1
|
Rasooly R, Do P, He X, Hernlem B. Streptococcal pyrogenic exotoxin B is a superantigen that induces murine splenocyte proliferation and secretion of IL-2 and IFN-γ ex vivo. FEMS Microbiol Lett 2024; 371:fnae036. [PMID: 38806245 DOI: 10.1093/femsle/fnae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024] Open
Abstract
Streptococcus pyogenes is a significant human pathogen, producing a range of virulence factors, including streptococcal pyrogenic exotoxin B (SpeB) that is associated with foodborne outbreaks. It was only known that this cysteine protease mediates cleavage of transmembrane proteins to permit bacterial penetration and is found in 25% of clinical isolates from streptococcal toxic shock syndrome patients with extreme inflammation. Its interaction with host and streptococcal proteins has been well characterized, but doubt remains about whether it constitutes a superantigen. In this study, for the first time it is shown that SpeB acts as a superantigen, similarly to other known superantigens such as staphylococcal enterotoxin A or streptococcal pyrogenic exotoxin type C, by inducing proliferation of murine splenocytes and cytokine secretion, primarily of interleukin-2 (IL-2), as shown by cytometric bead array analysis. IL-2 secretion was confirmed by enzyme-linked immunosorbent assay (ELISA) as well as secretion of interferon-γ. ELISA showed a dose-dependent relationship between SpeB concentration in splenocyte cells and IL-2 secretion levels, and it was shown that SpeB retains activity in milk pasteurized for 30 min at 63°C.
Collapse
Affiliation(s)
- Reuven Rasooly
- Foodborne Toxin Detection & Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, United States
| | - Paula Do
- Foodborne Toxin Detection & Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, United States
| | - Xiaohua He
- Foodborne Toxin Detection & Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, United States
| | - Bradley Hernlem
- Foodborne Toxin Detection & Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, United States
| |
Collapse
|
2
|
Lane MD, Seelig B. Highly efficient recombinant production and purification of streptococcal cysteine protease streptopain with increased enzymatic activity. Protein Expr Purif 2016; 121:66-72. [PMID: 26773742 DOI: 10.1016/j.pep.2016.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
Streptococcus pyogenes produces the cysteine protease streptopain (SpeB) as a critical virulence factor for pathogenesis. Despite having first been described seventy years ago, this protease still holds mysteries which are being investigated today. Streptopain can cleave a wide range of human proteins, including immunoglobulins, the complement activation system, chemokines, and structural proteins. Due to the broad activity of streptopain, it has been challenging to elucidate the functional results of its action and precise mechanisms for its contribution to S. pyogenes pathogenesis. To better study streptopain, several expression and purification schemes have been developed. These methods originally involved isolation from S. pyogenes culture but were more recently expanded to include recombinant Escherichia coli expression systems. While substantially easier to implement, the latter recombinant approach can prove challenging to reproduce, often resulting in mostly insoluble protein and poor purification yields. After extensive optimization of a wide range of expression and purification conditions, we applied the autoinduction method of protein expression and developed a two-step column purification scheme that reliably produces large amounts of purified soluble and highly active streptopain. This method reproducibly yielded 3 mg of streptopain from 50 mL of expression culture at >95% purity, with an activity of 5306 ± 315 U/mg, and no remaining affinity tags or artifacts from recombinant expression. This improved method therefore enables the facile production of the important virulence factor streptopain at higher yields, with no purification scars that might bias functional studies, and with an 8.1-fold increased enzymatic activity compared to previously described procedures.
Collapse
Affiliation(s)
- Michael D Lane
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Burckhard Seelig
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
3
|
Abstract
SUMMARY This review begins with a discussion of the large family of Staphylococcus aureus and beta-hemolytic streptococcal pyrogenic toxin T lymphocyte superantigens from structural and immunobiological perspectives. With this as background, the review then discusses the major known and possible human disease associations with superantigens, including associations with toxic shock syndromes, atopic dermatitis, pneumonia, infective endocarditis, and autoimmune sequelae to streptococcal illnesses. Finally, the review addresses current and possible novel strategies to prevent superantigen production and passive and active immunization strategies.
Collapse
|
4
|
Nelson DC, Garbe J, Collin M. Cysteine proteinase SpeB from Streptococcus pyogenes - a potent modifier of immunologically important host and bacterial proteins. Biol Chem 2012; 392:1077-88. [PMID: 22050223 DOI: 10.1515/bc.2011.208] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Group A streptococcus (Streptococcus pyogenes) is an exclusively human pathogen that causes a wide spectrum of diseases ranging from pharyngitis, to impetigo, to toxic shock, to necrotizing fasciitis. The diversity of these disease states necessitates that S. pyogenes possess the ability to modulate both the innate and adaptive immune responses. SpeB, a cysteine proteinase, is the predominant secreted protein from S. pyogenes. Because of its relatively indiscriminant specificity, this enzyme has been shown to degrade the extracellular matrix, cytokines, chemokines, complement components, immunoglobulins, and serum protease inhibitors, to name but a few of the known substrates. Additionally, SpeB regulates other streptococcal proteins by degrading them or releasing them from the bacterial surface. Despite the wealth of literature on putative SpeB functions, there remains much controversy about this enzyme because many of reported activities would produce contradictory physiological results. Here we review all known host and bacterial protein substrates for SpeB, their cleavage sites, and discuss the role of this enzyme in streptococcal pathogenesis based on the current literature.
Collapse
Affiliation(s)
- Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| | | | | |
Collapse
|
5
|
Nelson DC, Garbe J, Collin M. Cysteine proteinase SpeB from Streptococcus pyogenes - a potent modifier of immunologically important host and bacterial proteins. Biol Chem 2011. [PMID: 22050223 DOI: 10.1515/bc-2011-208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Group A streptococcus (Streptococcus pyogenes) is an exclusively human pathogen that causes a wide spectrum of diseases ranging from pharyngitis, to impetigo, to toxic shock, to necrotizing fasciitis. The diversity of these disease states necessitates that S. pyogenes possess the ability to modulate both the innate and adaptive immune responses. SpeB, a cysteine proteinase, is the predominant secreted protein from S. pyogenes. Because of its relatively indiscriminant specificity, this enzyme has been shown to degrade the extracellular matrix, cytokines, chemokines, complement components, immunoglobulins, and serum protease inhibitors, to name but a few of the known substrates. Additionally, SpeB regulates other streptococcal proteins by degrading them or releasing them from the bacterial surface. Despite the wealth of literature on putative SpeB functions, there remains much controversy about this enzyme because many of reported activities would produce contradictory physiological results. Here we review all known host and bacterial protein substrates for SpeB, their cleavage sites, and discuss the role of this enzyme in streptococcal pathogenesis based on the current literature.
Collapse
Affiliation(s)
- Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| | | | | |
Collapse
|
6
|
Diedershagen M, Overbeck S, Arlt S, Plümäkers B, Lintges M, Rink L. Mycoplasma arthritidis-derived superantigen (MAM) displays DNase activity. ACTA ACUST UNITED AC 2007; 49:266-71. [PMID: 17328760 DOI: 10.1111/j.1574-695x.2006.00189.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial superantigens are potent stimulators of the immune system. In this study, we expressed recombinant superantigens, which were then affinity purified and used for growth curves and DNase activity assays. Overexpression of Mycoplasma arthritidis-derived superantigen in Escherichia coli reduced bacterial growth. This is unique, as staphylococcal enterotoxin A and toxic shock syndrome toxin-1, expressed in the same vector system, showed no growth impairment. The observed growth inhibition was caused by the DNase activity of recombinant M. arthritidis-derived superantigen, thus describing the first superantigen showing enzymatic activity, which may be a result of the separate evolution of this toxin.
Collapse
Affiliation(s)
- Markus Diedershagen
- Institute of Immunology, RWTH Aachen University, University Hospital, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Collin M, Olsén A. Extracellular enzymes with immunomodulating activities: variations on a theme in Streptococcus pyogenes. Infect Immun 2003; 71:2983-92. [PMID: 12761074 PMCID: PMC155735 DOI: 10.1128/iai.71.6.2983-2992.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Mattias Collin
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York 10021, USA.
| | | |
Collapse
|
8
|
Gerlach D, Schmidt KH, Fleischer B. Basic streptococcal superantigens (SPEX/SMEZ or SPEC) are responsible for the mitogenic activity of the so-called mitogenic factor (MF). FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2001; 30:209-16. [PMID: 11335140 DOI: 10.1111/j.1574-695x.2001.tb01572.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mitogenic factor (MF) of group A streptococci has been reported to be a superantigen stimulating human T cells carrying Vbeta2, 4 and 8 and has been designated streptococcal pyrogenic exotoxin F (SPEF). MF was also shown to possess DNase activity. Here we have purified MF from culture supernatants of different Streptococcus pyogenes strains. Surprisingly, the MF preparations from different strains showed different Vbeta specificities depending on the expression of SPEC or SMEZ3 by the producing strain. Their mitogenic activity decreased upon further purification. In addition, the mitogenic activity could be only neutralized by antibodies against the basic streptococcal superantigens SPEC or SPEX (SMEZ3) but not by antibodies against MF itself although the latter were able to neutralize completely the DNase activity of MF. We found that streptodornase type B (SDB) was expressed in two molecular forms (SDBI and SDBII), differing only by one additional N-terminal arginine at SDBI. MF was found identical to the enzyme SDBII but is devoid of superantigenic properties and should no longer be called a superantigen or a pyrogenic exotoxin.
Collapse
Affiliation(s)
- D Gerlach
- Friedrich-Schiller-Universität Jena, Institute for Medical Microbiology, Semmelweisstr, 4, D-07743 Jena, Germany.
| | | | | |
Collapse
|
9
|
Eriksson A, Norgren M. The superantigenic activity of streptococcal pyrogenic exotoxin B is independent of the protease activity. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1999; 25:355-63. [PMID: 10497866 DOI: 10.1111/j.1574-695x.1999.tb01360.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nature of the mitogenic activity of pyrogenic streptococcal exotoxin B, also known as streptococcal cysteine protease, has been debated in the literature. Streptococcal exotoxin B has been shown to cleave interleukin-1beta precursor and create biologically active interleukin-1beta, a major cytokine mediating inflammation and shock. This activity could mimic the mitogenicity and cytokine release induced by superantigens in lymphocyte stimulating experiments. In this study, the protease activity of streptococcal exotoxin B was irreversibly inhibited by covalent binding of a tripeptide and the superantigenic properties of streptococcal exotoxin B were found not to be influenced by this inactivation. Native as well as protease-inactivated streptococcal exotoxin B was shown to stimulate T-cell proliferation without a need of metabolically active antigen presenting cells. Furthermore, streptococcal exotoxin B-induced T-cell proliferation was shown to require HLA-DQ since addition of HLA-DQ monoclonal antibodies totally inhibited the mitogenic activity of streptococcal exotoxin B, indicating that streptococcal exotoxin B, as other superantigens, makes direct contact with the T-cell receptor via HLA class II. The aim of this study was to characterize the relationship between the proteolytic and superantigenic properties of streptococcal exotoxin B.
Collapse
Affiliation(s)
- A Eriksson
- Department of Clinical Bacteriology, Umeå University, Sweden
| | | |
Collapse
|
10
|
Musser JM. Streptococcal superantigen, mitogenic factor, and pyrogenic exotoxin B expressed by Streptococcus pyogenes. Structure and function. Prep Biochem Biotechnol 1997; 27:143-72. [PMID: 9292924 DOI: 10.1080/10826069708000074] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J M Musser
- Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
11
|
Ozegowski JH, Wollweber L, Vettermann S, Muller PJ, Gunther E, Kohler W. Kinetics and regulation of erythrogenic toxins type A and C during growth of Streptococcus pyogenes. ZENTRALBLATT FUR BAKTERIOLOGIE : INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY 1996; 283:271-85. [PMID: 8861865 DOI: 10.1016/s0934-8840(96)80061-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The production of erythrogenic toxins type A (ETA) and C (ETC) is described as a function of growth kinetics. Group A streptococcal strains C 203 S and NY 5 were cultivated in yeast-peptone extract, Todd-Hewitt medium and a synthetic medium. Two main growth phases occurred during growth: a first logarithmic phase and a second linear phase. These phases were separated by a short stationary interphase caused by limitation of the amino acids L-serine and L-leucine. Maximum production of ETC was observed during the logarithmic phase, it was correlated to a high level of viable cells. ETA was produced mainly during the short stationary interphase. The production of ETC is regulated by L-isoleucine. A stagnation or reduction of the concentration of viable cells was observed during the interphase. The phosphate limitation caused during streptococcal growth induced expression of the extracellular protein phosphatase and surprisingly, of a serine proteinase activity. The association between these results and the pathogenicity of streptococci is discussed.
Collapse
Affiliation(s)
- J H Ozegowski
- Institut fur Experimentelle Mikrobiologie der Friedrich-Schiller-Universitat Jena, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Schmidt KH, Gerlach D, Wollweber L, Reichardt W, Mann K, Ozegowski JH, Fleischer B. Mitogenicity of M5 protein extracted from Streptococcus pyogenes cells is due to streptococcal pyrogenic exotoxin C and mitogenic factor MF. Infect Immun 1995; 63:4569-75. [PMID: 7591107 PMCID: PMC173656 DOI: 10.1128/iai.63.12.4569-4575.1995] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
M proteins of Streptococcus pyogenes are virulence factors which impede phagocytosis, bind to many plasma proteins, and induce formation of cross-reactive autoimmune antibodies. Recently, it has been reported that some M proteins, extracted with pepsin from streptococci (pep M), are superantigens. One of these, pep M5, was investigated in detail and was shown to stimulate human T cells bearing V beta 2, V beta 4, and V beta 8. In the present study, we extracted and purified M5 protein by different biochemical methods from two M type 5 group A streptococcal strains. The crude extracts were fractionated by affinity chromatography and ion-exchange chromatography. All fractions were tested in parallel for M protein by immunoblotting and for T-cell-stimulating activity. Although several crude preparations of M5 protein were associated with mitogenicity for V beta 2 and V beta 8 T cells, the M5 proteins, irrespective of the extraction method, could be purified to the extent that they were no longer mitogenic. The mitogenic activity was not destroyed during the purification procedures but was found in fractions separated from M protein. In these fractions, streptococcal pyrogenic exotoxin C and mitogenic factor MF could be detected by protein blotting and enzyme-linked immunosorbent assay. Moreover, anti-M protein sera did not inhibit the mitogenic activity of crude extracts, but antisera which contained anti-streptococcal pyrogenic exotoxin C antibodies showed inhibition. The inability of M5 protein to stimulate T cells was confirmed with recombinant pep M5 produced in Escherichia coli. Our data strongly suggest that the mitogenic activity in M protein preparations is caused by traces of streptococcal superantigens different from M protein.
Collapse
Affiliation(s)
- K H Schmidt
- Institute of Experimental Microbiology, Friedrich Schiller University, Jena, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Fleischer B, Gerlach D, Fuhrmann A, Schmidt KH. Superantigens and pseudosuperantigens of gram-positive cocci. Med Microbiol Immunol 1995; 184:1-8. [PMID: 8538573 DOI: 10.1007/bf00216783] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Superantigens use an elaborate and unique mechanism of T lymphocyte stimulation. Prototype superantigen are the pyrogenic exotoxins produced by Staphylococcus aureus and Streptococcus pyogenes. Many candidate proteins of bacterial, viral and protozoal origin have recently been reported to be superantigens. In most cases the evidence that these proteins are in fact superantigens is highly indirect. In this review the evidence that gram-positive cocci produce superantigens other than the pyrogenic exotoxins is critically discussed. Evidence in described demonstrating that the epidermolytic toxins of Staphylococcus aureus and the pyrogenic exotoxin B and M-proteins of Streptococcus pyrogenes are not superantigens. Criteria are described for acceptance of a candidate as a superantigen.
Collapse
Affiliation(s)
- B Fleischer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | |
Collapse
|
14
|
Gerlach D, Günther E, Köhler W, Vettermann S, Fleischer B, Schmidt KH. Isolation and characterization of a Mitogen characteristic of Group A streptococci (Streptococcus pyogenes). ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0934-8840(11)80798-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Wollweber L, Fritzke H, Ozegowski JH, Gerlach D, Köhler W. Production and partial characterization of monoclonal antibodies against erythrogenic toxins type A and C from Streptococcus pyogenes. Hybridoma (Larchmt) 1994; 13:403-8. [PMID: 7532154 DOI: 10.1089/hyb.1994.13.403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hybridoma cell lines producing monoclonal antibodies against streptococcal erythrogenic toxins type A and C were established from fusions of immunized BALB/c mice splenocytes with P3X63-Ag8.653 myeloma cells. Six MAbs recognize ETA and 11 MAbs bind to ETC. Two MAbs (designated ETA-2 and ETC-10) were produced in ascitic fluid and further characterized. ETA-2 (IgG2a) binds to ETA with an affinity constant of 1.8 x 10(10) M-1 and ETC-10 (IgG1) binds to ETC with an affinity constant of 3.5 x 10(9) M-1. The specificities of the MAbs were evaluated by ELISA and immunoblotting. Both MAbs ETA-2 and ETC-10 are useful in developing specific double-sandwich ELISAs, in which the MAbs were used as solid-phase capture antibodies for the quantitative determinations of ETA and ETC.
Collapse
Affiliation(s)
- L Wollweber
- Institut für Molekulare Biotechnologie, Jena, Germany
| | | | | | | | | |
Collapse
|