1
|
Liou GY, Storz P. Inflammatory macrophages in pancreatic acinar cell metaplasia and initiation of pancreatic cancer. Oncoscience 2015; 2:247-51. [PMID: 25897428 PMCID: PMC4394130 DOI: 10.18632/oncoscience.151] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/26/2015] [Indexed: 01/02/2023] Open
Abstract
The roles of inflammatory macrophages in pancreatic tissue and the development of pancreatic cancer have not been well characterized. Recently it was shown that inflammatory macrophages, besides their function in clearing dead cells, also initiate pancreatic acinar cell metaplasia to duct-like progenitor cells. While in pancreatitis this is a reversible process, in context of an oncogenic stimulus this process is irreversible and can lead to the formation of precancerous lesions. Recent work now indicates that acquisition of an activating Kras mutation in acinar cells initiates signaling that leads to chemoattraction of M1-poliarized macrophages. This oncogene-caused chronic microinflammation can accelerate the pathogenesis of pancreatic cancers.
Collapse
Affiliation(s)
- Geou-Yarh Liou
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
2
|
Dang SC, Wang H, Zhang JX, Cui L, Jiang DL, Chen RF, Qu JG, Shen XQ, Chen M, Gu M. Are gastric mucosal macrophages responsible for gastric injury in acute pancreatitis? World J Gastroenterol 2015; 21:2651-2657. [PMID: 25759533 PMCID: PMC4351215 DOI: 10.3748/wjg.v21.i9.2651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/02/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the protective effect of clodronate-containing liposomes against severe acute pancreatitis (SAP)-triggered acute gastric mucosal injury (AGMI) in rats.
METHODS: Clodronate- and phosphate-buffered saline (PBS)-containing liposomes were prepared by reverse-phase evaporation. The SAP rat model was established by injecting sodium taurocholate into the pancreatic subcapsular space. Sprague-Dawley rats were randomly divided into three groups: control (C), SAP plus PBS-containing liposome (P) and SAP plus clodronate-containing liposome (T). Serum tumor necrosis factor (TNF)-α levels were estimated by ELISA. Pathological changes in the gastric mucosa and pancreas were observed by hematoxylin and eosin (HE) staining. Apoptotic cells were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The numbers of macrophages in the gastric mucosa were analyzed by CD68 immunohistochemical staining.
RESULTS: The liposomes had a mean diameter of 150 ± 30 nm. The TNF-α levels were significantly higher in the P group than that in the C group (2 h, 145.13 ± 11.50 vs 23.2 ± 2.03; 6 h, 245.06 ± 12.11 vs 30.28 ± 6.07, P < 0.05), and they were significantly lower in the T group than that in the P group (2 h, 93.24 ± 23.11 vs 145.13 ± 11.50; 6 h, 135.18 ± 13.10 vs 245.06 ± 12.11, P < 0.05). The pathological scores of the pancreas were lower in the T group than in the P group (2 h, 1.88 ± 0.83 vs 4.13 ± 0.83; 6 h, 2.87 ± 0.64 vs 6.25 ± 0.88, P < 0.01). The pathological scores of the gastric mucosa were also lower in the T group than in the P group (2 h, 1.12 ± 0.64 vs 2 ± 0.75; 6 h, 1.58 ± 0.53 vs 3 ± 1.31, P < 0.05). In addition, increased CD68 levels were observed in the gastric mucosa of the P group compared with the C group. Clodronate-containing liposomes decreased the CD68 levels in the mucosa of the T group. The apoptotic indexes of the gastric mucosa were higher in the T group than in the P group (2 h, 15.7 ± 0.92 vs 11.5 ± 1.64; 6 h, 21.12 ± 1.06 vs 12.6 ± 2.44, P < 0.01).
CONCLUSION: Gastric macrophages contribute to the pathogenesis of gastric injury in SAP. Clodronate-containing liposomes have protective effects against AGMI in rats with SAP.
Collapse
|
3
|
Bilateral vagotomy attenuates the severity of secretagogue-induced acute pancreatitis in the rat. Adv Med Sci 2014; 59:172-7. [PMID: 25323753 DOI: 10.1016/j.advms.2014.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/07/2014] [Indexed: 12/28/2022]
Abstract
PURPOSE We assessed the effect of bilateral vagotomy (BV) on the course of acute caerulein-induced pancreatitis (AP) in the rat. MATERIAL/METHODS The study was performed on Wistar rats surgically prepared by subdiaphragmatic BV. Control group underwent sham operation. Four days later, AP was induced by subcutaneous injection of caerulein (25 μg/kg/5h) to the conscious animals with or without BV. After administration of caerulein the blood samples were taken for determination of serum lipase activity and interleukin-10 (IL-10) concentration. Pancreatic tissue samples were subjected to histological examinations and to the measurement of lipid peroxidation products (MDA+4-HNE) concentration and the activity of an antioxidant enzyme - glutathione peroxidase (GPx). After application of caerulein pancreatic blood flow was measured by laser Doppler flowmetry. RESULTS AP was manifested by oedema and neutrophil infiltration of the pancreatic tissue and accompanied by significant increases of serum lipase activity, serum concentration of IL-10 and pancreatic concentration of MDA+4HNE (ca. 50×, 2× and 4× respectively p ≥ 0.05). Pancreatic activity of GPx and pancreatic blood flow were decreased (both by 60%). In vagotomised rats with AP serum lipase activity and pancreatic concentration of MDA+4-HNE were lower whereas Il-10 concentration and pancreatic activity of GPx, as well as pancreatic blood flow were significantly higher as compared to AP rats with intact vagal nerves. In AP rats with vagotomy all histological signs of pancreatitis were significantly reduced. CONCLUSIONS Bilateral vagotomy resulted in the significant attenuation of caerulein-induced pancreatitis in the rat.
Collapse
|
4
|
Akbarshahi H, Rosendahl AH, Westergren-Thorsson G, Andersson R. Acute lung injury in acute pancreatitis – Awaiting the big leap. Respir Med 2012; 106:1199-210. [PMID: 22749752 DOI: 10.1016/j.rmed.2012.06.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 05/09/2012] [Accepted: 06/01/2012] [Indexed: 12/12/2022]
|
5
|
Zhang JX, Dang SC, Yin K, Jiang DL. Protective effect of clodronate-containing liposomes on intestinal mucosal injury in rats with severe acute pancreatitis. Hepatobiliary Pancreat Dis Int 2011; 10:544-51. [PMID: 21947731 DOI: 10.1016/s1499-3872(11)60092-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Severe acute pancreatitis (SAP) can result in intestinal mucosal injury. This study aimed to demonstrate the protective effect of clodronate-containing liposomes on intestinal mucosal injury in rats with SAP. METHODS Liposomes containing clodronate or phosphate buffered saline (PBS) were prepared by the thin-film method. SAP models were prepared by a uniform injection of sodium taurocholate (2 mL/kg body weight) into the subcapsular space of the pancreas. Sprague-Dawley rats were randomly divided into a control group (C group), a SAP plus PBS-containing liposomes group (P group) and a SAP plus clodronate-containing liposomes group (T group). At 2 and 6 hours after the establishment of SAP models, 2 mL blood samples were taken from the superior mesenteric vein to measure the contents of serum TNF-alpha and IL-12. Pathological changes in the intestine and pancreas were observed using hematoxylin and eosin staining, while apoptosis was detected using TUNEL staining. In addition, the macrophage markers cluster of differentiation 68 (CD68) in the intestinal tissue was assessed with immunohistochemistry. RESULTS At the two time points, the levels of TNF-alpha and IL-12 in the P group were higher than those in the C group (P<0.05). Compared with the P group, the levels of TNF-alpha and IL-12 decreased in the T group (P<0.05). The pathological scores of the intestinal mucosa and pancreas in the T group were lower than those of the P group. In the T group, large numbers of TUNEL-positive cells were observed, but none or few in the C and P groups. The number of CD68-positive macrophages decreased in the T group. CONCLUSIONS Clodronate-containing liposomes have protective effects against intestinal mucosal injury in rats with SAP. The blockade of macrophages may provide a novel therapeutic strategy in SAP.
Collapse
Affiliation(s)
- Jian-Xin Zhang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | | | | | | |
Collapse
|
6
|
Gea-Sorlí S, Closa D. Role of macrophages in the progression of acute pancreatitis. World J Gastrointest Pharmacol Ther 2010; 1:107-11. [PMID: 21577304 PMCID: PMC3091151 DOI: 10.4292/wjgpt.v1.i5.107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 07/30/2010] [Accepted: 08/06/2010] [Indexed: 02/06/2023] Open
Abstract
In addition to pancreatic cells, other inflammatory cell populations contribute to the generation of inflammatory mediators during acute pancreatitis. In particular, macrophages could be activated by mediators released during pancreatitis by a damaged pancreas. It has been reported that peritoneal macrophages, alveolar macrophages and Kupffer cells become activated in different stages of severe acute pancreatitis. However, macrophages display remarkable plasticity and can change their physiology in response to environmental cues. Depending on their microenvironmental stimulation, macrophages could follow different activation pathways resulting in marked phenotypic heterogeneity. This ability has made these cells interesting therapeutical targets and several approaches have been assayed to modulate the progression of inflammatory response secondary to acute pancreatitis. However, despite the recent advances in the modulation of macrophage function in vivo, the therapeutical applications of these strategies require a better understanding of the regulation of gene expression in these cells.
Collapse
Affiliation(s)
- Sabrina Gea-Sorlí
- Sabrina Gea-Sorlí, Daniel Closa, Department of Experimental Pathology, IIBB-CSIC-IDIBAPS-CIBEREHD, Barcelona 08036, Spain
| | | |
Collapse
|
7
|
|
8
|
Shrivastava P, Bhatia M. Essential role of monocytes and macrophages in the progression of acute pancreatitis. World J Gastroenterol 2010; 16:3995-4002. [PMID: 20731012 PMCID: PMC2928452 DOI: 10.3748/wjg.v16.i32.3995] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is an inflammatory condition of the pancreas caused by an imbalance in factors involved in maintaining cellular homeostasis. Earliest events in AP occur within acinar cells accompanied by other principal contributors to the inflammatory response i.e. the endothelial cells, immunocytes (granulocytes, monocytes/macrophages, lymphocytes) and neutrophils. Monocytes/macrophages are important inflammatory mediators, involved in the pathophysiology of AP, known to reside in the peritoneal cavity (in the vicinity of the pancreas) and in peripancreatic tissue. Recent studies suggested that impaired clearance of injured acini by macrophages is associated with an altered cytokine reaction which may constitute a basis for progression of AP. This review focuses on the role of monocytes/macrophages in progression of AP and discusses findings on the inflammatory process involved.
Collapse
|
9
|
Shi C, Wang X, Zhao X, Andersson R. Cellular and molecular events in acute pancreatitis. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/17471060600776858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Chen C, Xia SH, Chen H, Li XH. Therapy for acute pancreatitis with platelet-activating factor receptor antagonists. World J Gastroenterol 2008; 14:4735-8. [PMID: 18720532 PMCID: PMC2739333 DOI: 10.3748/wjg.14.4735] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) causes release of platelet-activating factor (PAF), which induces systemic effects that contribute to circulatory disturbances and multiple organ failure. PAF is a cell surface secretion of bioactive lipid, which could produce physiological and pathological effects by binding to its cell surface receptor called platelet-activating factor receptor (PAF-R). Studies showed that PAF participates in the occurrence and development of AP and administration of platelet-activating factor receptor antagonists (PAF-RAs) could significantly reduce local and systemic events after AP. PAF has also been implicated as a key mediator in the progression of severe AP, which can lead to complications and unacceptably high mortality rates. Several classes of PAF-RA show PAF-RAs significant local and systemic effects on reducing inflammatory changes. As a preventive treatment, PAF-RA could block a series of PAF-mediated inflammatory injury and thus improve the prognosis of AP. This review introduces the important role of PAF-RA in the treatment of AP.
Collapse
|
11
|
Zhang XP, Wang L, Zhang J. Study progress on mechanism of severe acute pancreatitis complicated with hepatic injury. J Zhejiang Univ Sci B 2007; 8:228-36. [PMID: 17444596 PMCID: PMC1838834 DOI: 10.1631/jzus.2007.b0228] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Study on the action mechanism of inflammatory mediators generated by the severe acute pancreatitis (SAP) in multiple organ injury is a hotspot in the surgical field. In clinical practice, the main complicated organ dysfunctions are shock, respiratory failure, renal failure, encephalopathy, with the rate of hepatic diseases being closely next to them. The hepatic injury caused by SAP cannot only aggravate the state of pancreatitis, but also develop into hepatic failure and cause patient death. Its complicated pathogenic mechanism is an obstacle in clinical treatment. Among many pathogenic factors, the changes of vasoactive substances, participation of inflammatory mediators as well as OFR (oxygen free radical), endotoxin, etc. may play important roles in its progression.
Collapse
Affiliation(s)
- Xi-ping Zhang
- Department of General Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China.
| | | | | |
Collapse
|
12
|
Van Acker GJD, Weiss E, Steer ML, Perides G. Cause-effect relationships between zymogen activation and other early events in secretagogue-induced acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1738-46. [PMID: 17332471 DOI: 10.1152/ajpgi.00543.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have hypothesized that the colocalization of digestive zymogens with lysosomal hydrolases, which occurs during the early stages of every experimental pancreatitis model, facilitates activation of those zymogens by lysosomal hydrolases such as cathepsin B and that this activation triggers acute pancreatitis by leading to acinar cell injury. Some, however, have argued that the colocalization phenomenon may be the result, rather than the cause, of zymogen activation during pancreatitis. To resolve this controversy and explore the causal relationships between zymogen activation and other early pancreatitis events, we induced pancreatitis in mice by repeated supramaximal secretagogue stimulation with caerulein. Some animals were pretreated with the cathepsin B inhibitor CA-074 me to inhibit cathepsin B, prevent intrapancreatic activation of digestive zymogens, and reduce the severity of pancreatitis. We show that inhibition of cathepsin B by pretreatment with CA-074 me prevents intrapancreatic zymogen activation and reduces organellar fragility, but it does not alter the caerulein-induced colocalization phenomenon or subcellular F-actin redistribution or prevent caerulein-induced activation of NF-kappaB, ERK1/2, and JNK or upregulated expression of cytochemokines. We conclude 1) that the colocalization phenomenon, F-actin redistribution, activation of proinflammatory transcription factors, and upregulated expression of cytochemokines are not the results of zymogen activation, and 2) that these early events in pancreatitis are not dependent on cathepsin B activity. In contrast, zymogen activation and increased subcellular organellar fragility during caerulein-induced pancreatitis are dependent on cathepsin B activity.
Collapse
Affiliation(s)
- Gijs J D Van Acker
- Dept. of Surgery, Tufts-New England Medical Center, 860 Washington St., Boston, MA 02111, USA
| | | | | | | |
Collapse
|
13
|
|
14
|
Abstract
Platelet-activating factor (PAF) is a potent proinflammatory phospholipid mediator that belongs to a family of biologically active, structurally related alkyl phosphoglycerides with diverse pathological and physiological effects. This bioactive phospholipid mediates processes as diverse as wound healing, physiological inflammation, angiogenesis, apoptosis, reproduction and long-term potentiation. PAF acts by binding to a specific G protein-coupled receptor to activate multiple intracellular signaling pathways. Since most cells both synthesize and release PAF and express PAF receptors, PAF has potent biological actions in a broad range of cell types and tissues. Inappropriate activation of this signaling pathway is associated with many diseases in which inflammation is thought to be one of the underlying features. Acute pancreatitis (AP) is a common inflammatory disease. The onset of AP is pancreatic autodigestion mediated by abnormal activation of pancreatic enzyme caused by multiple agents, which subsequently induce pancreatic and systemic inflammatory reactions. A number of experimental pancreatitis and clinical trials indicate that PAF does play a critical role in the pathogenesis of AP. Administration of PAF receptor antagonist can significantly reduce local and systemic events that occur in AP. This review focuses on the aspects that are more relevant to the pathogenesis of AP.
Collapse
Affiliation(s)
- Li-Rong Liu
- Department of Gastroenterology, Pancreas Center, Affiliated Hospital of Medical College of the Chinese People's Armed Police Forces, Chenglinzhuang Road, Tianjin 300162, China
| | | |
Collapse
|
15
|
Saraf MK, Kishore K, Thomas KM, Sharma A, Singh M. Role of platelet activating factor in triazolobenzodiazepines-induced retrograde amnesia. Behav Brain Res 2003; 142:31-40. [PMID: 12798263 DOI: 10.1016/s0166-4328(02)00365-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benzodiazepine (diazepam), triazolobenzodiazepines (brotizolam, triazolam) and platelet activating factor (PAF) antagonist (BN 52021) are administered to mice before acquisition and retrieval trials conducted using Morris water maze. Benzodiazepine has produced only anterograde amnesia and it has not produced retrograde amnesia. Triazolobenzodiazepines have produced both anterograde and retrograde amnesia. PAF antagonist (BN 52021) has only produced retrograde amnesia and it has not produced anterograde amnesia. The anterograde amnesia produced by benzodiazepine and triazolobenzodiazepines, has been prevented by benzodiazepine receptor antagonist (flumazenil). It suggests that benzodiazepine- and triazolobenzodiazepines-induced anterograde amnesia may be mediated through benzodiazepine receptors. On the other hand, retrograde amnesia produced by PAF antagonist (BN 52021) and triazolobenzodiazepines has been attenuated by PAF and PAF acetyl hydrolase inhibitors such as cigarette smoke extract (CSE) and phenylmethanesulfonylflouride. It suggests that triazolobenzodiazepine-induced retrograde amnesia may be mediated through blockade of PAF receptors.
Collapse
MESH Headings
- 1-Alkyl-2-acetylglycerophosphocholine Esterase
- Amnesia, Anterograde/chemically induced
- Amnesia, Anterograde/physiopathology
- Amnesia, Retrograde/chemically induced
- Amnesia, Retrograde/physiopathology
- Animals
- Anti-Anxiety Agents/pharmacology
- Azepines
- Diazepam
- Diterpenes
- Escape Reaction/drug effects
- Escape Reaction/physiology
- Female
- Flumazenil/pharmacology
- Ginkgolides
- Lactones/pharmacology
- Learning/drug effects
- Learning/physiology
- Male
- Mice
- Phospholipases A/drug effects
- Platelet Activating Factor/antagonists & inhibitors
- Platelet Activating Factor/physiology
- Platelet Membrane Glycoproteins/drug effects
- Platelet Membrane Glycoproteins/physiology
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/physiology
- Receptors, G-Protein-Coupled
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/physiology
- Retention, Psychology/drug effects
- Retention, Psychology/physiology
- Triazolam
Collapse
Affiliation(s)
- Manish Kumar Saraf
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | | | | | | | | |
Collapse
|
16
|
Shields CJ, Winter DC, Redmond HP. Lung injury in acute pancreatitis: mechanisms, prevention, and therapy. Curr Opin Crit Care 2002; 8:158-63. [PMID: 12386518 DOI: 10.1097/00075198-200204000-00012] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lung injury is the most pertinent manifestation of extra-abdominal organ dysfunction in pancreatitis. The propensity of this retroperitoneal inflammatory condition to engender a diffuse and life-threatening lung injury is significant. Approximately one third of patients will develop acute lung injury and acute respiratory distress syndrome, which account for 60% of all deaths within the first week. The variability in the clinical course of pancreatitis renders it a vexing entity and makes demonstration of the efficacy of any specific intervention difficult. The distinct pathologic entity of pancreatitis-associated lung injury is reviewed with a focus on etiology and potential therapeutic maneuvers.
Collapse
Affiliation(s)
- Conor J Shields
- Department of Academic Surgery, Cork University Hospital, and National University of Ireland, Cork, Ireland
| | | | | |
Collapse
|