1
|
Kálmán M, Matuz V, Sebők OM, Lőrincz D. Evolutionary Modifications Are Moderate in the Astroglial System of Actinopterygii as Revealed by GFAP Immunohistochemistry. Front Neuroanat 2021; 15:698459. [PMID: 34267629 PMCID: PMC8276248 DOI: 10.3389/fnana.2021.698459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 11/25/2022] Open
Abstract
The present paper is the first comparative study on the astroglia of several actinopterygian species at different phylogenetical positions, teleosts (16 species), and non-teleosts (3 species), based on the immunohistochemical staining of GFAP (glial fibrillary acidic protein), the characteristic cytoskeletal intermediary filament protein, and immunohistochemical marker of astroglia. The question was, how the astroglial architecture reflexes the high diversity of this largest vertebrate group. The actinopterygian telencephalon has a so-called ‘eversive’ development in contrast to the ‘evagination’ found in sarcopterygii (including tetrapods). Several brain parts either have no equivalents in tetrapod vertebrates (e.g., torus longitudinalis, lobus inferior, lobus nervi vagi), or have rather different shapes (e.g., the cerebellum). GFAP was visualized applying DAKO polyclonal anti-GFAP serum. The study was focused mainly on the telencephalon (eversion), tectum (visual orientation), and cerebellum (motor coordination) where the evolutionary changes were most expected, but the other areas were also investigated. The predominant astroglial elements were tanycytes (long, thin, fiber-like cells). In the teleost telencephala a ‘fan-shape’ re-arrangement of radial glia reflects the eversion. In bichir, starlet, and gar, in which the eversion is less pronounced, the ‘fan-shape’ re-arrangement did not form. In the tectum the radial glial processes were immunostained, but in Ostariophysi and Euteleostei it did not extend into their deep segments. In the cerebellum Bergmann-like glia was found in each group, including non-teleosts, except for Cyprinidae. The vagal lobe was uniquely enlarged and layered in Cyprininae, and had a corresponding layered astroglial system, which left almost free of GFAP the zones of sensory and motor neurons. In conclusion, despite the diversity and evolutionary alterations of Actinopterygii brains, the diversity of the astroglial architecture is moderate. In contrast to Chondrichthyes and Amniotes; in Actinopterygii true astrocytes (stellate-shaped extraependymal cells) did not appear during evolution, and the expansion of GFAP-free areas was limited.
Collapse
Affiliation(s)
- Mihály Kálmán
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Vanessza Matuz
- Department of Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Olivér M Sebők
- Department of Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Dávid Lőrincz
- Department of Zoology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
2
|
Gilbert EAB, Vickaryous MK. Neural stem/progenitor cells are activated during tail regeneration in the leopard gecko (Eublepharis macularius). J Comp Neurol 2017; 526:285-309. [PMID: 28980312 DOI: 10.1002/cne.24335] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/16/2017] [Accepted: 09/17/2017] [Indexed: 12/15/2022]
Abstract
As for many lizards, the leopard gecko (Eublepharis macularius) can self-detach its tail to avoid predation and then regenerate a replacement. The replacement tail includes a regenerated spinal cord with a simple morphology: an ependymal layer surrounded by nerve tracts. We hypothesized that cells within the ependymal layer of the original spinal cord include populations of neural stem/progenitor cells (NSPCs) that contribute to the regenerated spinal cord. Prior to tail loss, we performed a bromodeoxyuridine pulse-chase experiment and found that a subset of ependymal layer cells (ELCs) were label-retaining after a 140-day chase period. Next, we conducted a detailed spatiotemporal characterization of these cells before, during, and after tail regeneration. Our findings show that SOX2, a hallmark protein of NSPCs, is constitutively expressed by virtually all ELCs before, during, and after regeneration. We also found that during regeneration, ELCs express an expanded panel of NSPC and lineage-restricted progenitor cell markers, including MSI-1, SOX9, and TUJ1. Using electron microscopy, we determined that multiciliated, uniciliated, and biciliated cells are present, although the latter was only observed in regenerated spinal cords. Our results demonstrate that cells within the ependymal layer of the original, regenerating and fully regenerate spinal cord represent a heterogeneous population. These include radial glia comparable to Type E and Type B cells, and a neuronal-like population of cerebrospinal fluid-contacting cells. We propose that spinal cord regeneration in geckos represents a truncation of the restorative trajectory observed in some urodeles and teleosts, resulting in the formation of a structurally distinct replacement.
Collapse
Affiliation(s)
- E A B Gilbert
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - M K Vickaryous
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
3
|
Kálmán M, Somiya H, Lazarevic L, Milosevic I, Ari C, Majorossy K. Absence of post-lesion reactive gliosis in elasmobranchs and turtles and its bearing on the evolution of astroglia. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:351-67. [DOI: 10.1002/jez.b.22505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 01/15/2013] [Accepted: 03/19/2013] [Indexed: 12/14/2022]
Affiliation(s)
- M. Kálmán
- Department of Anatomy; Semmelweis University; Budapest; Hungary
| | - Hiro Somiya
- Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya; Japan
| | | | | | - Csilla Ari
- Department of Anatomy; Semmelweis University; Budapest; Hungary
| | - K. Majorossy
- Department of Anatomy; Semmelweis University; Budapest; Hungary
| |
Collapse
|
4
|
Kizil C, Kaslin J, Kroehne V, Brand M. Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol 2012; 72:429-61. [DOI: 10.1002/dneu.20918] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Cuoghi B, Mola L. Macroglial cells of the teleost central nervous system: a survey of the main types. Cell Tissue Res 2009; 338:319-32. [PMID: 19865831 DOI: 10.1007/s00441-009-0870-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 08/31/2009] [Indexed: 12/31/2022]
Abstract
Following our previous review of teleost microglia, we focus here on the morphological and histochemical features of the three principal macroglia types in the teleost central nervous system (ependymal cells, astrocyte-like cells/radial glia and oligodendrocytes). This review is concerned with recent literature and not only provides insights into the various individual aspects of the different types of macroglial cells plus a comparison with mammalian glia, but also indicates the several potentials that the neural tissue of teleosts exhibits in neurobiological research. Indeed, some areas of the teleost brain are particularly suitable in terms of the establishment of a "simple" but complete research model (i.e. the visual pathway complex and the supramedullary neuron cluster in puffer fish). The relationships between neurons and glial cells are considered in fish, with the aim of providing an integrated picture of the complex ways in which neurons and glia communicate and collaborate in normal and injured neural tissues. The recent setting up of successful protocols for fish glia and mixed neuron-glia cultures, together with the molecular facilities offered by the knowledge of some teleost genomes, should allow consistent input towards the achievement of this aim.
Collapse
Affiliation(s)
- Barbara Cuoghi
- Department of Animal Biology, University of Modena and Reggio Emilia, Via Campi 213/D, 41100 Modena, Italy
| | | |
Collapse
|
6
|
Anderová M, Antonova T, Petrík D, Neprasová H, Chvátal A, Syková E. Voltage-dependent potassium currents in hypertrophied rat astrocytes after a cortical stab wound. Glia 2005; 48:311-26. [PMID: 15390116 DOI: 10.1002/glia.20076] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Changes in the membrane properties of reactive astrocytes in gliotic cortex induced by a stab wound were studied in brain slices of 21-28-day-old rats, using the patch-clamp technique and were correlated with changes in resting extracellular K+ concentration ([K+]e) measured in vivo using K+-selective microelectrodes. Based on K+ current expression, three types of astrocytes were identified in gliotic cortex: A1 astrocytes expressing a time- and voltage-independent K+ current component and additional inwardly rectifying K+ currents (K(IR)); A2 astrocytes expressing a time- and voltage-independent K+ current component and additional delayed outwardly rectifying K+ currents (K(DR)); and complex astrocytes expressing K(DR), K(IR), and A-type K+ (K(A)) currents and Na+ currents (I(Na)). Nestin/bromodeoxyuridine (BrdU)-negative A1 astrocytes were found further than approximately 100 microm from the stab wound and showed an upregulation of K(IR) currents within the first day post-injury (PI), correlating with an increased resting [K+]e. Their number declined from 62% of total astrocytes in control rats to 41% in rats at 7 days PI. Nestin/BrdU-positive A2 astrocytes were found only within a distance of approximately 100 microm from the stab wound and, in comparison to those in control rats, showed an upregulation of K(DR) currents. Their number increased from 8% of the total number of astrocytes in control rats to 39% 7 days PI. Both A1 and A2 astrocytes showed hypertrophied processes and increased GFAP staining, but an examination of cell morphology revealed greater changes in the surface/volume ratio in A2 astrocytes than in A1 astrocytes. Complex astrocytes did not display a hypertophied morphology; K(IR) currents in these cells were upregulated within 1 day PI, while the K(DR), K(A), and I(Na) currents were increased only 6 h PI. We conclude that two electrophysiologically, immunohistochemically, and morphologically distinct types of hypertrophied astrocytes are present at the site of a stab wound, depending on the distance from the lesion, and may have different functions in ionic homeostasis and/or regeneration.
Collapse
Affiliation(s)
- Miroslava Anderová
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
7
|
Kálmán M. Glial reaction and reactive glia. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)31035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
8
|
Kálmán M, Ari C. Distribution of GFAP immunoreactive structures in the rhombencephalon of the sterlet (Acipenser ruthenus) and its evolutionary implication. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 293:395-406. [PMID: 12210122 DOI: 10.1002/jez.10134] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previous studies have revealed that although the brains of cypriniform teleosts (iberian barb, Barbus comiza; carp, Cyprinus carpio; goldfish, Carassius auratus) are rich in glial fibrillary acidic protein (GFAP), they have, however, areas devoid of GFAP immunoreactivity. The largest ones of these are in the rhombencephalon, e.g., the zones of the sensory and motor neurons in the vagal lobe. Our studies in amniotes suggested that the GFAP immunonegative areas could be characteristic of the more advanced brains (avian and mammalian), whereas no similar areas were found in reptiles. A similar tendency was found in the Chondrichthyes, i.e., GFAP immunonegative areas appeared as brain complexity progressed. The question arose whether the GFAP immunonegative brain areas in the Teleostei were also the result of such a tendency. Within the radiation of ray-finned fishes (Actinopterygii), Chondrostei represent a less advanced level as compared to the Teleostei. Therefore, the distribution of GFAP immunoreactivity was investigated in the rhombencephalon of the sterlet (Acipenser ruthenus) as a representative of Chondrostei, and in the carp. Serial vibratome sections were processed according to the avidin-biotinylated horseradish peroxidase method.Several comparable GFAP immunoreactive structures were found in the two species: the dense periventricular ependymoglial plexus, the midsagittal glial septum, the small glial septa separating the nerve fiber bundles, and the wide glial endfeet lining the meningeal surface. In the vagal lobe in the zones adjacent to the meningeal and ventricular surfaces, the glial structures also proved to be similar. In contrast to the carp, however, no areas were found devoid of GFAP immunoreactivity in the sterlet.The results suggest that this trend of glial evolution, i.e., GFAP immunonegative areas appearing as brain complexity progressed, is a common feature shared by Actinopterygii, Amniota, and Chondrichthyes, despite their separate evolutionary histories. J. Exp. Zool. 293:395-406, 2002.
Collapse
Affiliation(s)
- Mihály Kálmán
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary, H-1094
| | | |
Collapse
|
9
|
Abstract
This study is a summary of investigations in the last decade with several collaborators on representatives of different vertebrate stocks. The results suggest that in the main vertebrate stocks (Agnathi, Chondrichthyes, Actinopterygii, Sarcopterygii-Amniotes), which had their parallel brain evolutions from the laminar brains to the elaborated ones, the astroglia also developed in parallel, and had a common trend of evolution. With growing brain complexity, free astrocytes arose and tended to predominate, and the spontaneous glial fibrillary acidic protein (GFAP)-expression regressed, in several areas. In the mammalian, avian, teleost, and batoid brains, therefore, large areas display a paucity, almost a lack of GFAP-immunoreactivity. The GFAP-expression in the GFAP-free areas seems to be inducible only in the presence of free astrocytes.
Collapse
Affiliation(s)
- Mihály Kálmán
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|