1
|
Badlangana NL, Bhagwandin A, Fuxe K, Manger PR. Observations on the giraffe central nervous system related to the corticospinal tract, motor cortex and spinal cord: what difference does a long neck make? Neuroscience 2007; 148:522-34. [PMID: 17664045 DOI: 10.1016/j.neuroscience.2007.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 06/05/2007] [Accepted: 06/08/2007] [Indexed: 12/01/2022]
Abstract
The mammalian corticospinal tract is known to contain axons that travel from the cerebral cortex to various levels of the spinal cord and its main function is thought to be the mediation of voluntary movement. The current study describes neuroanatomy related to the corticospinal tract of the giraffe. This animal presents a specific morphology that may present challenges to this neural pathway in terms of the metabolism required for correct functioning and maintenance of potentially very long axons. The spinal cord of the giraffe can be up to 2.6 m long and forms the conus medullaris at the level of the sacral vertebrae. Primary motor cortex was found in a location typical of that of other ungulates, and the cytoarchitectonic appearance of this cortical area was similar to that previously reported for sheep, despite the potential distance that the axons emanating from the layer 5 gigantopyramidal neurons must travel. A typically mammalian dorsal striatopallidal complex was transected by a strongly coalesced internal capsule passing through to the pons and forming clearly identifiable but somewhat flattened (in a dorsoventral plane) pyramidal tracts. These tracts terminated in a spinal cord that exhibited no unique anatomical features related to its length. Our results, at least at the level of organization investigated herein, show that the corticospinal tract of the giraffe resembled that of a typical ungulate.
Collapse
Affiliation(s)
- N L Badlangana
- School of Anatomical Sciences, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, 2193 Johannesburg, Republic of South Africa
| | | | | | | |
Collapse
|
2
|
Tiwari A, Naruganahalli KS. Current and emerging investigational medical therapies for the treatment of overactive bladder. Expert Opin Investig Drugs 2007; 15:1017-37. [PMID: 16916270 DOI: 10.1517/13543784.15.9.1017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Overactive bladder (OAB) is a chronic distressing condition characterised by urinary urgency with or without urge incontinence, usually with frequency (voiding at least eight times daily) and nocturia. It affects millions of people worldwide independent of age, sex and race. The prevalence increases with age and is relatively higher in women compared with men. The treatment of OAB is aimed at reducing the debilitating symptoms so as to improve the overall quality of life for patients. Anticholinergic agents targeting the muscarinic receptors in the bladder represent the mainstay of pharmacotherapy for the treatment of OAB. Besides their status as the current standard of care, use of antimuscarinic drugs is limited by certain side effects, particularly dry mouth and constipation; therefore, various attempts have been made to improve the organ selectivity of these drugs to overcome the side effects. These include the development of new antimuscarinic agents with structural modifications and the use of innovative drug delivery methods. The advancement in the drug delivery systems extends to the long-term therapeutic efficacy with improved tolerability and patient compliance; however, future prospective therapies are aimed at novel targets with novel mechanisms of action, including beta3-adrenoceptor agonists, K+ channel openers, 5-HT modulators and botulinum toxin, which are currently under different stages of clinical development. Among other investigational therapies, neurokinin receptor antagonists, alpha-adrenoceptor antagonists, nerve growth factor inhibitors, gene therapy and stem cell-based therapies are of considerable interest. The future for the development of new modalities for the treatment of OAB looks promising.
Collapse
Affiliation(s)
- Atul Tiwari
- Ranbaxy Research Laboratories, Urology and Metabolic Group, NDDR, Gurgaon-122001, Haryana, India.
| | | |
Collapse
|
3
|
Wu Q, Hultenby K, Lindgren UJ. Tissue levels of leu-enkephalin in rats with adjuvant arthritis. J Neuroimmunol 2005; 158:34-9. [PMID: 15589035 DOI: 10.1016/j.jneuroim.2004.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 07/30/2004] [Accepted: 08/02/2004] [Indexed: 11/17/2022]
Abstract
To study the level of leu-enkephalin in bone and joint tissues and in the spinal cord of rats with adjuvant arthritis, arthritis was induced in Lewis rats by the injection of Mycobacterium butyricum in Freund's incomplete adjuvant (FIA). Immunoelectron microscopy (IEM) was used to monitor the cellular distribution of leu-enkephalin in control and arthritis groups, and radioimmunoassay (RIA) was used to measure the concentration in the tissues. The results of IEM showed increased levels of leu-enkephalin in the matrix of the sciatic nerve, in nerve fibres in the synovial membrane and periosteum, as well as in fibroblasts and endothelial cells of the periosteum in arthritic groups. In macrophage-like cells of the synovial membrane as well as monocyte and polymorphonuclear lineage cells in the bone marrow, the level of leu-enkephalin was decreased in the arthritic group. The results of RIA showed that the concentration of leu-enkephalin was lower in the ankle and increased in the spinal cord of arthritic animals compared with controls. In conclusion, leu-enkephalin levels were decreased in joints and in bone marrow, but increased in nerve tissues in the group with arthritis. Further studies are needed to show whether leu-enkephalin is involved in a process that serves to limit the effect of immunisation.
Collapse
Affiliation(s)
- Qinyang Wu
- Department of Orthopaedics, Karolinska University Hospital, Huddinge, Sweden.
| | | | | |
Collapse
|
4
|
Lembo PMC, Grazzini E, Groblewski T, O'Donnell D, Roy MO, Zhang J, Hoffert C, Cao J, Schmidt R, Pelletier M, Labarre M, Gosselin M, Fortin Y, Banville D, Shen SH, Ström P, Payza K, Dray A, Walker P, Ahmad S. Proenkephalin A gene products activate a new family of sensory neuron--specific GPCRs. Nat Neurosci 2002; 5:201-9. [PMID: 11850634 DOI: 10.1038/nn815] [Citation(s) in RCA: 296] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Several peptide fragments are produced by proteolytic cleavage of the opioid peptide precursor proenkephalin A, and among these are a number of enkephalin fragments, in particular bovine adrenal medulla peptide 22 (BAM22). These peptide products have been implicated in diverse biological functions, including analgesia. We have cloned a newly identified family of 'orphan' G protein--coupled receptors (GPCRs) and demonstrate that BAM22 and a number of its fragments bind to and activate these receptors with nanomolar affinities. This family of GPCRs is uniquely localized in the human and rat small sensory neuron, and we called this family the sensory neuron--specific G protein--coupled receptors (SNSRs). Receptors of the SNSR family are distinct from the traditional opioid receptors in their insensitivity to the classical opioid antagonist naloxone and poor activation by opioid ligands. The unique localization of SNSRs and their activation by proenkephalin A peptide fragments indicate a possible function for SNSRs in sensory neuron regulation and in the modulation of nociception.
Collapse
Affiliation(s)
- Paola M C Lembo
- AstraZeneca R&D Montreal, 7171 Frederick-Banting, Ville Saint-Laurent, Quebec H4S 1Z9, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Antunes bras J, Becker C, Bourgoin S, Lombard M, Cesselin F, Hamon M, Pohl M. Met-enkephalin is preferentially transported into the peripheral processes of primary afferent fibres in both control and HSV1-driven proenkephalin A overexpressing rats. Neuroscience 2001; 103:1073-83. [PMID: 11301214 DOI: 10.1016/s0306-4522(01)00034-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The demonstration of preproenkephalin A gene expression in rat dorsal root ganglia has raised the question of the physiological role of met-enkephalin-containing primary afferent fibres. Recently, we showed that systemic infection with a recombinant Herpes simplex virus encoding preproenkephalin A (HSVLatEnk1) yielded a marked increase in the density of met-enkephalin-like material synthesising neurons in rat dorsal root ganglia. This study further investigated the synthesis, transport and release of met-enkephalin-like material in the central and/or peripheral processes of primary afferent fibres in HSVLatEnk1-infected and control rats. In controls, dorsal root ganglia neurons containing met-enkephalin-like material were scarce and only a few positively labelled processes were seen at the peripheral output of the dorsal root ganglia. Met-enkephalin-like material accumulated at the proximal side of ligatured sciatic nerve, but not in ligatured L4-L5 dorsal roots. In HSVLatEnk1-infected rats with numerous somas and fibres stained for met-enkephalin-like material in dorsal root ganglia, met-enkephalin immunoreactive material largely accumulated at the proximal side of the ligatured sciatic nerve and few positively stained fibres were also observed in ligatured dorsal roots. Electrical stimulation of L4-L5 dorsal roots attached to a dorsal slice of the lumbar enlargement produced an overflow of met-enkephalin-like material which was approximately 70% higher in HSVLatEnk1-infected rats compared to controls. At the periphery, subcutaneous microdialysis showed higher basal levels of met-enkephalin-like material in the interstitial fluid of hindpaw plantar area in HSVLatEnk1-infected rats, and electrical stimulation of the ipsilateral sciatic nerve resulted in an approximately three-fold-higher overflow of this material than in control rats. These data demonstrated that met-enkephalin synthesised in dorsal root ganglion of both control and preproenkephalin A overexpressing rats is preferentially transported into the peripheral processes of primary afferent fibres where the peptide reaches a releasable compartment, thus providing a neuronal source of peripheral met-enkephalin.
Collapse
Affiliation(s)
- J Antunes bras
- INSERM U288, NeuroPsychoPharmacologie Moléculaire, Cellulaire et Fonctionnelle, C.H.U. Pitié-Salpêtrière, 91 boulevard de l'Hôpital, 75013, Paris, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Ballet S, Aubel B, Mauborgne A, Poliénor H, Farré A, Cesselin F, Hamon M, Bourgoin AS. The novel analgesic, cizolirtine, inhibits the spinal release of substance P and CGRP in rats. Neuropharmacology 2001; 40:578-89. [PMID: 11249967 DOI: 10.1016/s0028-3908(00)00186-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although previous studies have established that cizolirtine (5-([(N,N-dimethylaminoethoxy)phenyl]methyl)-1-methyl-1H-pyrazol citrate) is a potent analgesic in rodents, its mechanism(s) of action remain(s) unclear. In vitro and in vivo approaches were used to assess whether cizolirtine could affect the spinal release of two pain-related neuropeptides, substance P (SP) and calcitonin gene-related peptide (CGRP), in rats. Cizolirtine significantly reduced the K(+)-evoked overflow of both the SP-like material (SPLM; -25% at 0.1 microM--0.1 mM) and CGRPLM (-20% at 0.1--1.0 microM) from slices of the dorsal half of the lumbar enlargement of the spinal cord. Intrathecal perfusion in halothane-anaesthetized rats showed that local application of cizolirtine markedly diminished the spinal outflow of SPLM (up to -50% at 0.1 mM) but only marginally that of CGRPLM. Systemic administration of cizolirtine at an analgesic dose (80 mg/kg i.p.) also reduced spinal SPLM outflow (-50%) but not that of CGRPLM. Under both in vitro and in vivo conditions, idazoxan (10 microM) antagonized the effects of cizolirtine on SPLM and CGRPLM release, suggesting their mediation through alpha(2) adrenoceptors.
Collapse
Affiliation(s)
- S Ballet
- INSERM U288, NeuroPsychoPharmacologie Moléculaire, Cellulaire et Fonctionnelle, Faculté de Médecine Pitié-Salpêtrière, 91, Boulevard de l'Hôpital, 75634 Paris cedex 13, France
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Reuss MH, Reuss S. Nitric oxide synthase neurons in the rodent spinal cord: distribution, relation to Substance P fibers, and effects of dorsal rhizotomy. J Chem Neuroanat 2001; 21:181-96. [PMID: 11312059 DOI: 10.1016/s0891-0618(01)00091-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The indirect immunofluorescent method was employed to investigate the distribution of neuronal nitric oxide synthase-like immunoreactivity(nNOS-LI) in the spinal cord of the golden hamster and to compare it to data obtained from rats. Immunoreactive neurons were found throughout the cervico-sacral extent in the dorsal horn (mainly in laminae I-III) and in the preganglionic autonomic regions, i.e., the sympathetic intermediolateral nucleus (IML), lateral funicle (LF), intercalated region (IC), the area surrounding the central canal (CA), and the sacral preganglionic parasympathetic cell group. While the distribution of immunoreactive cells was generally similar in both species, some differences were observed. For example in the hamster LF, a higher percentage of stained neurons was seen than in the IML, while the situation was rather inverse in the rat. In order to study the coincidence of nNOS-LI in the population of preganglionic sympathetic neurons (PSN) that innervate the superior cervical ganglion (SCG), these were identified by retrograde axonal transport of fluoro-gold (FG) following unilateral injection into the SCG. PSN were localized ipsilateral to the injection site mainly in the IML and LF of spinal segments C7-Th4. The portion of double-labeled neurons of the IML were lower in hamster (17% in C7, 34% in C8) of FG-labeled cells) than in rat (47% in C8, 77% in Th2), while in the LF of segments C8-Th2 in both species the majority of FG-neurons contained nNOS. While only very few double-labeled neurons were detected in the IC in hamster and rat, a striking difference was observed in the CA, where no double-labeled neurons were found in hamster, but up to 50% in rat. Double immunofluorescence detection of nNOS and substance P (SP) showed that in both the autonomic regions and the dorsal horn, SP-LI fibers and puncta were present in close spatial relationship to nNOS-LI cell bodies. These results were basically identical in the hamster and rat. Unilateral transection of the dorsal roots of segments C6-Th2 in rats resulted in a clear reduction of SP-LI structures in the dorsal horn 5 days after rhizotomy, but not in the autonomic regions. Compared to the unlesioned side, the numbers of nNOS-LI neurons in the superficial laminae of the dorsal horn were reduced to 32-46% in the lesioned segments, and to 53% and 87%, respectively, in the two segments cranial to the rhizotomized segments but remained unchanged caudally to the lesion. Numbers of nNOS-LI cell bodies in the autonomic regions were not altered following dorsal root transection. The present study provides data on the widespread distribution of nNOS in the spinal cord of golden hamster and describes the partial coincidence of the enzyme in PSN. The effects of dorsal rhizotomy on nNOS-LI neurons in the dorsal horn reveal that primary-afferent fibers provide a stimulatory influence on neurons of the dorsal horn to generate the gaseous neuroactive substance, nitric oxide.
Collapse
Affiliation(s)
- M H Reuss
- Department of Anatomy, School of Medicine, Johannes Gutenberg University, Saarstr. 19-21, D-55099, Mainz, Germany
| | | |
Collapse
|
8
|
Haake M, Thon A, Bette M. Absence of spinal response to extracorporeal shock waves on the endogenous opioid systems in the rat. ULTRASOUND IN MEDICINE & BIOLOGY 2001; 27:279-284. [PMID: 11316537 DOI: 10.1016/s0301-5629(00)00317-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Extracorporeal shock wave therapy (ESWT) seems to be a new therapeutic strategy for chronic pain due to tendopathies. Neurophysiological mechanisms of action for pain relief following ESWT are still unknown. The aim of this study was to investigate if the analgesic effect of ESWT is caused by modulation of the endogenous spinal opioid system. Rats were treated with two different energy flux densities (0.04 and 0.11mJ/mm(2)) and immunohistochemical analysis of met-enkephalin (MRGL) and dynorphin (Dyn) was performed at 4 or 72 h after ESWT. ESWT had no modulatory influence on the expression of the spinal opioid systems. Different energy doses or repetitive treatment did not alter MRGL or Dyn immunoreactivity in the spinal cord. Furthermore, a delayed effect of ESWT at 72 h after treatment was not detectable. We conclude from these findings that the analgesic effects of ESWT treatment are not supported by endogenous opioids.
Collapse
Affiliation(s)
- M Haake
- Orthopädische Klinik, Philipps-Universität Marburg, Baldingerstrasse 1, D-35043 Marburg, Germany.
| | | | | |
Collapse
|
9
|
Abstract
A selective delta-opioid antagonist, naltrindole, was used to study the role of the delta-opioid receptor in the antinociceptive actions of a synthetic NPFF analog, (1DMe)NPYF. I.t. (1DMe)NPYF (5 nmol) produced antinociception in the tail flick test and (1DMe)NPYF (0.5 nmol) potentiated the antinociceptive effect of i.t. morphine 7.8 nmol. (1DMe)NPYF (5 nmol) had an antihyperalgesic effect in carrageenan inflammation and it significantly reduced mechanical allodynia in the spinal nerve ligation model. All these effects were prevented or significantly reduced by pretreatment with naltrindole (28 nmol) (P < 0.01-0.001). These data suggest that activation of spinal delta-opioid receptors plays an important role in mediating the spinal antinociceptive effects of (1DMe)NPYF.
Collapse
Affiliation(s)
- M Xu
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Helsinki, Finland
| | | | | | | |
Collapse
|
10
|
Ballet S, Mauborgne A, Hamon M, Cesselin F, Collin E. Altered opioid-mediated control of the spinal release of dynorphin and met-enkephalin in polyarthritic rats. Synapse 2000; 37:262-72. [PMID: 10891863 DOI: 10.1002/1098-2396(20000915)37:4<262::aid-syn3>3.0.co;2-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Previous studies showed that spinal opioidergic neurotransmission is markedly altered in the polyarthritic rat, a model of chronic inflammatory pain. Present investigations aimed at assessing possible changes in opioid-mediated control of the spinal outflow of met-enkephalin (ME) and dynorphin (DYN) in these animals. Intrathecal (i.t.) perfusion under halothane anesthesia showed that polyarthritis was associated with both a 40% decrease in the spinal outflow of ME-like material (MELM) and a 90% increase in that of DYNLM. Local treatment with the mu-opioid agonist DAGO (10 microM i.t.) inhibited equally (-30%) the MELM outflow in polyarthritic and control rats, whereas the delta agonist DTLET (10 microM i.t.) also reduced the peptide outflow in controls (-27%) but enhanced it in polyarthritic animals (+56%). On the other hand, both DAGO (10 microM i.t.) and DTLET (10 microM i.t.) decreased (-40 and -49%) DYNLM outflow in polyarthritic rats, but were inactive in controls. Finally, neither MELM outflow nor that of DYNLM were affected by the kappa-agonist U50488H (10 microM i.t.) in both groups of rats. In all cases, the changes due to active agonists could be prevented by specific antagonists which were inactive on their own except the kappa antagonist nor-binaltorphimine (10 microM i.t.) that decreased (-38%) DYNLM outflow in polyarthritic rats. These data indicate that functional changes in spinal opioid receptors may promote enkephalinergic neurotransmission and reduce dynorphinergic neurotransmission in polyarthritic rats, thereby contributing to the analgesic efficacy of opioids in inflammatory pain.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/pharmacology
- Anesthesia
- Animals
- Arthritis/drug therapy
- Arthritis/metabolism
- Dynorphins/analysis
- Dynorphins/metabolism
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, Methionine/analysis
- Enkephalin, Methionine/metabolism
- Iodine Radioisotopes
- Ligands
- Male
- Naloxone/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Oligopeptides/pharmacology
- Radioimmunoassay
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, mu/agonists
- Spinal Cord/drug effects
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- S Ballet
- NeuroPsychoPharmacologie Moléculaire, Cellulaire et Fonctionnelle, INSERM U288, Faculté de Médecine Pitié-Salpêtrière, Paris, France.
| | | | | | | | | |
Collapse
|
11
|
Ballet S, Mauborgne A, Gouardères C, Bourgoin AS, Zajac JM, Hamon M, Cesselin F. The neuropeptide FF analogue, 1DME, enhances in vivo met-enkephalin release from the rat spinal cord. Neuropharmacology 1999; 38:1317-24. [PMID: 10471085 DOI: 10.1016/s0028-3908(99)00035-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Behavioural studies have suggested that endogenous opioids mediate the antinociceptive action of neuropeptide FF (FLFQPQRF-NH2) at the spinal level in the rat. This hypothesis was directly assessed by investigating the effects of a NPFF analogue, 1DMe ([D-Tyr1,(NMe)Phe3]NPFF), on the spinal outflow of met-enkephalin-like material (MELM) in halothane-anaesthetised rats. Intrathecal infusion (0.1 ml/min) of 1DMe (0.1 microM-0.1 mM, for 45 min) produced a concentration-dependent increase in spinal MELM outflow which persisted for at least 90 min at the highest concentration tested. Intrathecal coadministration of the micro-opioid receptor antagonist CTOP (1 microM) did not significantly affect the spinal MELM overflow due to 0.1 mM 1DMe. In contrast, both naltrindole and nor-binaltorphimine, at concentrations (10 microM) that allow the selective blockade of alpha- and kappa-opioid receptors, respectively, significantly reduced the stimulatory effect of 1DMe on spinal MELM outflow. These data provide the first direct demonstration that met-enkephalin (among other opioid peptides) can mediate the antinociceptive action of NPFF at the spinal level in rats. In addition, they suggest that reciprocal excitatory interactions between opioids and opioid-modulatory factors (such as NPFF) participate in the physiological control of nociception.
Collapse
Affiliation(s)
- S Ballet
- NeuroPsychoPharmacologie Moléculaire Cellulaire et Fonctionnelle, INSERM U288, Faculté de Médecine Pitté-Salpêtrière, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
12
|
Schäfer MK, Eiden LE, Weihe E. Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. I. Central nervous system. Neuroscience 1998; 84:331-59. [PMID: 9539209 DOI: 10.1016/s0306-4522(97)00516-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antibodies directed against the C-terminus of the rat vesicular acetylcholine transporter mark expression of this specifically cholinergic protein in perinuclear regions of the soma and on secretory vesicles concentrated within cholinergic nerve terminals. In the central nervous system, the vesicular acetylcholine transporter terminal fields of the major putative cholinergic pathways in cortex, hippocampus, thalamus, amygdala, olfactory cortex and interpeduncular nucleus were examined and characterized. The existence of an intrinsic cholinergic innervation of cerebral cortex was confirmed by both in situ hybridization histochemistry and immunohistochemistry for the rat vesicular acetylcholine transporter and choline acetyltransferase. Cholinergic interneurons of the olfactory tubercle and Islands of Calleja, and the major intrinsic cholinergic innervation of striatum were fully characterized at the light microscopic level with vesicular acetylcholine transporter immunohistochemistry. Cholinergic staining was much more extensive for the vesicular acetylcholine transporter than for choline acetyltransferase in all these regions, due to visualization of cholinergic nerve terminals not easily seen with immunohistochemistry for choline acetyltransferase in paraffin-embedded sections. Cholinergic innervation of the median eminence of the hypothalamus, previously observed with vesicular acetylcholine transporter immunohistochemistry, was confirmed by the presence of vesicular acetylcholine transporter immunoreactivity in extracts of median eminence by western blotting. Cholinergic projections to cerebellum, pineal gland, and to the substantia nigra were documented by vesicular acetylcholine transporter-positive punctate staining in these structures. Additional novel localizations of putative cholinergic terminals to the subependymal zone surrounding the lateral ventricles, and putative cholinergic cell bodies in the sensory mesencephalic trigeminal nucleus, a primary sensory afferent ganglion located in the brainstem, are documented here. The cholinergic phenotype of neurons of the sensory mesencephalic trigeminal nucleus was confirmed by choline acetyltransferase immunohistochemistry. A feature of cholinergic neurons of the central nervous system revealed clearly with vesicular acetylcholine transporter immunohistochemistry in paraffin-embedded sections is the termination of cholinergic neurons on cholinergic cell bodies. These are most prominent on motor neurons of the spinal cord, less prominent but present in some brainstem motor nuclei, and apparently absent from projection neurons of the telencephalon and brainstem, as well as from the preganglionic vesicular acetylcholine transporter-positive sympathetic and parasympathetic neurons visualized in the intermediolateral and intermediomedial columns of the spinal cord. In addition to the large puncta decorating motor neuronal perikarya and dendrites in the ventral horn, vesicular acetylcholine transporter-positive terminal fields are distributed in lamina X surrounding the central canal, where additional small vesicular acetylcholine transporter-positive cell bodies are located, and in the superficial layers of the dorsal horn. Components of the central cholinergic nervous system whose existence has been controversial have been confirmed, and the existence of new components documented, with immunohistochemistry for the vesicular acetylcholine transporter. Quantitative visualization of terminal fields of known cholinergic systems by staining for vesicular acetylcholine transporter will expand the possibilities for documenting changes in synaptic patency accompanying physiological and pathophysiological changes in these systems.
Collapse
Affiliation(s)
- M K Schäfer
- Department of Anatomy and Cell Biology, Philipps University, Marburg, Germany
| | | | | |
Collapse
|
13
|
Pohl M, Ballet S, Collin E, Mauborgne A, Bourgoin S, Benoliel JJ, Hamon M, Cesselin F. Enkephalinergic and dynorphinergic neurons in the spinal cord and dorsal root ganglia of the polyarthritic rat - in vivo release and cDNA hybridization studies. Brain Res 1997; 749:18-28. [PMID: 9070623 DOI: 10.1016/s0006-8993(96)01161-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Complex and contradictory data have been reported regarding the changes in spinal opioidergic systems associated with chronic inflammatory pain in the rat. In an attempt to solve these discrepancies, the in vivo release of met-enkephalin and dynorphin and the expression of the corresponding propeptide genes were investigated at the spinal level in arthritic rats and paired controls. A dramatic increase in the concentration of prodynorphin mRNA (+300-550%) and a less pronounced elevation of that of dynorphin-like material (+40-50%) were found in the dorsal part of cervical and lumbar segments of the spinal cord in rats rendered arthritic by an intradermal injection of Freund's adjuvant four weeks prior to these measurements. In addition, the spinal release of dynorphin-like material (assessed through an intrathecal perfusion procedure in halothane-anaesthetized animals) was approximately twice as high in arthritic rats as in controls. In spite of significant elevations in the levels of both met-enkephalin (+30-70%) and proenkephalin A mRNA (+40-50%) in the dorsal part of cervical and lumbar segments, the spinal release of met-enkephalin-like material was decreased (-50%) in arthritic rats as compared to paired controls. Proenkephalin A mRNA (but not prodynorphin mRNA) could be measured in dorsal root ganglia, and its levels were dramatically reduced in ganglia at the lumbar segments in arthritic rats. Such parallel reductions in the spinal release of met-enkephalin-like material and the levels of proenkephalin A mRNA in dorsal root ganglia of arthritic rats support the idea that the activity of primary afferent enkephalinergic fibres decreases markedly during chronic inflammatory pain.
Collapse
Affiliation(s)
- M Pohl
- INSERM U 288, Neurobiologie Cellulaire et Fonctionnelle, Faculté de Médecine Pitié-Saltpêtrière, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Miampamba M, Chéry-Croze S, Détolle-Sarbach S, Guez D, Chayvialle JA. Antinociceptive effects of oral clonidine and S12813-4 in acute colon inflammation in rats. Eur J Pharmacol 1996; 308:251-9. [PMID: 8858295 DOI: 10.1016/0014-2999(96)00306-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Acute colonic inflammation was induced by perendoscopic injection of 50 microleters of dilute formalin (5%) in the depth of the colonic wall (c.w.) in rats. Compared to saline injection, the procedure was followed by nociceptive behaviors from which visceral nociception was quantified. The alpha 2-adrenoceptor agonist, clonidine 2-[2,6-dichlorophenylamine]-2-imidazole hydrochloride (75, 150 and 300 mg/kg), administered orally 15 min after c.w. injection of formalin significantly reduced the nociceptive responses at the high dose only. However, when administered 30 min prior to nociceptive stimulation, the compound exhibited an antinociceptive effect at the three doses. A novel analgesic, the compound "S12813-4' 3-[2-(4-phenylpiperazine-1-yl)-ethyl]-2-oxo-2,3-dihydro-oxazolo[b] pyridine, chlorydrate (10, 30 and 90 mg/kg), given orally displayed antinociceptive effects whatever the administration schedule, before or after c.w. injection of formalin. The antinociceptive effect of S12813-4 (30 mg/kg given orally) was prevented by subcutaneous (s.c.) injection of yohimbine or idazoxan (1 mg/kg). We conclude that visceral nociception elicited by formalin-induced colonic inflammation is attenuated by clonidine and S12813-4. The pharmacological profiles of the two compounds and the inhibition of the antinociceptive effect of S12813-4 by yohimbine and idazoxan suggest that noradrenergic mechanisms are involved in the transmission and/or modulation of the nociceptive influx arising from the inflamed colon.
Collapse
Affiliation(s)
- M Miampamba
- Institut National de la Santé et de la Recherche Médicale, Hôpital Edouard Herriot, Lyon, France
| | | | | | | | | |
Collapse
|
15
|
Igwe OJ, Filla MB. Regulation of phosphatidylinositide transduction system in the rat spinal cord during aging. Neuroscience 1995; 69:1239-51. [PMID: 8848110 DOI: 10.1016/0306-4522(95)00298-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Age-related functional alterations in a variety of neurotransmitter systems result in modulation of interneuronal communications which has some relevance in neurological deficits observed in the aging process. The synergistic interactions between protein kinase and inositol 1,4,5-trisphosphate (insP3)/Ca2+ pathways underlie a variety of cellular responses to external stimuli. To determine whether age-dependent changes occur in the regulation of protein kinase C and inositol 1,4,5-trisphosphate/Ca2+ pathways, insP3 contents as a marker for the release of intracellular calcium, saturation binding analysis of Ins P3 receptor using [3H]inositol 1,4,5-trisphosphate, slot/northern blot analysis of Ins P3 receptor-encoding mRNA transcripts, and the activities of Ca2+/phospholipid-dependent protein kinase C isozymes were investigated in the rat spinal cord. Inositol 1,4,5-trisphosphate content and [3H]inositol 1,4,5-trisphosphate binding site density (Bmax) were quantified in the spinal cords of young (three months old), adult (12 months old) and senescent (25 months old) male Fischer 344 rats. Spinal cord content of inositol 1,4,5-trisphosphate was increased (P < 0.01) in the 25-month old compared to the three- and 12-month old animals. The density of Ins P3 receptor in particulate membranes derived from the 25-month old rats was reduced (P < or = 0.01), but the binding affinity (Kd) was increased (P < or = 0.04) by a factor of 2.2 and 3.2 at 25 months of age when compared with three- and 12-month old animals, respectively. Young and middle-aged animals showed no differences in both inositol 1,4,5-trisphosphate contents and [3H]inositol 1,4,5-trisphosphate binding site density. The quantity of Ins P3 receptor mRNA was significantly increased with age in the order 25 >> 12 > 3 months of age. Total functional cytosolic and membrane-associated PKC activities were decreased (P < or = 0.05) in the 25-month compared to the three- and 12-month old rats in which activity remained unchanged. Total membrane/cytosolic activity ratios were unchanged by the aging process. In all cases, the activities of membrane-associated conventional protein kinase C isozymes (alpha, beta and gamma), determined by immunoprecipitation followed by in situ quantification of protein kinase C activities in the immunoprecipitates, showed age-dependent decline. The activities of protein kinase C-alpha and beta were significantly decreased in age-related manner. However, the activity of the gamma-isozyme was not significantly changed at 12- and 25-months of age, although it was higher (P < or = 0.03) in young rats. Western blot analyses using affinity purified polyclonal antibodies specific for each isozyme indicated a single protein with an apparent molecular mass of approximately 80 x 10(3) molec. weight for all isozymes except for the beta isozyme that also had an appreciable immunoreactive band at approximately 36 x 10(3) molec. weight. Overall, the aging process did not affect the electropheretic mobility of each isozyme. With decreased protein kinase C activity, the present data suggest that the aging process would decrease protein kinase C-induced phosphorylation of membrane proteins including Ins P3 receptor. A significant change in Ins P3 receptor affinity combined with increased levels of Ins P3 receptor mRNA-encoding transcripts in senescent rats suggests not only a modification (possibly by phosphorylation) of Ins P3 receptor protein but also the existence of multiple (spliced) variants of Ins P3 receptor in spinal neurons with increasing age. The present data indicate that the spinal contents of inositol 1,4,5-trisphosphate increased with age, but with decreased efficacy and number of inositol 1,4,5-trisphosphate-activatable Ca2+ channels in the spinal cord of senescent rats. These age-related changes may contribute to the attenuated responsiveness of spinal cord neurons by phosphoinositide-coupled receptors during the aging process.
Collapse
Affiliation(s)
- O J Igwe
- Division of Pharmacology, University of Missouri-Kansas City 64108-2792, USA
| | | |
Collapse
|
16
|
Di Sebastiano P, Fink T, Weihe E, Friess H, Beger HG, Büchler M. Changes of protein gene product 9.5 (PGP 9.5) immunoreactive nerves in inflamed appendix. Dig Dis Sci 1995; 40:366-72. [PMID: 7531635 DOI: 10.1007/bf02065423] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The existence of chronic appendicitis is controversial. In this prospective study, we investigated possible changes in the innervation of the appendix under different pathological conditions and correlated histological findings with clinical observation. Thirty appendectomy specimens and 14 appendices obtained from organ donors or patients who underwent right hemicolectomy were immediately fixed in Bouin's solution and processed for immunocytochemistry using an antiserum directed against the panneuronal marker protein gene product 9.5 (PGP 9.5). The density of PGP 9.5 immunostaining was evaluated by digitized morphometry. Significant differences in the density of the PGP 9.5-immunoreactive area were detected in the mucosal layer. In the nonacute appendicitis group, PGP 9.5 was increased (10.99 +/- 3.15%) as compared to acute appendicitis (3.89 +/- 1.77%) and controls (4.98 +/- 1.25%). The significant increase of PGP 9.5 in nonacute appendicitis may suggest axonal sprouting leading to hyperinnervation of the mucosa. This may be a neuronal factor in the pathophysiology of the disease and pain symptoms.
Collapse
Affiliation(s)
- P Di Sebastiano
- Department of Visceral and Transplantation Surgery, University of Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
17
|
Persson S, Le Grevés P, Thörnwall M, Eriksson U, Silberring J, Nyberg F. Neuropeptide converting and processing enzymes in the spinal cord and cerebrospinal fluid. PROGRESS IN BRAIN RESEARCH 1995; 104:111-30. [PMID: 8552764 DOI: 10.1016/s0079-6123(08)61787-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- S Persson
- Department of Pharmaceutical Biosciences, University of Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
18
|
Persson S, Schäfer MK, Nohr D, Ekström G, Post C, Nyberg F, Weihe E. Spinal prodynorphin gene expression in collagen-induced arthritis: influence of the glucocorticosteroid budesonide. Neuroscience 1994; 63:313-26. [PMID: 7898656 DOI: 10.1016/0306-4522(94)90026-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Changes in the spinal expression of the opioid precursor and prodynorphin, which has been implicated in the response to peripheral inflammation, were examined with semi-quantitative in situ hybridization histochemistry in rats subjected to collagen II-induced arthritis. The effects of glucocorticosteroid treatment on the basal and inflammation-induced prodynorphin expression were evaluated. Collagen II-induced arthritis caused a 16-fold increase in prodynorphin mRNA levels which comprised all neurons expressing low levels under normal conditions. In the superficial dorsal horn, one group of neurons of a large size reacted with a dramatic increase of prodynorphin mRNA, while another group of small neurons exhibited a moderate elevation of prodynorphin mRNA levels. In the deep dorsal horn of arthritic rats, most prodynorphin neurons were large and showed high prodynorphin mRNA levels. Systemic treatment with the glucocorticosteroid budesonide attenuated the arthritis-induced increase of prodynorphin mRNA expression in a topospecific manner. The budesonide-induced reduction of prodynorphin mRNA levels was more pronounced in the deep dorsal horn than in the superficial dorsal horn. Budesonide treatment of control animals caused a small, but significant increase in prodynorphin mRNA levels in the superficial laminae I/II without affecting prodynorphin mRNA levels in the deep dorsal horn. The degree of arthritis correlated closely with spinal prodynorphin mRNA levels. The tight correlation between severity of arthritis and prodynorphin mRNA levels in non-treated and corticosteroid-treated arthritic rats suggests that spinal prodynorphin expression is a good parameter for the evaluation of the influence of peripheral inflammation and of the efficacy of analgesic/anti-inflammatory drugs in its treatment. Opposite effects of budesonide on basal and inflammation-induced prodynorphin expression may involve a spinal site of action in addition to peripheral anti-inflammatory mechanisms. We suggest that the collagen II-induced arthritis in the rat is an excellent model for human rheumatoid arthritis allowing for the study of molecular plasticity of anti-inflammatory and anti-nociceptive drug action at different levels of the neuroaxis.
Collapse
Affiliation(s)
- S Persson
- Department of Pharmaceutical Bioscience, Biomedical Center, Uppsala University, Sweden
| | | | | | | | | | | | | |
Collapse
|
19
|
Nagao M, Oka N, Kamo H, Akiguchi I, Kimura J. Differential localization of lectin binding sites and neuropeptides in human dorsal root ganglia. HISTOCHEMISTRY 1994; 102:279-86. [PMID: 7531191 DOI: 10.1007/bf00269164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The subpopulations were compared of neurons in human dorsal root ganglia (DRG), as substance P, identified by somatostatin, Glycine max lectin (SBA) specific to terminal N-acetylgalactosamine, and Ulex europaeus I agglutinin (UEA-I) specific to L-fucose. The lectins and neuropeptides all bound to neurons of small diameter. Furthermore, the majority of the SBA binding neurons or somatostatin positive neurons were also UEA-I binding neurons. However, SBA binding neurons were not colocalized with somatostatin or substance P. Less than 20% of substance P positive neurons showed colocalization with L-fucosyl residues, and approximately 10% of L-fucosyl residues showed colocalization with substance P. Our results suggest that both L-fucose and terminal N-acetylgalactosamine containing neurons in the human DRG are subjected to different subpopulations from substance P or somatostatin positive neurons.
Collapse
Affiliation(s)
- M Nagao
- Department of Neurology, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
20
|
Del Fiacco M, Quartu M. Somatostatin, galanin and peptide histidine isoleucine in the newborn and adult human trigeminal ganglion and spinal nucleus: immunohistochemistry, neuronal morphometry and colocalization with substance P. J Chem Neuroanat 1994; 7:171-84. [PMID: 7531454 DOI: 10.1016/0891-0618(94)90027-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
By means of indirect immunofluorescence the neuropeptides somatostatin, galanin and peptide histidine isoleucine were localized in cell bodies, nerve fibres and terminal-like elements in the ganglion and spinal nucleus of the human trigeminal nerve in perinatal and adult ages. No immunoreactivity to vasoactive intestinal polypeptide was observed. In the gasserian ganglion somatostatin-, galanin- and peptide histidine isoleucine-containing neurons and nerve fibres occurred frequently in pre- and full-term newborns, but were scarce to absent in adults. Somatostatin- and galanin-positive pericellular basket-like structures around non-immunoreactive perikarya were observed in newborn specimens. Immunoreactivity to somatostatin, galanin and peptide histidine isoleucine labelled nerve fibers and punctate and felt-like nerve terminals in the pars interpolaris and subnucleus caudalis of the spinal trigeminal nucleus, with immunostaining and distribution patterns characteristic for each peptide. In addition, somatostatin-containing neuronal cell bodies frequently were detected. At variance with those containing somatostatin, the number of galanin- and peptide histidine isoleucine-like immunoreactive elements were dramatically reduced in the adult tissue compared to the newborn one. Double immunostaining revealed that each of the three peptides partially colocalizes with substance P, the degree of coexistence being very low for somatostatin/substance P and high for galanin/substance P and peptide histidine isoleucine/substance P both in the gasserian ganglion and in the spinal nucleus. The results obtained suggest that somatostatin, galanin and peptide histidine isoleucine may play functional roles in primary sensory neurons and at the first synaptic level of the human trigeminal sensory system.
Collapse
Affiliation(s)
- M Del Fiacco
- Dipartimento di Citomorfologia, University of Cagliari, Italy
| | | |
Collapse
|
21
|
Bourgoin S, Benoliel JJ, Collin E, Mauborgne A, Pohl M, Hamon M, Cesselin F. Opioidergic control of the spinal release of neuropeptides. Possible significance for the analgesic effects of opioids. Fundam Clin Pharmacol 1994; 8:307-21. [PMID: 7851837 DOI: 10.1111/j.1472-8206.1994.tb00809.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several neuropeptides play a key role in the transfer (substance P, calcitonin gene-related peptide, etc) and control (enkephalins, cholecystokinin, etc) of nociceptive messages from primary afferent fibres to spino-thalamic neurones in the dorsal horn of the spinal cord. This first relay in nociceptive pathways has been shown to be a major target for opioids such as analgesic drugs, and the effects of exogenous (mainly morphine) and endogenous opioids on the release of neuropeptides within the dorsal horn are reviewed here for a better understanding of the cellular mechanisms responsible for their antinociceptive action. Complex modulations of the in vitro (from tissue slices) and in vivo (in halothane-anaesthetized rats whose intrathecal space was perfused with an artificial cerebrospinal fluid) release of substance P and calcitonin gene-related peptide by opioids have been reported, depending on the opioid receptor (mu, delta, kappa, and their subtypes) stimulated by these compounds. In particular, the inhibition by delta agonists of substance P release from primary afferent fibres, and that by the concomitant stimulation of mu and kappa receptors of the release of calcitonin gene-related peptide are very probably involved in the analgesic action of specific opioids and morphine at the level of the spinal cord. Furthermore, the negative modulation (through presynaptic opioid autoreceptors) by delta and mu agonists of the spinal release of met-enkephalin, and the complex inhibitory/excitatory influence of delta, mu and kappa receptor ligands on the release of cholecystokinin within the dorsal horn very likely also contribute to the antinociceptive action of these drugs and morphine. The reviewed data strongly support the existence of functional interactions between mu and kappa receptors within the spinal cord, and their key role in the analgesic action of non specific opiates (acting on mu, delta and kappa receptors) such as morphine.
Collapse
Affiliation(s)
- S Bourgoin
- INSERM U 288, Neurobiologie Cellulaire et Fonctionelle, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Igwe OJ, Li N. Regulation of the second-messenger systems in the rat spinal cord during prolonged peripheral inflammation. Pain 1994; 58:63-75. [PMID: 7970840 DOI: 10.1016/0304-3959(94)90185-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Unilateral intraplantar injection of Freund's complete adjuvant (FCA) into 1 hind paw of rats was used as a model of peripheral inflammation and persistent pain in order to examine time course effects of a continuous barrage of nociceptive input on the second-messenger transducing systems in the spinal cord. cAMP, cGMP and inositol 1,4,5-trisphosphate (insP3) were extracted from the lumbosacral cord at days 1, 7, 14, 21 and 42 following FCA injection and quantified by either radioreceptor-assay (RRA) or radioimmunoassay (RIA). The lumbosacral contents of cAMP and cGMP when quantified in whole lumbosacral cord segment were not significantly changed by FCA treatment at all time points. InsP3 accumulation was significantly increased on days 14, 21 and 42 following FCA injection relative to sham-treated time-matched controls. However, cGMP and insP3 contents were significantly increased in the left longitudinal half of the lumbar enlargement ipsilateral to the injected paw on day 21 following FCA treatment, but not in the sham-treated time-matched controls. With [3H]insP3 as a ligand, Scatchard (Rosenthal) analyses of the concentration-dependent saturation curves showed that the densities (Bmax) of insP3 receptors (insP3R) were significantly increased throughout the time course of adjuvant-induced peripheral inflammation. The binding affinities (KD) for insP3R were significantly decreased on days 7, 14 and 21 following FCA injection corresponding to the times of most stable and peak inflammation. InsP3R from the cerebelli of the same rats as used in the lumbosacral insP3R characterization was used as a positive control in this study and did not show any change in both Bmax and KD as a result of FCA treatment, thus demonstrating that the changes in lumbosacral insP3R characteristics might be specific to the nociceptive sensory pathway such as the spinal cord. Thus it appears that sustained afferent nociceptive input induced by FCA injection increased the accumulation of cGMP, insP3 and insP3R density in the spinal cord through increased neuronal activities of functional receptors coupled to major classes of chemical mediators of nociception including neuropeptides and excitatory aminoacids. Changes in insP3 accumulation in the lumbosacral cord following FCA injection were significantly correlated with changes in insP3R density. Changes in the ratios of lumbosacral insP3 contents and insP3R density were also significantly correlated with changes in body weight and hind paw size induced by FCA injection.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- Orisa J Igwe
- Division of Pharmacology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108-2792 USA
| | | |
Collapse
|
23
|
Collin E, Frechilla D, Pohl M, Bourgoin S, Mauborgne A, Hamon M, Cesselin F. Differential effects of the novel analgesic, S 12813-4, on the spinal release of substance P- and calcitonin gene-related peptide-like materials in the rat. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1994; 349:387-93. [PMID: 7520130 DOI: 10.1007/bf00170885] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The possible inhibitory control by the novel analgesic S 12813-4 (3-(2-(4-phenylpiperazine-1-yl)-ethyl)-2-oxo-2,3- dihydrooxazolo(b)pyridine) of spinal neurones containing substance P (SP) and/or calcitonin gene-related peptide (CGRP) was assessed in vitro and in vivo in the rat. S 12813-4 (10 nM-0.1 mM) did not affect the spinal release of CGRP-like material (CGRPLM) but inhibited in a concentration dependent manner the K(+)-evoked overflow of SP-like material (SPLM) from slices of the dorsal half of the rat lumbar enlargement. The inhibitory effect of 10 microM S 12813-4 on SPLM release was not additive with that of Na (0.1 mM), and could be prevented by the alpha 2-adrenoceptor antagonist idazoxan (10 microM). Similarly, idazoxan (10 microM) suppressed the inhibition by intrathecally administered S 12813-4 (10 microM) of the spinal outflow of SPLM in halothane anaesthetized rats whose intrathecal space was perfused with an artificial cerebrospinal fluid. These data suggest that the analgesic effect of S 12813-4 might involve some alpha 2-adrenoreceptor-mediated control of SPLM release within the spinal cord. Whether this control concerns SP-containing primary afferent fibres (presynaptic inhibition) or SP-containing interneurones and/or bulbo-spinal SP-ergic pathways (postsynaptic inhibition) deserves further investigations.
Collapse
Affiliation(s)
- E Collin
- INSERM U. 288, Faculté de Médecine, Paris, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Schäfer MK, Weihe E, Varoqui H, Eiden LE, Erickson JD. Distribution of the vesicular acetylcholine transporter (VAChT) in the central and peripheral nervous systems of the rat. J Mol Neurosci 1994; 5:1-26. [PMID: 7857778 DOI: 10.1007/bf02736691] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Expression of the acetylcholine biosynthetic enzyme choline acetyltransferase (ChAT), the vesicular acetylcholine transporter (VAChT), and the high-affinity plasma membrane choline transporter uniquely defines the cholinergic phenotype in the mammalian central (CNS) and peripheral (PNS) nervous systems. The distribution of cells expressing the messenger RNA encoding the recently cloned VAChT in the rat CNS and PNS is described here. The pattern of expression of VAChT mRNA is consistent with anatomical, pharmacological, and histochemical information on the distribution of functional cholinergic neurons in the brain and peripheral tissues of the rat. VAChT mRNA-containing cells are present in brain areas, including neocortex and hypothalamus, in which the existence of cholinergic neurons has been the subject of debate. The demonstration that VAChT is a completely adequate marker for cholinergic neurons should allow the systematic delineation of cholinergic synapses in the rat nervous system when antibodies directed to this protein are available.
Collapse
Affiliation(s)
- M K Schäfer
- Department of Anatomy, Johannes-Gutenberg Universität, Mainz, FRG
| | | | | | | | | |
Collapse
|
25
|
Igwe OJ. Modulation of substance P-ergic system in the rat spinal cord by an opioid antagonist. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 21:263-73. [PMID: 7513375 DOI: 10.1016/0169-328x(94)90257-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Substance P- and opioid peptide-immunoreactive nerve terminals functionally interact in the spinal cord as two opposing systems in the regulation of the nociceptive pathway. In order to determine how SP-ergic system adapts to chronic opioid receptor blockade, the effects of naltrexone on SP level, SP receptor and the second messenger system coupled to the SP receptor were examined in the rat spinal cord. Male Sprague-Dawley rats were treated with naltrexone or vehicle for seven days by constant minipump infusion. Animals were sacrificed on day 8, spinal cords rapidly removed, segmentally sectioned and used to determine SP and inositol 1,4,5-trisphosphate [ins(1,4,5)P3] tissue contents, and to examine the regulation of their respective receptors in in vitro receptor binding assays. Following chronic naltrexone treatment, SP content in the lumbosacral segment of the spinal cord was increased by 53% over matched control values. The binding capacity (Bmax) of SP receptors, determined using [125I]BHSP, in lumbosacral synaptosomal membranes was significantly increased by 92%, but the binding affinity (Kd) remained unchanged. In addition, the concentration of [Sar9, Met(O2)11]SP, an NK-1 receptor-specific agonist, required to inhibit half of [125I]BHSP binding (IC50) in lumbosacral synaptosomal membranes was significantly decreased, but the IC50s for SP, the endogenous ligand for the SP receptor, and [Pro7]NK B, an NK-3 receptor-specific agonist, were unaltered by chronic blockade of opioid receptors. The data suggest that although naltrexone does not directly interact with tachykinin receptors, it acts indirectly on SP-ergic neurons to cause a change in the apparent affinity of NK-1 receptor (as reflected by a change in IC50 value). Formation of cellular ins(1,4,5)P3 in the lumbosacral cord, quantified by a highly sensitive and selective radioreceptor assay, was significantly increased by 34% relative to matched controls. A time course study indicated that increases in ins(1,4,5)P3 contents over the time studied corresponded qualitatively with increases in SP level in the lumbosacral cord. With [3H]ins(1,4,5)P3 as a ligand, Scatchard analyses of the concentration dependent saturation curves showed that the density of intracellular ins(1,4,5)P3 receptors was also increased by 119%, with no change in binding affinity. The data suggest that ins(1,4,5)P3 formation, possibly coupled to functional SP receptor activation, and ins(1,4,5)P3 receptors, which mediate ins(1,4,5)P3-induced alterations in intracellular Ca2+ flux, are increased in the lumbosacral cord by chronic blockade of opioid receptors. Taken together, the data support the concept of a role for endogenous opioids in the regulation of SP receptor activity in the spinal cord.
Collapse
Affiliation(s)
- O J Igwe
- Division of Pharmacology, School of Pharmacy, University of Missouri-Kansas City 64108-2792
| |
Collapse
|
26
|
Collin E, Mantelet S, Frechilla D, Pohl M, Bourgoin S, Hamon M, Cesselin F. Increased in vivo release of calcitonin gene-related peptide-like material from the spinal cord in arthritic rats. Pain 1993; 54:203-211. [PMID: 8233535 DOI: 10.1016/0304-3959(93)90210-g] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Possible alterations in spinal systems containing calcitonin gene-related peptide (CGRP) due to polyarthritis were assessed in rats 3-4 weeks after an intradermal injection of Freund's adjuvant in the low back. The tissue levels of CGRP-like material (CGRPLM) were approximately 50% higher in the dorsal zone of the spinal cord and dorsal root ganglia at both the cervical and lumbar (but not thoracic) segments in polyarthritic rats than in age-paired control animals. In addition the rate of the spinal release of CGRPLM determined through an intrathecal perfusion procedure in halothane-anaesthetized animals was approximately 15-fold higher in polyarthritic rats than in controls. The blockade of mu-opioid receptors by intrathecal perfusion with 10 microM naloxone produced a larger increase in the spontaneous CGRPLM outflow in polyarthritic rats than in age-paired controls. Furthermore, the stimulation of mu-opioid receptors by intrathecal perfusion with 10 microM DAGO significantly inhibited the spinal outflow of CGRPLM only in polyarthritic rats. These data indicate that CGRP-containing primary afferent fibres are markedly activated in chronic suffering polyarthritic rats. This activation occurs in spite of an increased tonic inhibitory control by endogenous opioids acting at mu receptors.
Collapse
MESH Headings
- Analgesics/pharmacology
- Animals
- Arthritis, Experimental/metabolism
- Calcitonin Gene-Related Peptide/metabolism
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalins/pharmacology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Injections, Spinal
- Iodine Radioisotopes
- Male
- Naloxone/pharmacology
- Perfusion
- Radioimmunoassay
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Spinal Cord/drug effects
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- E Collin
- INSERM (U 288), Neurobiologie Cellulaire et Fonctionnelle, Faculté de Médecine Pitié-Salpêtrière, 75634 Paris, Cedex 13 France
| | | | | | | | | | | | | |
Collapse
|
27
|
Collin E, Frechilla D, Pohl M, Bourgoin S, Le Bars D, Hamon M, Cesselin F. Opioid control of the release of calcitonin gene-related peptide-like material from the rat spinal cord in vivo. Brain Res 1993; 609:211-22. [PMID: 8389648 DOI: 10.1016/0006-8993(93)90875-n] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The possible control by opioids of the spinal release of calcitonin gene-related peptide-like material (CGRPLM) was investigated in halothane-anaesthetized rats whose intrathecal space was perfused with an artificial cerebrospinal fluid. Morphine (20 mg/kg i.v.; or at 10-100 microM added to the perfusing fluid), the mu selective agonist DAGO (10 microM) and the kappa selective agonist U 50488 H (10 microM) did not affect the spontaneous outflow of the CGRPLM. In contrast, the selective delta agonist DTLET (10 microM) significantly increased CGRPLM release. The latter effect could be prevented by the selective delta antagonist naltrindole (10 microM) as expected from the involvement of this class of opioid receptors. However, the addition of naltrindole alone to the perfusing fluid did not modify CGRPLM outflow, indicating that endogenous opioids do not exert a tonic control of CGRP-containing fibers through the stimulation of delta receptors. In contrast, intrathecal perfusion with naloxone (10 microM) or nor-binaltorphimine (10 microM), a selective antagonist of kappa receptors, produced a marked increase in spinal CGRPLM release, suggesting that endogenous opioids acting at mu and kappa receptors, respectively, exert a tonic inhibitory control of CGRP-containing fibers. Indeed, a significant decrease in the spinal release of CGRPLM release could be evoked by the combined addition of U 50488 H (10 microM) plus DAGO (10 microM) to the perfusing medium, indicating that the simultaneous stimulation of both kappa and mu receptors is required for this negative control to occur. This could notably be achieved with morphine (10 microM) in the presence of naltrindole (10 microM) which also produced a significant reduction in the spinal release of CGRPLM. In conclusion, morphine per se did not change CGRPLM release because this drug triggers opposite positive (through the stimulation of delta receptors) and negative (through the concomitant stimulation of both kappa and mu receptors) control mechanisms within the rat spinal cord.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer
- Analgesics/pharmacology
- Animals
- Calcitonin Gene-Related Peptide/metabolism
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalins/pharmacology
- Injections, Spinal
- Iodine Radioisotopes
- Male
- Morphine/pharmacology
- Naloxone/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Oligopeptides/pharmacology
- Pyrrolidines/pharmacology
- Radioimmunoassay
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/physiology
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/metabolism
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- E Collin
- INSERM U, 288, Neurobiologie Cellulaire et Fonctionnelle, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|