delayed wound healing. Over and above these common features, they differ in the presence or absence of various organ and tissue abnormalities, and differences in genetic causal mechanisms and degree of severity. They are complex and multisystem diseases, with the majority being highly disabling because of major joint problems and neurosensory deficiencies, and in some cases, they may be life-threatening due to associated complications, especially vascular disorders. In 1997, the Villefranche classification defined 6 subtypes of EDS. However, many other new variants have been described over the last years. The "historical" EDS were characterized by abnormalities in fibrillar collagen protein synthesis. More recently, disorders of synthesis and organization of the extracellular matrix have been shown to be responsible for other types of EDS. Thus, many EDS are in fact metabolic diseases related to enzymatic defects. While there is no curative treatment for any type of EDS, early diagnosis is of utmost importance in order to optimize the symptomatic management of patients and to prevent avoidable complications. Patients must be treated and monitored by multidisciplinary teams in highly specialized reference centers. In this article, we present the current state of knowledge on these diseases that continue to be elucidated thanks to new molecular genetic techniques.
Collapse
|
3
|
Khan SA, Peracha H, Ballhausen D, Wiesbauer A, Rohrbach M, Gautschi M, Mason RW, Giugliani R, Suzuki Y, Orii KE, Orii T, Tomatsu S. Epidemiology of mucopolysaccharidoses. Mol Genet Metab 2017; 121:227-240. [PMID: 28595941 PMCID: PMC5653283 DOI: 10.1016/j.ymgme.2017.05.016] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
Abstract
The aim of this study was to obtain data about the epidemiology of the different types of mucopolysaccharidoses in Japan and Switzerland and to compare with similar data from other countries. Data for Japan was collected between 1982 and 2009, and 467 cases with MPS were identified. The combined birth prevalence was 1.53 per 100,000 live births. The highest birth prevalence was 0.84 for MPS II, accounting for 55% of all MPS. MPS I, III, and IV accounted for 15, 16, and 10%, respectively. MPS VI and VII were more rare and accounted for 1.7 and 1.3%, respectively. A retrospective epidemiological data collection was performed in Switzerland between 1975 and 2008 (34years), and 41 living MPS patients were identified. The combined birth prevalence was 1.56 per 100,000 live births. The highest birth prevalence was 0.46 for MPS II, accounting for 29% of all MPS. MPS I, III, and IV accounted for 12, 24, and 24%, respectively. As seen in the Japanese population, MPS VI and VII were more rare and accounted for 7.3 and 2.4%, respectively. The high birth prevalence of MPS II in Japan was comparable to that seen in other East Asian countries where this MPS accounted for approximately 50% of all forms of MPS. Birth prevalence was also similar in some European countries (Germany, Northern Ireland, Portugal and the Netherlands) although the prevalence of other forms of MPS is also reported to be higher in these countries. Birth prevalence of MPS II in Switzerland and other European countries is comparatively lower. The birth prevalence of MPS III and IV in Switzerland is higher than in Japan but comparable to that in most other European countries. Moreover, the birth prevalence of MPS VI and VII was very low in both, Switzerland and Japan. Overall, the frequency of MPS varies for each population due to differences in ethnic backgrounds and/or founder effects that affect the birth prevalence of each type of MPS, as seen for other rare genetic diseases. Methods for identification of MPS patients are not uniform across all countries, and consequently, if patients are not identified, recorded prevalence rates will be aberrantly low.
Collapse
Affiliation(s)
- Shaukat A Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Hira Peracha
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Diana Ballhausen
- Centre for Molecular Diseases, Service for Genetic Medicine, University Hospital Lausanne, Switzerland
| | - Alfred Wiesbauer
- Institute of Social and Preventive Medicine, University of Bern, Switzerland
| | - Marianne Rohrbach
- Division of Metabolism and Children's Research Centre (CRC), University Children's Hospital, Zurich, Switzerland
| | - Matthias Gautschi
- Division of Endocrinology, Diabetology and Metabolism, University Children's Hospital, University Institute of Clinical Chemistry, Inselspital, University of Bern, Bern, Switzerland
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Roberto Giugliani
- Medical Genetics Service, HCPA, Dep. Genetics, UFRGS, and INAGEMP, Porto Alegre, Brazil
| | | | - Kenji E Orii
- Department of Pediatrics, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Pediatrics, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|