1
|
Mehranfard N, Ghasemi M, Rajabian A, Ansari L. Protective potential of naringenin and its nanoformulations in redox mechanisms of injury and disease. Heliyon 2023; 9:e22820. [PMID: 38058425 PMCID: PMC10696200 DOI: 10.1016/j.heliyon.2023.e22820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Increasing evidence suggests that elevated intracellular levels of reactive oxygen species (ROS) play a significant role in the pathogenesis of many diseases. Increased intracellular levels of ROS can lead to the oxidation of lipids, DNA, and proteins, contributing to cellular damage. Hence, the maintenance of redox hemostasis is essential. Naringenin (NAR) is a flavonoid included in the flavanones subcategory. Various pharmacological actions have been ascribable to this phytochemical composition, including antioxidant, anti-inflammatory, antibacterial, antiviral, antitumor, antiadipogenic, neuro-, and cardio-protective activities. This review focused on the underlying mechanism responsible for the antioxidative stress properties of NAR and its' nanoformulations. Several lines of in vitro and in vivo investigations suggest the effects of NAR and its nanoformulation on their target cells via modulating signaling pathways. These nanoformulations include nanoemulsion, nanocarriers, solid lipid nanoparticles (SLN), and nanomicelle. This review also highlights several beneficial health effects of NAR nanoformulations on human diseases including brain disorders, cancer, rheumatoid arthritis, and small intestine injuries. Employing nanoformulation can improve the pharmacokinetic properties of NAR and consequently efficiency by reducing its limitations, such as low bioavailability. The protective effects of NAR and its' nanoformulations against oxidative stress may be linked to the modulation of Nrf2-heme oxygenase-1, NO/cGMP/potassium channel, COX-2, NF-κB, AMPK/SIRT3, PI3K/Akt/mTOR, BDNF, NOX, and LOX-1 pathways. Understanding the mechanism behind the protective effects of NAR can facilitate drug development for the treatment of oxidative stress-related disorders.
Collapse
Affiliation(s)
- Nasrin Mehranfard
- Nanokadeh Darooee Samen Private Joint Stock Company, Urmia, 5715793731, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Legha Ansari
- Nanokadeh Darooee Samen Private Joint Stock Company, Urmia, 5715793731, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
dos Reis EE, Schenkel PC, Camassola M. Effects of bioactive compounds from Pleurotus mushrooms on COVID-19 risk factors associated with the cardiovascular system. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:385-395. [PMID: 35879221 PMCID: PMC9271422 DOI: 10.1016/j.joim.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/14/2021] [Indexed: 10/27/2022]
|
3
|
Mao X, Gu C, Chen D, Yu B, He J. Oxidative stress-induced diseases and tea polyphenols. Oncotarget 2017; 8:81649-81661. [PMID: 29113421 PMCID: PMC5655316 DOI: 10.18632/oncotarget.20887] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/26/2017] [Indexed: 12/24/2022] Open
Abstract
Reactive oxide species are the middle products of normal metabolism, and play a crucial role in cell signaling transduction. On the contrary, accumulation of excess reactive oxide species results in oxidative stress that often brings multifarious impairment to cells, including decrease of ATP level in cells, elevation of cytosolic Ca2+, DNA damage, dysfunction of biological function in lipid bilayer and so on. These effects will finally lead to all kinds of diseases. Tea polyphenols are widely considered as a kind of excellent antioxidant agents. It can be antioxidants by directly scavenging reactive oxide species or chelating transition metals, and indirectly upregulating the activity of antioxidant enzymes. In addition, tea polyphenols have also been observed a potent pro-oxidant capacity, which directly leads to the generation of reactive oxide species, and indirectly induces apoptosis and death of cancer cells. The underlying characters of its pro-oxidant activity in some diseases is not well understood. The present review we will discuss the dual character of tea polyphenols, both antioxidant and pro-oxidant properties, in some human diseases induced by oxidative stress.
Collapse
Affiliation(s)
- Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| | - Changsong Gu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, 611130, People's Republic of China
| |
Collapse
|
4
|
Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative Stress: Harms and Benefits for Human Health. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8416763. [PMID: 28819546 PMCID: PMC5551541 DOI: 10.1155/2017/8416763] [Citation(s) in RCA: 1906] [Impact Index Per Article: 272.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
Abstract
Oxidative stress is a phenomenon caused by an imbalance between production and accumulation of oxygen reactive species (ROS) in cells and tissues and the ability of a biological system to detoxify these reactive products. ROS can play, and in fact they do it, several physiological roles (i.e., cell signaling), and they are normally generated as by-products of oxygen metabolism; despite this, environmental stressors (i.e., UV, ionizing radiations, pollutants, and heavy metals) and xenobiotics (i.e., antiblastic drugs) contribute to greatly increase ROS production, therefore causing the imbalance that leads to cell and tissue damage (oxidative stress). Several antioxidants have been exploited in recent years for their actual or supposed beneficial effect against oxidative stress, such as vitamin E, flavonoids, and polyphenols. While we tend to describe oxidative stress just as harmful for human body, it is true as well that it is exploited as a therapeutic approach to treat clinical conditions such as cancer, with a certain degree of clinical success. In this review, we will describe the most recent findings in the oxidative stress field, highlighting both its bad and good sides for human health.
Collapse
Affiliation(s)
- Gabriele Pizzino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Mariapaola Cucinotta
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vincenzo Arcoraci
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Domenica Altavilla
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
5
|
Leon C, Jia J, Qiu G, Hill JS, Wasan KM. Modifications in low-density lipoprotein receptor expression affects Cyclosporin A cellular uptake and cytotoxicity. J Pharm Sci 2008; 97:2350-61. [PMID: 17823952 DOI: 10.1002/jps.21141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The purpose of this study was to test the effect of modulating the expression of the human low-density lipoprotein receptor (LDLr) in human embryonic kidney (293T) cells on Cyclosporin A (CsA) cellular uptake and CsA-mediated cytotoxicity. LDLr expression was modulated using RNA interference (RNAi) and an LDLr overexpression plasmid. One of the small-interfering RNA (siRNA) constructs, LDLr-792, showed a 60% decrease in LDLr protein expression. The downregulation effect was specific as transfection with an annexin V (AxV) siRNA construct did not decrease LDLr expression levels. AxV and ABCA1 expression levels were not affected in the cells transfected with LDLr-792 (LDLr(LOW) cells) compared to the controls. At a functional level, fluorescent low-density lipoprotein (LDL) (DiI-LDL) internalization in the LDLr(LOW) cells was decreased (30%) compared to control cells. We tested the dose-dependent cytotoxicity induced by CsA using a respiration assay. We found a decrease in CsA-mediated cytotoxicity in the range of CsA doses studied (1-10 microg/mL) in the LDLr(LOW) cells compared to the pSHAG-transfected cells, reaching a statistical significance at 10 microg/mL CsA. At higher CsA doses we found a significant decrease in LDLr expression. When the control and LDLr(LOW) cells were treated with another cytotoxic drug, gentamycin, there was no difference in the cell viability, suggesting that this effect is specific for CsA. We confirmed the association of LDLr expression levels with CsA uptake by overexpressing the LDLr. The LDLr overexpressing cells showed an enhanced uptake of radiolabelled CsA. Taken together these results suggest that CsA internalization and cytotoxicity are affected by the LDL receptor expression levels.
Collapse
Affiliation(s)
- Carlos Leon
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver British Columbia, Canada V6T 1Z3
| | | | | | | | | |
Collapse
|
6
|
Chung NS, Sachs-Barrable K, Lee SD, Wasan KM. Suitability of LLC-PK1 pig kidney cells for the study of drug action on renal cell cholesterol uptake: Identification and characterization of low-density lipoprotein receptors. J Pharmacol Toxicol Methods 2005; 51:139-45. [PMID: 15767207 DOI: 10.1016/j.vascn.2004.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 09/27/2004] [Indexed: 10/26/2022]
Abstract
INTRODUCTION The purpose of this study was to identify and characterize the presence of low-density lipoprotein receptors (LDLr) in LLC-PK(1) cells. METHODS LLC-PK(1) cells were assessed for the presence of LDLr by conducting dose-response, LDL specific binding and competitive studies with DiI-LDL, and Western blot and RT-polymerase chain reaction (PCR) analyses. Assay conditions with IgG-C7, a monoclonal antibody (mAb) to the LDLr, were optimized, including temperature, preincubation time, and concentration in LLC-PK(1) cells. RESULTS LLC-PK(1) cells express LDL receptors as determined by LDL specific and competitive binding studies and Western blot and RT-PCR analysis (specific binding 0.5 ng DiI-LDL/mug of cellular protein). DISCUSSION Taken together, these findings confirm the presence of LDL receptors on LLC-PK1 cells and support the appropriateness of using these cells in studies involving renal cell cholesterol uptake and metabolism.
Collapse
Affiliation(s)
- Nancy S Chung
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
7
|
Abstract
The clinical condition of acute renal failure (ARF) can be caused by a diverse number of renal injuries, but it is generally characterized by a sharp reduction in the glomerular filtration rate (GFR). A lipid mediator, platelet activating factor (PAF), may be one of the entities responsible for causing the hemodynamic changes in the ARF kidney because it can act as a vasodilator or vasoconstrictor, depending upon its concentration. This review examines the action and mechanisms of PAF in experimental animal models of ischemia and nephrotoxicity, as well as renal failure associated with extrarenal disease. While further research is necessary before extrapolating our current knowledge of PAF into the prevention of renal failure of therapeutic intervention using PAF antagonists in human ARF, there is reasonable evidence to support its role as a mediator of the decrease in GFR characteristic of ARF.
Collapse
Affiliation(s)
- J M López-Novoa
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Spain.
| |
Collapse
|