1
|
Jin D, Li C, Chen X, Byerly A, Stover NA, Zhang T, Shao C, Wang Y. Comparative genome analysis of three euplotid protists provides insights into the evolution of nanochromosomes in unicellular eukaryotic organisms. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:300-315. [PMID: 37637252 PMCID: PMC10449743 DOI: 10.1007/s42995-023-00175-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/12/2023] [Indexed: 08/29/2023]
Abstract
One of the most diverse clades of ciliated protozoa, the class Spirotrichea, displays a series of unique characters in terms of eukaryotic macronuclear (MAC) genome, including high fragmentation that produces nanochromosomes. However, the genomic diversity and evolution of nanochromosomes and gene families for spirotrich MAC genomes are poorly understood. In this study, we assemble the MAC genome of a representative euplotid (a new model organism in Spirotrichea) species, Euplotes aediculatus. Our results indicate that: (a) the MAC genome includes 35,465 contigs with a total length of 97.3 Mb and a contig N50 of 3.4 kb, and contains 13,145 complete nanochromosomes and 43,194 predicted genes, with the majority of these nanochromosomes containing tiny introns and harboring only one gene; (b) genomic comparisons between E. aediculatus and other reported spirotrichs indicate that average GC content and genome fragmentation levels exhibit interspecific variation, and chromosome breaking sites (CBSs) might be lost during evolution, resulting in the increase of multi-gene nanochromosome; (c) gene families associated with chitin metabolism and FoxO signaling pathway are expanded in E. aediculatus, suggesting their potential roles in environment adaptation and survival strategies of E. aediculatus; and (d) a programmed ribosomal frameshift (PRF) with a conservative motif 5'-AAATAR-3' tends to occur in longer genes with more exons, and PRF genes play an important role in many cellular regulation processes. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00175-0.
Collapse
Affiliation(s)
- Didi Jin
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Chao Li
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Xiao Chen
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209 China
| | - Adam Byerly
- Department of Computer Science and Information Systems, Bradley University, Peoria, 61625 USA
| | - Naomi A. Stover
- Department of Biology, Bradley University, Peoria, 61625 USA
| | - Tengteng Zhang
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Chen Shao
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Yurui Wang
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| |
Collapse
|
2
|
Ganser MH, Bartel H, Weißenbacher B, Andosch A, Lütz-Meindl U, Radacher P, Agatha S. A light and electron microscopical study on the resting cyst of the tintinnid Schmidingerella (Alveolata, Ciliophora) including a phylogeny-aware comparison. Eur J Protistol 2022; 86:125922. [PMID: 36155308 DOI: 10.1016/j.ejop.2022.125922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 01/26/2023]
Abstract
Resting cysts protect ciliates against adverse environmental conditions. The morphology and ultrastructure of resting cysts has been described in very few Oligotrichea, a group of mainly marine planktonic ciliates. The present study provides the first ultrastructural data for loricate choreotrichids, applying light and electron microscopy on the cysts of the tintinnid Schmidingerella meunieri (Kofoid and Campbell, 1929) Agatha and Strüder-Kypke, 2012. The morphology of live cysts and the wall ultrastructure of cryofixed cysts were morphometrically analysed. The resting cyst is roughly flask-shaped, broadening to a slightly concave, laterally protruding anterior plate. An emergence pore closed by a skull cap-shaped papula is directed to the bottom of the lorica on the opposite side of the cyst. The cyst wall consists of an ectocyst, mesocyst, and endocyst differing in thickness, structure, and nitrogen concentration as revealed by conventional transmission electron microscopy, electron energy loss spectroscopy, and electron spectroscopic imaging. The cysts of S. meunieri belong to the kinetosome-resorbing type, which also occurs in the majority of hypotrich ciliates. Two main features (flask-shape and presence of an emergence pore) are shared with the closely related aloricate choreotrichids and oligotrichids, distinguishing the Oligotrichea from the hypotrich and the more distantly related euplotid ciliates.
Collapse
Affiliation(s)
- Maximilian H Ganser
- Department of Environment & Biodiversity, Paris Lodron University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Heidi Bartel
- Department of Environment & Biodiversity, Paris Lodron University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Birgit Weißenbacher
- Department of Environment & Biodiversity, Paris Lodron University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Ancuela Andosch
- Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Ursula Lütz-Meindl
- Department of Environment & Biodiversity, Paris Lodron University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria; Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Peter Radacher
- Department of Environment & Biodiversity, Paris Lodron University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Sabine Agatha
- Department of Environment & Biodiversity, Paris Lodron University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| |
Collapse
|
3
|
Dominance of Wolbachia sp. in the deep-sea sediment bacterial metataxonomic sequencing analysis in the Bay of Bengal, Indian Ocean. Genomics 2019; 112:1030-1041. [PMID: 31229556 DOI: 10.1016/j.ygeno.2019.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/24/2019] [Accepted: 06/17/2019] [Indexed: 11/23/2022]
Abstract
The Bay of Bengal, located in the north-eastern part of the Indian Ocean is world's largest bay occupying an area of ~8,39,000 mile2. The variability in bacterial community structure and function in sediment ecosystems of the Bay of Bengal is examined by Illumina high-throughput metagenomic sequencing. Of five metataxonomics data sets presented, two (SD1 and SD2) were from stations close to the shore and three (SD4, SD5, and SD6) were from the deep-sea (~3000 m depth). Phylum Proteobacteria (90.27 to 92.52%) dominated the deep-sea samples, whereas phylum Firmicutes (65.35 to 90.98%) dominated the coastal samples. Comparative analysis showed that coastal and deep-sea sediments showed distinct microbial communities. Wolbachia species, belonging to class Alphaproteobacteria was the most dominant species in the deep-sea sediments. The gene functions of bacterial communities were predicted for deep-sea and coastal sediment ecosystems. The results indicated that deep-sea sediment bacterial communities were involved in metabolic activities like dehalogenation and sulphide oxidation.
Collapse
|
4
|
Chitin Prevalence and Function in Bacteria, Fungi and Protists. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:19-59. [DOI: 10.1007/978-981-13-7318-3_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Light microscopy observations on the encystation and excystation processes of the ciliate Phacodinium metchnikoffi (Ciliophora, Phacodiniidae), including additional information on its resting cysts structure. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0059-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Ultrastructural features of the tomont of Cryptocaryon irritans (Ciliophora: Prostomatea), a parasitic ciliate of marine fishes. Parasitology 2017; 144:720-729. [DOI: 10.1017/s0031182016002651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
SUMMARYNumerous studies have been conducted on the cellular morphology of Cryptocaryon irritans. However, details regarding the tomont stage of its life cycle remain lacking. In this study, we investigated the morphology of the tomont stage throughout encystment and cell division using light and electron microscopy. Results showed that there was no secretion of encystation-specific secretory vesicles or extrusomes during formation of the cyst wall. Instead, the synthesis and construction of the C. irritans cyst wall materials may involve molecular events at the pellicle. The somatic cilia and the cytostome were present during encystment and covered by the newly formed cyst wall. New somatic cilia were continuously created between old cilia and showed various lengths during cell division, a process that was similar to morphogenesis in many free-living ciliates. During cell division inside the tomont, dividing daughter cells formed temporary cell chains with no oral primordia before separating from each other into dissociative tomite precursors. The process of cell division may not be accompanied by stomatogenesis, and new oral primordia in offspring cells likely formed before the dividing cell chains split into dissociative spherical tomites. Mitochondrial autophagy was observed in encysting C. irritans cells. Numerous endosymbionts and Golgi structures were observed in the tomont cytoplasm. Cellular metabolic activity in the C. irritans tomont was quite high, with large amounts of materials or cellular organelles potentially being synthesized and prepared for the following infective theront stage.
Collapse
|
7
|
Calvo P, Fernandez-Aliseda MC, Garrido J, Torres A. Ultrastructure, encystment and cyst wall composition of the resting cyst of the peritrich ciliate Opisthonecta henneguyi. J Eukaryot Microbiol 2003; 50:49-56. [PMID: 12674479 DOI: 10.1111/j.1550-7408.2003.tb00105.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyst wall of Opisthonecta henneguyi has been studied ultrastructurally and cytochemically by light and electron microscopy, as well as by chemical and electrophoretic analyses, to examine the structure of the cyst wall and its composition. The cyst wall consists of four morphologically distinct layers. The ectocyst is a thin dense layer. The mesocyst is the thickest layer and is composed of a compact material. The endocyst is a thin layer like the ectocyst, but less dense. The granular layer varies in thickness and is composed of a granular material. In the resting cyst, kinetosomes of both oral apparatus and trochal band as well as the myoneme system are maintained, and only cilia are resorbed. The sugars present in the cyst wall are predominantly N-acetylglucosamine (90%) and glucose (10%). The mesocyst is composed of chitin, and the endocyst includes glycoproteins and acid mucopolysaccharides. During secretion of the cyst wall, the endocyst and granular layer are secreted from precursors synthesized "de novo". No cytoplasmic precursors of ectocyst and mesocyst have been detected.
Collapse
Affiliation(s)
- Purificación Calvo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla 41012 Sevilla, Spain.
| | | | | | | |
Collapse
|
8
|
|
9
|
BORROR ARTHURC, HILL BRUCEF. The Order Euplotida (Ciliophora): Taxonomy, with Division of Euplotes into Several Genera. J Eukaryot Microbiol 1995. [DOI: 10.1111/j.1550-7408.1995.tb05891.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Kirchner M. Microbial colonization of copepod body surfaces and chitin degradation in the sea. ACTA ACUST UNITED AC 1995. [DOI: 10.1007/bf02368350] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Lukes J, Volf P, Lom J. Detection of chitin in spores of Myxobolus muelleri and M. subepithelialis (Myxosporea, Myxozoa). Parasitol Res 1993; 79:439-40. [PMID: 8415553 DOI: 10.1007/bf00931837] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- J Lukes
- Institute of Parasitology, Czech Academy of Sciences, Ceské Budĕjovice
| | | | | |
Collapse
|
12
|
|
13
|
Landers SC. Secretion of the reproductive cyst wall by the apostome ciliate Hyalophysa chattoni. Eur J Protistol 1991. [DOI: 10.1016/s0932-4739(11)80338-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Landers SC. The fine structure of secretion in Hyalophysa chattoni: formation of the attachment peduncle and the chitinous phoretic cyst wall. THE JOURNAL OF PROTOZOOLOGY 1991; 38:148-57. [PMID: 1826931 DOI: 10.1111/j.1550-7408.1991.tb06035.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The settling tomite stage of the apostome Hyalophysa chattoni secretes a phoretic cyst wall composed of chitin, mucopolysaccharides, and protein. Within 1 1/2 h after settling, an electron-dense proteinaceous cyst layer (the outer layer) is formed from secretions originating at the base of the kineties and from the thick pellicular layer between the kineties. The inner cyst layer, composed primarily of chitin (acidic and neutral polysaccharides are also present), is secreted across the entire cell surface. Cyst wall formation is completed within 6 h. The fine structure of endocyst secretion resembles stages in the secretion of chitin by fungi, yeasts, and arthropods. A proteinaceous attachment peduncle is secreted to anchor the cell to a shrimp host and is formed by the release of electrondense dense secretory bodies from the cell's ventral surface.
Collapse
Affiliation(s)
- S C Landers
- Zoology Department, North Carolina State University, Raleigh 27695-7617
| |
Collapse
|