1
|
Shi X, He X, Xu C. Charge-based immunoreceptor signalling in health and disease. Nat Rev Immunol 2024:10.1038/s41577-024-01105-6. [PMID: 39528837 DOI: 10.1038/s41577-024-01105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Immunoreceptors have crucial roles in sensing environmental signals and initiating immune responses to protect the host. Dysregulation of immunoreceptor signalling can therefore lead to a range of diseases, making immunoreceptor-based therapies a promising frontier in biomedicine. A common feature of various immunoreceptors is the basic-residue-rich sequence (BRS), which is a largely unexplored aspect of immunoreceptor signalling. The BRS is typically located in the cytoplasmic juxtamembrane region of immunoreceptors, where it forms dynamic interactions with neighbouring charged molecules to regulate signalling. Loss or gain of the basic residues in an immunoreceptor BRS has been linked to severe human diseases, such as immunodeficiency and autoimmunity. In this Perspective, we describe the role of BRSs in various immunoreceptors, elucidating their signalling mechanisms and biological functions. Furthermore, we highlight pathogenic mutations in immunoreceptor BRSs and discuss the potential of leveraging BRS signalling in engineered T cell-based therapies.
Collapse
Affiliation(s)
- Xiaoshan Shi
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Xing He
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Chenqi Xu
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Ono C, Tanaka S, Myouzen K, Iwasaki T, Ueda M, Oda Y, Yamamoto K, Kochi Y, Baba Y. Upregulated Fcrl5 disrupts B cell anergy and causes autoimmune disease. Front Immunol 2023; 14:1276014. [PMID: 37841260 PMCID: PMC10569490 DOI: 10.3389/fimmu.2023.1276014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
B cell anergy plays a critical role in maintaining self-tolerance by inhibiting autoreactive B cell activation to prevent autoimmune diseases. Here, we demonstrated that Fc receptor-like 5 (Fcrl5) upregulation contributes to autoimmune disease pathogenesis by disrupting B cell anergy. Fcrl5-a gene whose homologs are associated with human autoimmune diseases-is highly expressed in age/autoimmunity-associated B cells (ABCs), an autoreactive B cell subset. By generating B cell-specific Fcrl5 transgenic mice, we demonstrated that Fcrl5 overexpression in B cells caused systemic autoimmunity with age. Additionally, Fcrl5 upregulation in B cells exacerbated the systemic lupus erythematosus-like disease model. Furthermore, an increase in Fcrl5 expression broke B cell anergy and facilitated toll-like receptor signaling. Thus, Fcrl5 is a potential regulator of B cell-mediated autoimmunity by regulating B cell anergy. This study provides important insights into the role of Fcrl5 in breaking B cell anergy and its effect on the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Chisato Ono
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shinya Tanaka
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiko Myouzen
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takeshi Iwasaki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mahoko Ueda
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Hayes B, van der Geer P. STS-1 and STS-2, Multi-Enzyme Proteins Equipped to Mediate Protein-Protein Interactions. Int J Mol Sci 2023; 24:ijms24119214. [PMID: 37298164 DOI: 10.3390/ijms24119214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
STS-1 and STS-2 form a small family of proteins that are involved in the regulation of signal transduction by protein-tyrosine kinases. Both proteins are composed of a UBA domain, an esterase domain, an SH3 domain, and a PGM domain. They use their UBA and SH3 domains to modify or rearrange protein-protein interactions and their PGM domain to catalyze protein-tyrosine dephosphorylation. In this manuscript, we discuss the various proteins that have been found to interact with STS-1 or STS-2 and describe the experiments used to uncover their interactions.
Collapse
Affiliation(s)
- Barbara Hayes
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr., San Diego, CA 92105, USA
| | - Peter van der Geer
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr., San Diego, CA 92105, USA
| |
Collapse
|
4
|
Latour S. Inherited immunodeficiencies associated with proximal and distal defects in T cell receptor signaling and co-signaling. Biomed J 2022; 45:321-333. [PMID: 35091087 PMCID: PMC9250091 DOI: 10.1016/j.bj.2022.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Université de Paris, Institut Imagine, Paris, France.
| |
Collapse
|
5
|
Kralova J, Pavliuchenko N, Fabisik M, Ilievova K, Spoutil F, Prochazka J, Pokorna J, Sedlacek R, Brdicka T. The receptor-type protein tyrosine phosphatase CD45 promotes onset and severity of IL-1β-mediated autoinflammatory osteomyelitis. J Biol Chem 2021; 297:101131. [PMID: 34461100 PMCID: PMC8455366 DOI: 10.1016/j.jbc.2021.101131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
A number of human autoinflammatory diseases manifest with severe inflammatory bone destruction. Mouse models of these diseases represent valuable tools that help us to understand molecular mechanisms triggering this bone autoinflammation. The Pstpip2cmo mouse strain is among the best characterized of these; it harbors a mutation resulting in the loss of adaptor protein PSTPIP2 and development of autoinflammatory osteomyelitis. In Pstpip2cmo mice, overproduction of interleukin-1β (IL-1β) and reactive oxygen species by neutrophil granulocytes leads to spontaneous inflammation of the bones and surrounding soft tissues. However, the upstream signaling events leading to this overproduction are poorly characterized. Here, we show that Pstpip2cmo mice deficient in major regulator of Src-family kinases (SFKs) receptor-type protein tyrosine phosphatase CD45 display delayed onset and lower severity of the disease, while the development of autoinflammation is not affected by deficiencies in Toll-like receptor signaling. Our data also show deregulation of pro-IL-1β production by Pstpip2cmo neutrophils that are attenuated by CD45 deficiency. These data suggest a role for SFKs in autoinflammation. Together with previously published work on the involvement of protein tyrosine kinase spleen tyrosine kinase, they point to the role of receptors containing immunoreceptor tyrosine-based activation motifs, which after phosphorylation by SFKs recruit spleen tyrosine kinase for further signal propagation. We propose that this class of receptors triggers the events resulting in increased pro-IL-1β synthesis and disease initiation and/or progression.
Collapse
Affiliation(s)
- Jarmila Kralova
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nataliia Pavliuchenko
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Charles University, Faculty of Science, Prague, Czech Republic
| | - Matej Fabisik
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Charles University, Faculty of Science, Prague, Czech Republic
| | - Kristyna Ilievova
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic; Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jana Pokorna
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic; Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Tomas Brdicka
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
6
|
van der Donk LEH, Ates LS, van der Spek J, Tukker LM, Geijtenbeek TBH, van Heijst JWJ. Separate signaling events control TCR downregulation and T cell activation in primary human T cells. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:223-238. [PMID: 33350598 PMCID: PMC7860602 DOI: 10.1002/iid3.383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 12/02/2022]
Abstract
Introduction T‐cell antigen receptor (TCR) interaction with cognate peptide:MHC complexes trigger clustering of TCR:CD3 complexes and signal transduction. Triggered TCR:CD3 complexes are rapidly internalized and degraded in a process called ligand‐induced TCR downregulation. Classic studies in immortalized T‐cell lines have revealed a major role for the Src family kinase Lck in TCR downregulation. However, to what extent a similar mechanism operates in primary human T cells remains unclear. Methods Here, we developed an anti‐CD3‐mediated TCR downregulation assay, in which T‐cell gene expression in primary human T cells can be knocked down by microRNA constructs. In parallel, we used CRISPR/Cas9‐mediated knockout in Jurkat cells for validation experiments. Results We efficiently knocked down the expression of tyrosine kinases Lck, Fyn, and ZAP70, and found that, whereas this impaired T cell activation and effector function, TCR downregulation was not affected. Although TCR downregulation was marginally inhibited by the simultaneous knockdown of Lck and Fyn, its full abrogation required broad‐acting tyrosine kinase inhibitors. Conclusions These data suggest that there is substantial redundancy in the contribution of individual tyrosine kinases to TCR downregulation in primary human T cells. Our results highlight that TCR downregulation and T cell activation are controlled by different signaling events and illustrate the need for further research to untangle these processes.
Collapse
Affiliation(s)
- Lieve E H van der Donk
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Louis S Ates
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jet van der Spek
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura M Tukker
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen W J van Heijst
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Neogene Therapeutics, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Salemme V, Angelini C, Chapelle J, Centonze G, Natalini D, Morellato A, Taverna D, Turco E, Ala U, Defilippi P. The p140Cap adaptor protein as a molecular hub to block cancer aggressiveness. Cell Mol Life Sci 2020; 78:1355-1367. [PMID: 33079227 PMCID: PMC7904710 DOI: 10.1007/s00018-020-03666-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/03/2020] [Accepted: 10/05/2020] [Indexed: 01/03/2023]
Abstract
The p140Cap adaptor protein is a scaffold molecule encoded by the SRCIN1 gene, which is physiologically expressed in several epithelial tissues and in the neurons. However, p140Cap is also strongly expressed in a significant subset of cancers including breast cancer and neuroblastoma. Notably, cancer patients with high p140Cap expression in their primary tumors have a lower probability of developing a distant event and ERBB2-positive breast cancer sufferers show better survival. In neuroblastoma patients, SRCIN1 mRNA levels represent an independent risk factor, which is inversely correlated to disease aggressiveness. Consistent with clinical data, SRCIN1 gain or loss of function mouse models demonstrated that p140Cap may affect tumor growth and metastasis formation by controlling the signaling pathways involved in tumorigenesis and metastatic features. This study reviews data showing the relevance of SRCIN1/p140Cap in cancer patients, the impact of SRCIN1 status on p140Cap expression, the specific mechanisms through which p140Cap can limit cancer progression, the molecular functions regulated by p140Cap, along with the p140Cap interactome, to unveil its key role for patient stratification in clinics.
Collapse
Affiliation(s)
- Vincenzo Salemme
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Costanza Angelini
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Jennifer Chapelle
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Giorgia Centonze
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Dora Natalini
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy.
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
8
|
Smith RO, Ninchoji T, Gordon E, André H, Dejana E, Vestweber D, Kvanta A, Claesson-Welsh L. Vascular permeability in retinopathy is regulated by VEGFR2 Y949 signaling to VE-cadherin. eLife 2020; 9:54056. [PMID: 32312382 PMCID: PMC7188482 DOI: 10.7554/elife.54056] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/05/2020] [Indexed: 01/01/2023] Open
Abstract
Edema stemming from leaky blood vessels is common in eye diseases such as age-related macular degeneration and diabetic retinopathy. Whereas therapies targeting vascular endothelial growth factor A (VEGFA) can suppress leakage, side-effects include vascular rarefaction and geographic atrophy. By challenging mouse models representing different steps in VEGFA/VEGF receptor 2 (VEGFR2)-induced vascular permeability, we show that targeting signaling downstream of VEGFR2 pY949 limits vascular permeability in retinopathy induced by high oxygen or by laser-wounding. Although suppressed permeability is accompanied by reduced pathological neoangiogenesis in oxygen-induced retinopathy, similarly sized lesions leak less in mutant mice, separating regulation of permeability from angiogenesis. Strikingly, vascular endothelial (VE)-cadherin phosphorylation at the Y685, but not Y658, residue is reduced when VEGFR2 pY949 signaling is impaired. These findings support a mechanism whereby VE-cadherin Y685 phosphorylation is selectively associated with excessive vascular leakage. Therapeutically, targeting VEGFR2-regulated VE-cadherin phosphorylation could suppress edema while leaving other VEGFR2-dependent functions intact. The number of people with impaired vision and blindness is increasing in Western society due to the aging population and the increased prevalence of diabetes. This has led to eye diseases, such as age-related macular degeneration and diabetic retinopathy becoming more common. In both these eye diseases, new blood vessels grow in the retina – the light-sensitive part of the eye – to bring oxygen and nutrients to the tissue. However, these new blood vessels are leaky and allow molecules to leave the bloodstream and enter the retinal tissue. This causes the retina to swell and impair a person’s vision. The leaky blood supply also reduces the amount of oxygen that gets to the tissue, resulting in further damage to the retina. When tissues experience low levels of oxygen, cells start making a protein called vascular endothelial growth factor (or VEGF for short). Whilst this protein is important for helping form new blood vessels, it also makes these vessels leaky. Current treatments for age-related macular degeneration and diabetic retinopathy decrease swelling in the eye by blocking the action of VEGF. However, these treatments also cause existing blood vessels and nerve cells to die, leading to irreversible damage. Now, Smith et al. have set out to find whether the effects of VEGF can be blocked without causing further damage to existing cells. To investigate this possibility, the eyes and retinas of mice were treated with a laser or exposed to changing oxygen levels to create injuries that resembled human age-related macular degeneration and diabetic retinopathy. Each of the tested mice had specific mutations in proteins known to interact with VEGF. Fluorescent particles were injected into the bloodstream of the mice to assess how these different mutations affected blood vessel leakage: if fluorescent particles could no longer be detected outside the blood vessels, this suggested that the mutation had stopped the vessels from leaking. Further experiments showed these specific mutations affected leakage and did not prevent new blood vessels from forming. In the future it will be important to see if drugs, rather than mutations, can also decrease the leakiness of blood vessels in the retina. Such chemical compounds could then be tested in mouse experiments. If successful, these drugs might be used to treat patients with age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Ross O Smith
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory Uppsala University, Uppsala, Sweden
| | - Takeshi Ninchoji
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory Uppsala University, Uppsala, Sweden
| | - Emma Gordon
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory Uppsala University, Uppsala, Sweden
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Elisabetta Dejana
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory Uppsala University, Uppsala, Sweden.,IFOM-IEO Campus Via Adamello, Milan, Italy
| | | | - Anders Kvanta
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Sahar N, Bibi S, Masood N, Faryal R. Status of serine tyrosine kinase at germline and expressional levels in asthma patients. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2019; 8:69-77. [PMID: 31531378 PMCID: PMC6715266 DOI: 10.22099/mbrc.2019.33040.1394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Asthma is a disease marked by inflammation of airways with an increasing incidence rate worldwide especially among Asian population. Spleen tyrosine kinase (Syk) is known to be involved in regulation of such inflammation response and thereby rendering its inevitable importance among asthma patients. DNA extraction followed by PCR and sequencing was performed for genomic analysis, mRNA analysis was done by RT PCR whereas Western blot and ELISA was used for protein study. Image J and UNAFOLD were also used for Bioinformatics analysis.The mean age of patients and controls were 31.1±9.3 and 30.4±6.1 years respectively. Results of sequencing showed nonsense exonic mutations in exon 3 at g.25710G>A and g.25722G>A positions. Substitution mutations in introns were also found at g.25827G>A (intron 3), g.63425C>T (intron 8) and g.63445T>G (intron 8). Significantly increased levels of IgE and significantly decreased expression of Syk at transcriptional level was found in patients compared to controls. The western blot results of asthmatic samples and healthy controls revealed that Syk has comparatively low expression in diseased individual's PBMCs. SYK has been found to be altered in DNA, mRNA and protein expression in asthma patients among Pakistani population therefore patients should be treated according to their Syk status for more effective recovery.
Collapse
Affiliation(s)
- Namoodn Sahar
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Shakila Bibi
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Nosheen Masood
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Rani Faryal
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
10
|
Dehkhoda F, Lee CMM, Medina J, Brooks AJ. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Front Endocrinol (Lausanne) 2018; 9:35. [PMID: 29487568 PMCID: PMC5816795 DOI: 10.3389/fendo.2018.00035] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK-STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.
Collapse
Affiliation(s)
- Farhad Dehkhoda
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Christine M. M. Lee
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Johan Medina
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Brooks
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Shimanaka Y, Kono N, Taketomi Y, Arita M, Okayama Y, Tanaka Y, Nishito Y, Mochizuki T, Kusuhara H, Adibekian A, Cravatt BF, Murakami M, Arai H. Omega-3 fatty acid epoxides are autocrine mediators that control the magnitude of IgE-mediated mast cell activation. Nat Med 2017; 23:1287-1297. [DOI: 10.1038/nm.4417] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/07/2017] [Indexed: 02/08/2023]
|
12
|
Wehbi VL, Taskén K. Molecular Mechanisms for cAMP-Mediated Immunoregulation in T cells - Role of Anchored Protein Kinase A Signaling Units. Front Immunol 2016; 7:222. [PMID: 27375620 PMCID: PMC4896925 DOI: 10.3389/fimmu.2016.00222] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
The cyclic AMP/protein kinase A (cAMP/PKA) pathway is one of the most common and versatile signal pathways in eukaryotic cells. A-kinase anchoring proteins (AKAPs) target PKA to specific substrates and distinct subcellular compartments providing spatial and temporal specificity for mediation of biological effects channeled through the cAMP/PKA pathway. In the immune system, cAMP is a potent negative regulator of T cell receptor-mediated activation of effector T cells (Teff) acting through a proximal PKA/Csk/Lck pathway anchored via a scaffold consisting of the AKAP Ezrin holding PKA, the linker protein EBP50, and the anchoring protein phosphoprotein associated with glycosphingolipid-enriched microdomains holding Csk. As PKA activates Csk and Csk inhibits Lck, this pathway in response to cAMP shuts down proximal T cell activation. This immunomodulating pathway in Teff mediates clinically important responses to regulatory T cell (Treg) suppression and inflammatory mediators, such as prostaglandins (PGs), adrenergic stimuli, adenosine, and a number of other ligands. A major inducer of T cell cAMP levels is PG E2 (PGE2) acting through EP2 and EP4 prostanoid receptors. PGE2 plays a crucial role in the normal physiological control of immune homeostasis as well as in inflammation and cancer immune evasion. Peripherally induced Tregs express cyclooxygenase-2, secrete PGE2, and elicit the immunosuppressive cAMP pathway in Teff as one tumor immune evasion mechanism. Moreover, a cAMP increase can also be induced by indirect mechanisms, such as intercellular transfer between T cells. Indeed, Treg, known to have elevated levels of intracellular cAMP, may mediate their suppressive function by transferring cAMP to Teff through gap junctions, which we speculate could also be regulated by PKA/AKAP complexes. In this review, we present an updated overview on the influence of cAMP-mediated immunoregulatory mechanisms acting through localized cAMP signaling and the therapeutical increasing prospects of AKAPs disruptors in T-cell immune function.
Collapse
Affiliation(s)
- Vanessa L. Wehbi
- Nordic EMBL Partnership, Centre for Molecular Medicine Norway, Oslo University Hospital, University of Oslo, Oslo, Norway
- Jebsen Inflammation Research Centre, Oslo University Hospital, Oslo, Norway
- Biotechnology Centre, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Kjetil Taskén
- Nordic EMBL Partnership, Centre for Molecular Medicine Norway, Oslo University Hospital, University of Oslo, Oslo, Norway
- Jebsen Inflammation Research Centre, Oslo University Hospital, Oslo, Norway
- Biotechnology Centre, Oslo University Hospital, University of Oslo, Oslo, Norway
- Jebsen Centre for Cancer Immunotherapy, Oslo University Hospital, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
13
|
Negative regulation of TCR signaling by ubiquitination of Zap-70 Lys-217. Mol Immunol 2016; 73:19-28. [PMID: 27032069 DOI: 10.1016/j.molimm.2016.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/26/2016] [Accepted: 03/15/2016] [Indexed: 02/08/2023]
Abstract
The tyrosine kinase Zap-70 is a key regulator of T cell receptor (TCR) signaling downstream of antigen presentation, with coordinated regulation of Zap-70 kinase activity critical for proper T cell proliferation, differentiation, and effector function during an immune response. Zap-70 is cytosolic in unstimulated T cells, but is rapidly recruited to the TCR complex following receptor stimulation. Its activity is regulated both by binding to subunits of the TCR and by phosphorylation on multiple tyrosine residues. Zap-70 also has been reported to be ubiquitinated following TCR stimulation. Herein, we confirm the ubiquitination of Zap-70 in T cell lines and in primary human and mouse T cells, and report the identification of nine novel Zap-70 ubiquitination sites. Three sites, including Lys-193, Lys-217, and Lys-376, displayed greater than 20-fold increase in modification levels following TCR stimulation. Abrogation of Lys-217 ubiquitination results in increased kinase activation, enhanced activation of downstream signaling pathways, and elevated IL-2 production following TCR stimulation. These data suggest that Zap-70 ubiquitination contributes to the regulation of Zap-70 signaling following TCR stimulation.
Collapse
|
14
|
Hu J, Neiswinger J, Zhang J, Zhu H, Qian J. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction. PLoS Comput Biol 2015; 11:e1004508. [PMID: 26393507 PMCID: PMC4578958 DOI: 10.1371/journal.pcbi.1004508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/03/2015] [Indexed: 12/03/2022] Open
Abstract
Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. Despite their importance in the signaling transduction, there is no systematic effort in identifying and characterizing the scaffold proteins in humans. In this work, we predicted scaffold proteins by integrating the available protein-protein interactions and kinase-substrate relationships. The predicted scaffold proteins showed characteristics for known scaffold proteins, suggesting the fidelity of our prediction. More importantly, the systematic prediction of scaffold proteins provides biological insights in the scaffold-mediated signal transduction. We found that scaffold proteins are likely to form complexes, suggesting that scaffold proteins could participate in diverse signaling pathways through the combinatorial interactions among scaffold proteins. Furthermore, the regulation of scaffold proteins’ activities has not been extensively studied. Our bioinformatics analysis proposed that scaffold proteins themselves might be regulated through phosphorylation process.
Collapse
Affiliation(s)
- Jianfei Hu
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Johnathan Neiswinger
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Center for High-Throughput Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
15
|
Abstract
Recent published findings have shown that many proteins discovered in the immune system and residing on immune cells with well established immune-related functions are also found in neurons of the central nervous system. These studies have uncovered a rich variety of neuronal functions attributed to these immune proteins. This review will focus on two key interacting protein complexes that previously were known for adaptive immune reactions, the major histocompatability complex and the T-cell receptor complex. We will review where these immune proteins are expressed in the CNS and their neuronal function.
Collapse
Affiliation(s)
- Pragya Komal
- Department of Biology, Centre for Biomedical Research, University of Victoria, Canada
| | - Raad Nashmi
- Department of Biology, Centre for Biomedical Research, University of Victoria, Canada.
| |
Collapse
|
16
|
Tsantikos E, Gottschalk TA, Maxwell MJ, Hibbs ML. Role of the Lyn tyrosine kinase in the development of autoimmune disease. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/ijr.14.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Kane BA, Bryant KJ, McNeil HP, Tedla NT. Termination of immune activation: an essential component of healthy host immune responses. J Innate Immun 2014; 6:727-38. [PMID: 25033984 PMCID: PMC6741560 DOI: 10.1159/000363449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 12/15/2022] Open
Abstract
The ideal immune response is rapid, proportionate and effective. Crucially, it must also be finite. An inflammatory response which is disproportionate or lasts too long risks injury to the host; chronic un-regulated inflammation in autoimmune diseases is one example of this. Thus, mechanisms to regulate and ultimately terminate immune responses are central to a healthy immune system. Despite extensive knowledge of what drives immune responses, our understanding of mechanisms of immune termination remains relatively sparse. It is clear that such processes are more complex than a one-dimensional homeostatic balance. Recent discoveries have revealed ever more nuanced mechanisms of signal termination, such as intrinsically self-limiting signals, multiple inhibitory mechanisms acting in tandem and activating proteins behaving differently in a variety of contexts. This review will summarise some important mechanisms, including termination by immunoreceptor tyrosine-based inhibitory motifs (ITIM), inhibition by soluble antagonists, receptor endocytosis or ubiquitination, and auto-inhibition by newly synthesised intracellular inhibitory molecules. Several recent discoveries showing immunoreceptor tyrosine-based activation motifs transducing inhibitory signals, ITIM mediating activating responses and the possible roles of immunoreceptor tyrosine-based switch motifs will also be explored.
Collapse
Affiliation(s)
- Barry A. Kane
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, N.S.W., Australia
| | - Katherine J. Bryant
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, N.S.W., Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, N.S.W., Australia
| | - H. Patrick McNeil
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, N.S.W., Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, N.S.W., Australia
| | - Nicodemus T. Tedla
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, N.S.W., Australia
| |
Collapse
|
18
|
Schlichter LC, Jiang J, Wang J, Newell EW, Tsui FWL, Lam D. Regulation of hERG and hEAG channels by Src and by SHP-1 tyrosine phosphatase via an ITIM region in the cyclic nucleotide binding domain. PLoS One 2014; 9:e90024. [PMID: 24587194 PMCID: PMC3938566 DOI: 10.1371/journal.pone.0090024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/31/2014] [Indexed: 12/14/2022] Open
Abstract
Members of the EAG K+ channel superfamily (EAG/Kv10.x, ERG/Kv11.x, ELK/Kv12.x subfamilies) are expressed in many cells and tissues. In particular, two prototypes, EAG1/Kv10.1/KCNH1 and ERG1/Kv11.1/KCNH2 contribute to both normal and pathological functions. Proliferation of numerous cancer cells depends on hEAG1, and in some cases, hERG. hERG is best known for contributing to the cardiac action potential, and for numerous channel mutations that underlie ‘long-QT syndrome’. Many cells, particularly cancer cells, express Src-family tyrosine kinases and SHP tyrosine phosphatases; and an imbalance in tyrosine phosphorylation can lead to malignancies, autoimmune diseases, and inflammatory disorders. Ion channel contributions to cell functions are governed, to a large degree, by post-translational modulation, especially phosphorylation. However, almost nothing is known about roles of specific tyrosine kinases and phosphatases in regulating K+ channels in the EAG superfamily. First, we show that tyrosine kinase inhibitor, PP1, and the selective Src inhibitory peptide, Src40-58, reduce the hERG current amplitude, without altering its voltage dependence or kinetics. PP1 similarly reduces the hEAG1 current. Surprisingly, an ‘immuno-receptor tyrosine inhibitory motif’ (ITIM) is present within the cyclic nucleotide binding domain of all EAG-superfamily members, and is conserved in the human, rat and mouse sequences. When tyrosine phosphorylated, this ITIM directly bound to and activated SHP-1 tyrosine phosphatase (PTP-1C/PTPN6/HCP); the first report that a portion of an ion channel is a binding site and activator of a tyrosine phosphatase. Both hERG and hEAG1 currents were decreased by applying active recombinant SHP-1, and increased by the inhibitory substrate-trapping SHP-1 mutant. Thus, hERG and hEAG1 currents are regulated by activated SHP-1, in a manner opposite to their regulation by Src. Given the widespread distribution of these channels, Src and SHP-1, this work has broad implications in cell signaling that controls survival, proliferation, differentiation, and other ERG1 and EAG1 functions in many cell types.
Collapse
Affiliation(s)
- Lyanne C. Schlichter
- Genes and Development Division, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| | - Jiahua Jiang
- Genes and Development Division, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - John Wang
- Genes and Development Division, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Evan W. Newell
- Genes and Development Division, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology University of Toronto, Toronto, Ontario, Canada
| | - Florence W. L. Tsui
- Genes and Development Division, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Doris Lam
- Genes and Development Division, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Norman P. Spleen tyrosine kinase inhibitors: a review of the patent literature 2010 - 2013. Expert Opin Ther Pat 2014; 24:573-95. [PMID: 24555683 DOI: 10.1517/13543776.2014.890184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The non-receptor tyrosine kinase, spleen tyrosine kinase (Syk), is primarily expressed in haematopoietic cells and appears to be particularly important in B cells. Syk is involved in signal transduction processes and appears to regulate allergic, inflammatory and autoimmune responses. It also appears to play a significant role in the development of haematological malignancies. Inhibitors of Syk are potentially useful in treating asthma, rheumatoid arthritis, lupus, chronic lymphocytic leukaemia and lymphomas. AREAS COVERED This article reviews the increasing number of patent filings between 2010 and 2013 claiming Syk inhibitors and focuses on the multiple structural classes of Syk inhibitors disclosed. It also comments on recent developments with Syk inhibitors, both clinical results and licensing deals. EXPERT OPINION The increased interest in the identification of Syk inhibitors has seen a sharp increase in patent filings claiming such compounds. However, the number of these is well below that of filings relating to other pro-inflammatory kinases (p38, JAK). These filings have also claimed an increasingly diverse range of chemical classes moving away from the 2,4-diaminopyrimidine motif present in drugs such as fostamatinib and PRT-06207. Many of the claimed compounds are Syk inhibitors with potencies considerably better than fostamatinib. However, good kinase selectivity is also likely to be essential if a Syk inhibitor is to prove useful enough to emulate the JAK inhibitor tofacitinib in gaining marketing authorisation. Recent clinical failures with Syk inhibitors are expected to result in a decrease in the rate of patent filings claiming Syk inhibitors.
Collapse
Affiliation(s)
- Peter Norman
- Norman Consulting , 18 Pink Lane, Burnham, Bucks, SL1 8JW , UK
| |
Collapse
|
20
|
Lck mediates signal transmission from CD59 to the TCR/CD3 pathway in Jurkat T cells. PLoS One 2014; 9:e85934. [PMID: 24454946 PMCID: PMC3893272 DOI: 10.1371/journal.pone.0085934] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 12/03/2013] [Indexed: 01/09/2023] Open
Abstract
The glycosylphosphatidylinositol (GPI)-anchored molecule CD59 has been implicated in the modulation of T cell responses, but the underlying molecular mechanism of CD59 influencing T cell signaling remained unclear. Here we analyzed Jurkat T cells stimulated via anti-CD3ε- or anti-CD59-coated surfaces, using time-resolved single-cell Ca2+ imaging as a read-out for stimulation. This analysis revealed a heterogeneous Ca2+ response of the cell population in a stimulus-dependent manner. Further analysis of T cell receptor (TCR)/CD3 deficient or overexpressing cells showed that CD59-mediated signaling is strongly dependent on TCR/CD3 surface expression. In protein co-patterning and fluorescence recovery after photobleaching experiments no direct physical interaction was observed between CD59 and CD3 at the plasma membrane upon anti-CD59 stimulation. However, siRNA-mediated protein knock-downs of downstream signaling molecules revealed that the Src family kinase Lck and the adaptor molecule linker of activated T cells (LAT) are essential for both signaling pathways. Furthermore, flow cytometry measurements showed that knock-down of Lck accelerates CD3 re-expression at the cell surface after anti-CD59 stimulation similar to what has been observed upon direct TCR/CD3 stimulation. Finally, physically linking Lck to CD3ζ completely abolished CD59-triggered Ca2+ signaling, while signaling was still functional upon direct TCR/CD3 stimulation. Altogether, we demonstrate that Lck mediates signal transmission from CD59 to the TCR/CD3 pathway in Jurkat T cells, and propose that CD59 may act via Lck to modulate T cell responses.
Collapse
|
21
|
Hughan SC, Spring CM, Schoenwaelder SM, Sturgeon S, Alwis I, Yuan Y, McFadyen JD, Westein E, Goddard D, Ono A, Yamanashi Y, Nesbitt WS, Jackson SP. Dok-2 adaptor protein regulates the shear-dependent adhesive function of platelet integrin αIIbβ3 in mice. J Biol Chem 2014; 289:5051-60. [PMID: 24385425 DOI: 10.1074/jbc.m113.520148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Dok proteins are a family of adaptor molecules that have a well defined role in regulating cellular migration, immune responses, and tumor progression. Previous studies have demonstrated that Doks-1 to 3 are expressed in platelets and that Dok-2 is tyrosine-phosphorylated downstream of integrin αIIbβ3, raising the possibility that it participates in integrin αIIbβ3 outside-in signaling. We demonstrate that Dok-2 in platelets is primarily phosphorylated by Lyn kinase. Moreover, deficiency of Dok-2 leads to dysregulated integrin αIIbβ3-dependent cytosolic calcium flux and phosphatidylinositol(3,4)P2 accumulation. Although agonist-induced integrin αIIbβ3 affinity regulation was unaltered in Dok-2(-/-) platelets, Dok-2 deficiency was associated with a shear-dependent increase in integrin αIIbβ3 adhesive function, resulting in enhanced platelet-fibrinogen and platelet-platelet adhesive interactions under flow. This increase in adhesion was restricted to discoid platelets and involved the shear-dependent regulation of membrane tethers. Dok-2 deficiency was associated with an increased rate of platelet aggregate formation on thrombogenic surfaces, leading to accelerated thrombus growth in vivo. Overall, this study defines an important role for Dok-2 in regulating biomechanical adhesive function of discoid platelets. Moreover, they define a previously unrecognized prothrombotic mechanism that is not detected by conventional platelet function assays.
Collapse
Affiliation(s)
- Sascha C Hughan
- From the Australian Centre for Blood Diseases, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Alfred Medical Research and Education Precinct, Commercial Road, Melbourne, Victoria 3004
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Holbrook BC, Yammani RD, Blevins LK, Alexander-Miller MA. In vivo modulation of avidity in highly sensitive CD8(+) effector T cells following viral infection. Viral Immunol 2013; 26:302-13. [PMID: 23971914 DOI: 10.1089/vim.2013.0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Numerous studies have demonstrated a critical role for T cell avidity in predicting in vivo efficacy. Even though the measurement of avidity is now a routine assessment for the analysis of effector and memory T cell populations, our understanding of how this property is controlled in vivo at both the population and individual cell levels is limited. Our previous studies have identified high avidity as a property of the initial effector population generated in mice following respiratory virus infection. As the response progresses, lower avidity cells appear in the effector pool. The studies described here investigate the mechanistic basis of this in vivo regulation of avidity. We present data supporting in vivo avidity modulation within the early high avidity responders that results in a population of lower avidity effector cells. Changes in avidity were correlated with decreased lck expression and increased sensitivity to lck inhibitors in effector cells present at late versus early times postinfection. The possibility of tuning within select individual effectors is a previously unappreciated mechanism for the control of avidity in vivo.
Collapse
Affiliation(s)
- Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | | | | | | |
Collapse
|
23
|
Repetto D, Aramu S, Boeri Erba E, Sharma N, Grasso S, Russo I, Jensen ON, Cabodi S, Turco E, Di Stefano P, Defilippi P. Mapping of p140Cap phosphorylation sites: the EPLYA and EGLYA motifs have a key role in tyrosine phosphorylation and Csk binding, and are substrates of the Abl kinase. PLoS One 2013; 8:e54931. [PMID: 23383002 PMCID: PMC3561454 DOI: 10.1371/journal.pone.0054931] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 12/17/2012] [Indexed: 12/11/2022] Open
Abstract
Protein phosphorylation tightly regulates specific binding of effector proteins that control many diverse biological functions of cells (e. g. signaling, migration and proliferation). p140Cap is an adaptor protein, specifically expressed in brain, testis and epithelial cells, that undergoes phosphorylation and tunes its interactions with other regulatory molecules via post-translation modification. In this work, using mass spectrometry, we found that p140Cap is in vivo phosphorylated on tyrosine (Y) within the peptide GEGLpYADPYGLLHEGR (from now on referred to as EGLYA) as well as on three serine residues. Consistently, EGLYA has the highest score of in silico prediction of p140Cap phosphorylation. To further investigate the p140Cap function, we performed site specific mutagenesis on tyrosines inserted in EGLYA and EPLYA, a second sequence with the same highest score of phosphorylation. The mutant protein, in which both EPLYA/EGLYA tyrosines were converted to phenylalanine, was no longer tyrosine phosphorylated, despite the presence of other tyrosine residues in p140Cap sequence. Moreover, this mutant lost its ability to bind the C-terminal Src kinase (Csk), previously shown to interact with p140Cap by Far Western analysis. In addition, we found that in vitro and in HEK-293 cells, the Abelson kinase is the major kinase involved in p140Cap tyrosine phosphorylation on the EPLYA and EGLYA sequences. Overall, these data represent an original attempt to in vivo characterise phosphorylated residues of p140Cap. Elucidating the function of p140Cap will provide novel insights into its biological activity not only in normal cells, but also in tumors.
Collapse
Affiliation(s)
- Daniele Repetto
- Department of Molecular Biotechnology and Health Sciences, Università degli Studi di Torino, Torino, Italy
| | - Simona Aramu
- Department of Molecular Biotechnology and Health Sciences, Università degli Studi di Torino, Torino, Italy
| | | | - Nanaocha Sharma
- Department of Molecular Biotechnology and Health Sciences, Università degli Studi di Torino, Torino, Italy
| | - Silvia Grasso
- Department of Molecular Biotechnology and Health Sciences, Università degli Studi di Torino, Torino, Italy
| | - Isabella Russo
- Department of Molecular Biotechnology and Health Sciences, Università degli Studi di Torino, Torino, Italy
| | - Ole N. Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Sara Cabodi
- Department of Molecular Biotechnology and Health Sciences, Università degli Studi di Torino, Torino, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, Università degli Studi di Torino, Torino, Italy
| | - Paola Di Stefano
- Department of Molecular Biotechnology and Health Sciences, Università degli Studi di Torino, Torino, Italy
- * E-mail: (PD); (PDS)
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, Università degli Studi di Torino, Torino, Italy
- * E-mail: (PD); (PDS)
| |
Collapse
|
24
|
Filipp D, Ballek O, Manning J. Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement. Front Immunol 2012; 3:155. [PMID: 22701458 PMCID: PMC3372939 DOI: 10.3389/fimmu.2012.00155] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/25/2012] [Indexed: 11/21/2022] Open
Abstract
In spite of a comprehensive understanding of the schematics of T cell receptor (TCR) signaling, the mechanisms regulating compartmentalization of signaling molecules, their transient interactions, and rearrangement of membrane structures initiated upon TCR engagement remain an outstanding problem. These gaps in our knowledge are exemplified by recent data demonstrating that TCR triggering is largely dependent on a preactivated pool of Lck concentrated in T cells in a specific type of membrane microdomains. Our current model posits that in resting T cells all critical components of TCR triggering machinery including TCR/CD3, Lck, Fyn, CD45, PAG, and LAT are associated with distinct types of lipid-based microdomains which represent the smallest structural and functional units of membrane confinement able to negatively control enzymatic activities and substrate availability that is required for the initiation of TCR signaling. In addition, the microdomains based segregation spatially limits the interaction of components of TCR triggering machinery prior to the onset of TCR signaling and allows their rapid communication and signal amplification after TCR engagement, via the process of their coalescence. Microdomains mediated compartmentalization thus represents an essential membrane organizing principle in resting T cells. The integration of these structural and functional aspects of signaling into a unified model of TCR triggering will require a deeper understanding of membrane biology, novel interdisciplinary approaches and the generation of specific reagents. We believe that the fully integrated model of TCR signaling must be based on membrane structural network which provides a proper environment for regulatory processes controlling TCR triggering.
Collapse
Affiliation(s)
- Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR Prague, Czech Republic
| | | | | |
Collapse
|
25
|
Ballek O, Broučková A, Manning J, Filipp D. A specific type of membrane microdomains is involved in the maintenance and translocation of kinase active Lck to lipid rafts. Immunol Lett 2012; 142:64-74. [PMID: 22281390 DOI: 10.1016/j.imlet.2012.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 01/10/2012] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
Abstract
Lck is the principal signal-generating tyrosine kinase of the T cell activation mechanism. We have previously demonstrated that induced Lck activation outside of lipid rafts (LR) results in the rapid translocation of a fraction of Lck to LR. While this translocation predicates the subsequent production of IL-2, the mechanism underpinning this process is unknown. Here, we describe the main attributes of this translocating pool of Lck. Using fractionation of Brij58 lysates, derived from primary naive non-activated CD4(+) T cells, we show that a significant portion of Lck is associated with high molecular weight complexes representing a special type of detergent-resistant membranes (DRMs) of relatively high density and sensitivity to laurylmaltoside, thus called heavy DRMs. TcR/CD4 coaggregation-mediated activation resulted in the redistribution of more than 50% of heavy DRM-associated Lck to LR in a microtubular network-dependent fashion. Remarkably, in non-activated CD4(+) T-cells, only heavy DRM-associated Lck is phosphorylated on its activatory tyrosine 394 and this pool of Lck is found to be membrane confined with CD45 phosphatase. These data are the first to illustrate a lipid microdomain-based mechanism concentrating the preactivated pool of cellular Lck and supporting its high stoichiometry of colocalization with CD45 in CD4(+) T cells. They also provide a new structural framework to assess the mechanism underpinning the compartmentalization of critical signaling elements and regulation of spatio-temporal delivery of Lck function during the T cell proximal signaling.
Collapse
Affiliation(s)
- Ondřej Ballek
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR, Prague, Czech Republic
| | | | | | | |
Collapse
|
26
|
Shahaf G, Gross AJ, Sternberg-Simon M, Kaplan D, DeFranco AL, Mehr R. Lyn deficiency affects B-cell maturation as well as survival. Eur J Immunol 2011; 42:511-21. [PMID: 22057631 DOI: 10.1002/eji.201141940] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 01/02/2023]
Abstract
Lyn, an Src-family protein tyrosine kinase expressed in B lymphocytes, contributes to initiation of BCR signaling and is also responsible for feedback inhibition of BCR signaling. Lyn-deficient mice have a decreased number of follicular B cells and also spontaneously develop a lupus-like autoimmunity. We used flow cytometric analysis, BrdU labeling and our mathematical models of B-cell population dynamics, to analyze how Lyn deficiency impacts B-cell maturation and survival. We found that Lyn-deficient transitional 1 (T1) cells develop normally, but T2 cells develop primarily from the T1 subset in the spleen and fail to also develop directly from BM immature B cells. Lyn-deficient T2 cells either mature to the follicular B-cell type at a close to normal rate, or die in this compartment rather than access the T3 anergic subset. The ≈ 40% of WT follicular cells that were short-lived exited primarily by joining the T3 anergic subset, whereas the ≈ 15% Lyn(-/-) follicular cells that were not long lived had a high death rate and died in this compartment rather than entering the T3 subset. We hypothesize that exaggerated BCR signaling resulting from weak interactions with self-antigens is largely responsible for these alterations in Lyn-deficient B cells.
Collapse
Affiliation(s)
- Gitit Shahaf
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | |
Collapse
|
27
|
Guan X, Fierke CA. Understanding Protein Palmitoylation: Biological Significance and Enzymology. Sci China Chem 2011; 54:1888-1897. [PMID: 25419213 DOI: 10.1007/s11426-011-4428-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein palmitoylation is a widespread lipid modification in which one or more cysteine thiols on a substrate protein are modified to form a thioester with a palmitoyl group. This lipid modification is readily reversible; a feature of protein palmitoylation that allows for rapid regulation of the function of many cellular proteins. Mutations in palmitoyltransferases (PATs), the enzymes that catalyze the formation of this modification, are associated with a number of neurological diseases and cancer progression. This review summarizes the crucial role of palmitoylation in biological systems, the discovery of the DHHC protein family that catalyzes protein palmitoylation, and the development of methods for investigating the catalytic mechanism of PATs.
Collapse
Affiliation(s)
- Xiaomu Guan
- Departments of Chemistry and Biological Chemistry, University of Michigan, 930 N University, Ann Arbor, MI 48109-1055, USA
| | - Carol A Fierke
- Departments of Chemistry and Biological Chemistry, University of Michigan, 930 N University, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
28
|
Sharma SK, Alexander-Miller MA. Increased sensitivity to antigen in high avidity CD8(+) T cells results from augmented membrane proximal T-cell receptor signal transduction. Immunology 2011; 133:307-17. [PMID: 21501160 DOI: 10.1111/j.1365-2567.2011.03440.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The functional avidity of a cytotoxic T lymphocyte (CTL) is known to be a critical determinant of the efficacy with which it clears pathogens. High avidity cells, which are by definition highly sensitive to peptide antigen, are superior for elimination of viruses and tumours. Our studies have established the ability of T cells to undergo avidity modulation as a result of antigen encounter. High and low avidity cells established in this manner exhibit significant differences in the amount of peptide required to elicit effector function. However, how signalling is regulated in these cells as it relates to the control of peptide sensitivity remains to be defined. To address this question, we compared T-cell receptor (TCR) signal transduction events in high and low avidity CTL generated from OT-I(rag2-) TCR transgenic mice. Our data suggest that divergent signalling is initiated at the TCR-associated CD3ζ, with low avidity CTL requiring higher amounts of pMHC to achieve threshold levels of phosphorylated CD3ζ compared with high avidity CTL. Further, this difference is transduced further downstream to mitogen-activated protein kinase and Ca(2+) signalling pathways. These results suggest that regulated control of the initiation of TCR signalling in high versus low avidity cells determines the amount of peptide required for T-cell activation.
Collapse
Affiliation(s)
- Sharad K Sharma
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
29
|
Chavez A, Smith M, Mehta D. New Insights into the Regulation of Vascular Permeability. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:205-48. [DOI: 10.1016/b978-0-12-386037-8.00001-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Cabodi S, del Pilar Camacho-Leal M, Di Stefano P, Defilippi P. Integrin signalling adaptors: not only figurants in the cancer story. Nat Rev Cancer 2010; 10:858-70. [PMID: 21102636 DOI: 10.1038/nrc2967] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Current evidence highlights the ability of adaptor (or scaffold) proteins to create signalling platforms that drive cellular transformation upon integrin-dependent adhesion and growth factor receptor activation. The understanding of the biological effects that are regulated by these adaptors in tumours might be crucial for the identification of new targets and the development of innovative therapeutic strategies for human cancer. In this Review we discuss the relevance of adaptor proteins in signalling that originates from integrin-mediated cell-extracellular matrix (ECM) adhesion and growth factor stimulation in the context of cell transformation and tumour progression. We specifically underline the contribution of p130 Crk-associated substrate (p130CAS; also known as BCAR1), neural precursor cell expressed, developmentally down-regulated 9 (NEDD9; also known as HEF1), CRK and the integrin-linked kinase (ILK)-pinch-parvin (IPP) complex to cancer, along with the more recently identified p140 Cas-associated protein (p140CAP; also known as SRCIN1).
Collapse
Affiliation(s)
- Sara Cabodi
- Molecular Biotechnology Centre and Department of Genetics, Biology and Biochemistry, University of Torino, Via Nizza 52, Torino 10126, Italy
| | | | | | | |
Collapse
|
31
|
Picmonova V, Berger J. Genistein effects on haematoimmune cells in a newly developed alternative toxicological model. ACTA ACUST UNITED AC 2010; 64:411-5. [PMID: 21095109 DOI: 10.1016/j.etp.2010.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/24/2010] [Accepted: 10/06/2010] [Indexed: 11/27/2022]
Abstract
Unexpected, sometimes opposite effects of dietary isoflavonic phytoestrogens on immunity may suggest that classical mammalian toxicological assays are not entirely suitable for preclinical safety tests of these compounds. We evaluated a new alternative model of haemocytes of Egyptian cotton worm in vivo following genistein administration. Genistein induced significant changes in nucleolar morphology of haemocytes but did not influence their counts and nucleolar indices. The results indicate that genistein does not affect proliferation and differentiation of normal cells but potentiates their immuno-competence. Egyptian cotton worm larvae seem to be the new alternative biomodel for immunological screening.
Collapse
Affiliation(s)
- Veronika Picmonova
- Department of Clinical Studies, University of South Bohemia, Emy Destinove, 37005 Ceske Budejovice, Czech Republic
| | | |
Collapse
|
32
|
Identification of BCAR-1 as a new substrate of Syk tyrosine kinase through a determination of amino acid sequence preferences surrounding the substrate tyrosine residue. Immunol Lett 2010; 135:151-7. [PMID: 21047529 DOI: 10.1016/j.imlet.2010.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/06/2010] [Accepted: 10/23/2010] [Indexed: 12/27/2022]
Abstract
Syk, a non-receptor tyrosine kinase, is an essential signaling molecule in B cells and other hematopoietic cells. Recently, its unexpected diverse functions were recognized in the regulation of cellular adhesion, innate immune recognition, vascular development, and carcinogenesis. Despite its pleiotropic role, only a few substrate proteins have been identified. To find new substrate proteins for Syk, we performed a systemic in vitro kinase assay using GST fusion peptides to determine the substrate specificity surrounding the tyrosine residue to be phosphorylated. Substitution of amino acid residues surrounding tyrosine 178 of BLNK, a principal Syk substrate in B cell receptor-mediated signaling, revealed that acidic residues at sites -5 to -1 were necessary for phosphorylation by Syk. Valine at site +1 was also influential in phosphorylation and a substitution of Pro on site +3 to a basic amino acid residue, Lys, resulted in attenuated phosphorylation. On the basis of these results, a general consensus phosphorylation motif for Syk was determined and several new candidate target proteins were identified in protein database searches. Of the candidate proteins, BCAR-1 (breast cancer anti-estrogen resistance 1) was confirmed to be phosphorylated by Syk in an in vitro kinase assay using a full-length protein of BCAR-1. Furthermore, BCAR-1 was tyrosine phosphorylated upon the overexpression of Syk in HEK-293T cells. These results suggest that more Syk substrates can be found using an in vitro kinase approach and show for the first time that BCAR-1 is a physiological substrate of Syk.
Collapse
|
33
|
Harr MW, Distelhorst CW. Apoptosis and autophagy: decoding calcium signals that mediate life or death. Cold Spring Harb Perspect Biol 2010; 2:a005579. [PMID: 20826549 DOI: 10.1101/cshperspect.a005579] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Calcium is a versatile and dynamic 2nd messenger that is essential for the survival of all higher organisms. In cells that undergo activation or excitation, calcium is released from the endoplasmic/sarcoplasmic reticulum to activate calcium-dependent kinases and phosphatases, thereby regulating numerous cellular processes; for example, apoptosis and autophagy. In the case of apoptosis, endogenous ligands or pharmacological agents induce prolonged cytosolic calcium elevation, which in turn leads to cell death. In contrast, there is now evidence that calcium regulates autophagy by several mechanisms, and these may be important for maintaining cell survival. Here we summarize what is known about how calcium regulates these life and death decisions. We pay particular attention to pathways that have been described in lymphocytes and cardiomyocytes, as these systems provide optimal models for understanding calcium signaling in the context of normal cell physiology.
Collapse
Affiliation(s)
- Michael W Harr
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
34
|
Grb2 functions at the top of the T-cell antigen receptor-induced tyrosine kinase cascade to control thymic selection. Proc Natl Acad Sci U S A 2010; 107:10620-5. [PMID: 20498059 DOI: 10.1073/pnas.0905039107] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Grb2 is an adaptor molecule that mediates Ras-MAPK activation induced by various receptors. Here we show that conditional ablation of Grb2 in thymocytes severely impairs both thymic positive and negative selections. Strikingly, the mutation attenuates T-cell antigen receptor (TCR) proximal signaling, including tyrosine phosphorylation of multiple signaling proteins and Ca(2+) influx. The defective TCR signaling can be attributed to a marked impairment in Lck activation. Ectopic expression of a mutant Grb2 composed of the central SH2 and the C-terminal SH3 domains in Grb2(-/-) thymocytes fully restores thymocyte development. Thus, Grb2 plays a pivotal role in both thymic positive and negative selection. It amplifies TCR signaling at the top end of the tyrosine phosphorylation cascade via a scaffolding function.
Collapse
|
35
|
Spatiotemporal control of cyclic AMP immunomodulation through the PKA-Csk inhibitory pathway is achieved by anchoring to an Ezrin-EBP50-PAG scaffold in effector T cells. FEBS Lett 2010; 584:2681-8. [PMID: 20420835 DOI: 10.1016/j.febslet.2010.04.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 04/16/2010] [Accepted: 04/20/2010] [Indexed: 11/23/2022]
Abstract
A variety of immunoregulatory signals to effector T cells from monocytes, macrophages and regulatory T cells act through cyclic adenosine monophosphate. In the effector T cell, the protein kinase A (PKA) type I isoenzyme localizes to lipid rafts during T cell activation and modulates directly the proximal events that take place after engagement of the T cell receptor. The most proximal target for PKA phosphorylation is C-terminal Src kinase (Csk), which initiates a negative signal pathway that fine-tunes the T cell activation process. The A kinase anchoring protein Ezrin colocalizes PKA and Csk by forming a supramolecular signaling complex consisting of PKA, Ezrin, Ezrin/radixin/moesin (ERM) binding protein of 50 kDa (EBP50), phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (GEMs) (PAG) and Csk.
Collapse
|
36
|
Regulation of developmental lymphangiogenesis by Syk(+) leukocytes. Dev Cell 2010; 18:437-49. [PMID: 20230750 DOI: 10.1016/j.devcel.2010.01.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Revised: 11/17/2009] [Accepted: 01/04/2010] [Indexed: 11/20/2022]
Abstract
Lymphatic vessels are essential for tissue homeostasis and immune surveillance and contribute to pathological conditions. Lymphatic endothelium differentiates from veins and forms an independent vascular tree with only few connections to the venous circulation. Failure of blood and lymphatic vessel separation results in hemorrhage and edema. VEGF-C and -D are strong inducers of lymphangiogenesis and have essential (VEGF-C) and modulatory (VEGF-D) roles during developmental lymphangiogenesis. We describe here a myeloid population that is defined by expression of the tyrosine kinase Syk, comprises largely M2-polarized mononuclear cells, and robustly expresses angiogenic factors, including VEGF-C/-D and chemokines. These cells stimulate lymphangiogenesis in vivo. Deletion of Syk causes increased chemotractant production, enhanced transmigration, and accumulation in the skin. Ensuing lymphatic hyperplasia and vessel dilation cause the formation of blood-lymphatic shunts. This mechanism does not involve circulating endothelial progenitor cells and demonstrates the potential of hematopoietic cells to control developmental lymphangiogenesis.
Collapse
|
37
|
Abstract
BACKGROUND The non-receptor spleen tyrosine kinase (Syk; EC 2.7.10.2) is involved in signal transduction in a variety of cell types. In particular, it is a key mediator of immune receptors signaling in host inflammatory cells (B cells, mast cells, macrophages and neutrophils), important for both allergic and antibody-mediated autoimmune diseases. Deregulated Syk kinase activity also allows growth factor-independent proliferation and transforms bone marrow-derived pre-B cells that are able to induce leukemia. Consequently, the development of Syk kinase inhibitors could conceivably treat these disorders and so they have became a major focus in the pharmaceutical and biotech industry. OBJECTIVE In this review, we analyze the structure and role of Syk kinase, the use of small molecules, interacting with ATP-binding site, as inhibitors of kinase activity and finally the potential of using inhibitors of Syk kinase expression to attenuate pathological conditions. CONCLUSION Syk kinase inhibition is suggested as a powerful tool for the therapy of different pathologies.
Collapse
Affiliation(s)
- Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR, Padova Unit, c/o Dept. Chemical Sciences, University of Padova, via Marzolo 1, Padua, Italy.
| | | | | |
Collapse
|
38
|
Tremblay CS, Hoang T, Hoang T. Early T cell differentiation lessons from T-cell acute lymphoblastic leukemia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:121-56. [PMID: 20800819 DOI: 10.1016/s1877-1173(10)92006-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T cells develop from bone marrow-derived self-renewing hematopoietic stem cells (HSC). Upon entering the thymus, these cells undergo progressive commitment and differentiation driven by the thymic stroma and the pre-T cell receptor (pre-TCR). These processes are disrupted in T-cell acute lymphoblastic leukemia (T-ALL). More than 70% of recurring chromosomal rearrangements in T-ALL activate the expression of oncogenic transcription factors, belonging mostly to three families, basic helix-loop-helix (bHLH), homeobox (HOX), and c-MYB. This prevalence is indicative of their importance in the T lineage, and their dominant mechanisms of transformation. For example, bHLH oncoproteins inhibit E2A and HEB, revealing their tumor suppressor function in the thymus. The induction of T-ALL, nonetheless, requires collaboration with constitutive NOTCH1 signaling and the pre-TCR, as well as loss-of-function mutations for CDKN2A and PTEN. Significantly, NOTCH1, the pre-TCR pathway, and E2A/HEB proteins control critical checkpoints and branchpoints in early thymocyte development whereas several oncogenic transcription factors, HOXA9, c-MYB, SCL, and LYL-1 control HSC self-renewal. Together, these genetic lesions alter key regulatory processes in the cell, favoring self-renewal and subvert the normal control of thymocyte homeostasis.
Collapse
Affiliation(s)
- Cédric S Tremblay
- Institute of Research in Immunology and Cancer, University of Montreal, Montréal, Québec, Canada
| | | | | |
Collapse
|
39
|
Luo Y, Pollard JW, Casadevall A. Fcgamma receptor cross-linking stimulates cell proliferation of macrophages via the ERK pathway. J Biol Chem 2009; 285:4232-4242. [PMID: 19996316 DOI: 10.1074/jbc.m109.037168] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Macrophage proliferation can be stimulated by phagocytosis and by cross-linking of Fcgamma receptors (FcgammaR). In this study, we investigated the role of FcgammaR and the signaling cascades that link FcgammaR activation to cell cycle progression. This effect was mediated by the activating FcgammaR, including FcgammaRI and III, via their Fcgamma subunit. Further investigation revealed that the cell cycle machinery was activated by FcgammaR cross-linking through downstream signaling events. Specifically, we identified the extracellular signal-regulated kinase (ERK) signaling pathway as a mediator of signals from FcgammaR activation to cyclin D1 expression, because cyclin D1 expression associated with FcgammaR cross-linking was attenuated by specific inhibitors of the ERK1/2 signaling pathway, PD98059 and U0126 and the spleen tyrosine kinase (Syk) inhibitor, Piceatannol. Our findings establish a link between the ERK activation and cell cycle signaling pathways, thus providing a causal mechanism by which FcgammaR activation produces a mitogenic effect that stimulates macrophage proliferation. Macrophage mitosis following FcgammaR activation could potentially affect the outcome of macrophage interactions with intracellular pathogens. In addition, our results suggest the possibility of new treatment options for certain infectious diseases, chronic inflammatory diseases, and leukemias based on interference with FcgammaR-stimulated macrophage cell proliferation.
Collapse
Affiliation(s)
- Yong Luo
- From the Departments of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jeffrey W Pollard
- Departments of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461; Departments of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Arturo Casadevall
- From the Departments of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461; Departments of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461.
| |
Collapse
|
40
|
Ennaciri J, Girard D. IL-4Rα, a New Member that Associates with Syk Kinase: Implication in IL-4-Induced Human Neutrophil Functions. THE JOURNAL OF IMMUNOLOGY 2009; 183:5261-9. [DOI: 10.4049/jimmunol.0900109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Harr MW, Rong Y, Bootman MD, Roderick HL, Distelhorst CW. Glucocorticoid-mediated inhibition of Lck modulates the pattern of T cell receptor-induced calcium signals by down-regulating inositol 1,4,5-trisphosphate receptors. J Biol Chem 2009; 284:31860-71. [PMID: 19776014 DOI: 10.1074/jbc.m109.005579] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Glucocorticoids are potent immunosuppressive agents that block upstream signaling events required for T cell receptor (TCR) activation. However, the mechanism by which glucocorticoids inhibit downstream responses, such as inositol 1,4,5-trisphosphate (IP(3))-induced calcium signals, is not completely understood. Here we demonstrate that low concentrations of dexamethasone rapidly convert transient calcium elevations to oscillations after strong TCR stimulation. Dexamethasone converted the pattern of calcium signaling by inhibiting the Src family kinase Lck, which was shown to interact with and positively regulate Type I IP(3) receptor. In addition, low concentrations of dexamethasone were sufficient to inhibit calcium oscillations and interleukin-2 mRNA after weak TCR stimulation. Together, these findings indicate that by inhibiting Lck and subsequently down-regulating IP(3) receptors, glucocorticoids suppress immune responses by weakening the strength of the TCR signal.
Collapse
Affiliation(s)
- Michael W Harr
- Division of Hematology and Oncology, Department of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
42
|
Carpino N, Chen Y, Nassar N, Oh HW. The Sts proteins target tyrosine phosphorylated, ubiquitinated proteins within TCR signaling pathways. Mol Immunol 2009; 46:3224-31. [PMID: 19733910 DOI: 10.1016/j.molimm.2009.08.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 10/20/2022]
Abstract
The T cell receptor (TCR) detects the presence of infectious pathogens and activates numerous intracellular signaling pathways. Protein tyrosine phosphorylation and ubiquitination serve as key regulatory mechanisms downstream of the TCR. Negative regulation of TCR signaling pathways is important in controlling the immune response, and the Suppressor of TCR Signaling proteins (Sts-1 and Sts-2) have been shown to function as critical negative regulators of TCR signaling. Although their mechanism of action has yet to be fully uncovered, it is known that the Sts proteins possess intrinsic phosphatase activity. Here, we demonstrate that Sts-1 and Sts-2 are instrumental in down-modulating proteins that are dually modified by both protein tyrosine phosphorylation and ubiquitination. Specifically, both naïve and activated T cells derived from genetically engineered mice that lack the Sts proteins display strikingly elevated levels of tyrosine phosphorylated, ubiquitinated proteins following TCR stimulation. The accumulation of the dually modified proteins is transient, and in activated T cells but not naïve T cells is significantly enhanced by co-receptor engagement. Our observations hint at a novel regulatory mechanism downstream of the T cell receptor.
Collapse
Affiliation(s)
- Nick Carpino
- Department of Molecular Genetics and Microbiology, Room 130, Life Sciences Building, Stony Brook University, Stony Brook, NY 11794-5222, USA.
| | | | | | | |
Collapse
|
43
|
Schroers R, Pukrop T, Dürig J, Haase D, Dührsen U, Trümper L, Griesinger F. B-cell Chronic Lymphocytic Leukemia with Aberrant CD8 Expression: Genetic and Immunophenotypic Analysis of Prognostic Factors. Leuk Lymphoma 2009; 45:1677-81. [PMID: 15370224 DOI: 10.1080/10428190410001683697] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is phenotypically characterized by cell surface co-expression of CD19, CD20, CD5, and CD23. However, the concomitant presence of other antigens distinctive of a particular leukocyte subset, e.g. T cells, is an unusual finding in B-CLL. In the present report, a case of B-CLL with aberrant expression of the T-cell-associated antigen CD8 is described. Flow cytometric analysis of the patient's cells demonstrated lack of CD38 expression, and cytogenetic analysis by FISH did not show any abnormalities of chromosomes 17p, 11q, and 12. Furthermore, the B-CLL cells expressed only low levels of the tyrosine kinase ZAP-70, which was in agreement with the mutated status of the immunoglobulin heavy-chain variable-region gene (IgVH). In summary, the determined profile of prognostic markers together with the highly stable and indolent disease in the described patient suggest a good prognosis of B-CLL with aberrant CD8 expression.
Collapse
MESH Headings
- Aged
- Biomarkers, Tumor/metabolism
- CD8 Antigens/metabolism
- Chromosome Aberrations
- Flow Cytometry
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Immunophenotyping
- In Situ Hybridization, Fluorescence
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Prognosis
- Protein-Tyrosine Kinases/analysis
- Protein-Tyrosine Kinases/genetics
- ZAP-70 Protein-Tyrosine Kinase
Collapse
Affiliation(s)
- Roland Schroers
- Department of Hematology and Oncology, Georg-August-University Goettingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
44
|
The tyrosine kinase Syk regulates the survival of chronic lymphocytic leukemia B cells through PKCdelta and proteasome-dependent regulation of Mcl-1 expression. Oncogene 2009; 28:3261-73. [PMID: 19581935 DOI: 10.1038/onc.2009.179] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is characterized by accumulation of mature monoclonal CD5+ B cells. The disease results mainly from a failure of cells to undergo apoptosis, a process largely influenced by the existence of constitutively activated components of B-cell receptor signaling and the deregulated expression of anti-apoptotic molecules. Recent evidence pointing to a critical role of spleen tyrosine kinase (Syk) in ligand-independent BCR signaling prompted us to examine its role in primary B-CLL cell survival. We demonstrate that pharmacological inhibition of constitutive Syk activity and silencing by siRNA led to a dramatic decrease of cell viability in CLL samples (n=44), regardless of clinical and biological status and induced typical apoptotic cell death with mitochondrial failure followed by caspase 3-dependent cell death. We also provide functional and biochemical evidence that Syk regulated B-CLL cell survival through a novel pathway involving PKCdelta and a proteasome-dependent regulation of the anti-apoptotic protein Mcl-1. Together, our observations are consistent with a model wherein PKCdelta downstream of Syk stabilizes Mcl-1 through inhibitory phosphorylation of GSK3 by Akt. We conclude that Syk constitutes a key regulator of B-CLL cell survival, emphasizing the clinical utility of Syk inhibition in hematopoietic malignancies.
Collapse
|
45
|
Raué HP, Slifka MK. CD8+ T cell immunodominance shifts during the early stages of acute LCMV infection independently from functional avidity maturation. Virology 2009; 390:197-204. [PMID: 19539966 DOI: 10.1016/j.virol.2009.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 05/14/2009] [Accepted: 05/16/2009] [Indexed: 02/01/2023]
Abstract
Virus-specific T cell responses are often directed to a small subset of possible epitopes and their relative magnitude defines their hierarchy. We determined the size and functional avidity of 4 representative peptide-specific CD8(+) T cell populations in C57BL/6 mice at different time points after lymphocytic choriomeningitis virus (LCMV) infection. We found that the frequency of different peptide-specific T cell populations in the spleen changed independently over the first 8 days after infection. These changes were not associated with a larger or more rapid increase in functional avidity and yet still resulted in a shift in the final immunodominance hierarchy. Thus, the immunodominance observed at the peak of an antiviral T cell response is not necessarily determined by the initial size or rate of functional avidity maturation of peptide-specific T cell populations.
Collapse
Affiliation(s)
- Hans-Peter Raué
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | |
Collapse
|
46
|
Arias-Palomo E, Recuero-Checa MA, Bustelo XR, Llorca O. Conformational rearrangements upon Syk auto-phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1211-7. [PMID: 19409513 DOI: 10.1016/j.bbapap.2009.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 04/14/2009] [Accepted: 04/22/2009] [Indexed: 11/16/2022]
Abstract
Syk is a cytoplasmic tyrosine kinase that is activated after recruitment to immune receptors, triggering the phopshorylation of downstream targets. The kinase activity of Syk is controlled by an auto-inhibited conformation consisting of a regulatory region that contains two N-terminal Src homology 2 (SH2) domains inhibiting the catalytic activity of the kinase domain located at the C-terminus. The atomic structure of the related Zap-70 kinase and an electron microscopy (EM) model of Syk have revealed the structural mechanism of this auto-inhibition based on the formation of a compact conformation sustained by interactions between the regulatory and catalytic domains. On the other hand, the structural basis of Syk activation is not fully understood due to the lack of a 3D structure of full-length Syk in an active conformation. Here, we have used single-particle electron microscopy to analyse the conformational changes taking place in an activated form of Syk induced by auto-phosphorylation. The conformation of phosphorylated Syk is reminiscent of the compact structure of the inhibited protein but significant conformational changes are observed in the regulatory region. These rearrangements could be sufficient to disrupt the inhibitory interactions, contributing to Syk activation. These results suggest that the regulation of the activation of Syk might be modulated by subtle changes in the positioning of the regulatory domains rather than a full opening mechanism as proposed for the Src kinases.
Collapse
Affiliation(s)
- Ernesto Arias-Palomo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu, Madrid, Spain
| | | | | | | |
Collapse
|
47
|
Park I, Yun Y. Transmembrane adaptor proteins positively regulating the activation of lymphocytes. Immune Netw 2009; 9:53-7. [PMID: 20107544 PMCID: PMC2803307 DOI: 10.4110/in.2009.9.2.53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 04/03/2009] [Indexed: 12/25/2022] Open
Abstract
Engagement of the immunoreceptors initiates signaling cascades resulting in lymphocyte activation and differentiation to effector cells, which are essential for the elimination of pathogens from the body. For the transduction of these immunoreceptor-mediated signals, several linker proteins termed transmembrane adaptor proteins (TRAPs) were shown to be required. TRAPs serve as platforms for the assembly and membrane targeting of the specific signaling proteins. Among seven TRAPs identified so far, LAT and LIME were shown to act as a positive regulator in TCR-mediated signaling pathways. In this review, we will discuss the functions of LAT and LIME in modulating T cell development, activation and differentiation.
Collapse
Affiliation(s)
- Inyoung Park
- Department of Life Science, Ewha Womans' University, Seoul 120-750, Korea
| | | |
Collapse
|
48
|
Scapini P, Pereira S, Zhang H, Lowell CA. Multiple roles of Lyn kinase in myeloid cell signaling and function. Immunol Rev 2009; 228:23-40. [PMID: 19290919 DOI: 10.1111/j.1600-065x.2008.00758.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lyn is an Src family kinase present in B lymphocytes and myeloid cells. In these cell types, Lyn establishes signaling thresholds by acting as both a positive and a negative modulator of a variety of signaling responses and effector functions. Lyn deficiency in mice results in the development of myeloproliferation and autoimmunity. The latter has been attributed to the hyper-reactivity of Lyn-deficient B cells due to the unique role of Lyn in downmodulating B-cell receptor activation, mainly through phosphorylation of inhibitory molecules and receptors. Myeloproliferation results, on the other hand, from the enhanced sensitivity of Lyn-deficient progenitors to a number of colony-stimulating factors (CSFs). The hyper-sensitivity to myeloid growth factors may also be secondary to poor inhibitory receptor phosphorylation, leading to impaired recruitment/activation of tyrosine phosphatases and reduced downmodulation of CSF signaling responses. Despite these observations, the overall role of Lyn in the modulation of myeloid cell effector functions is much less well understood, as often both positive and negative roles of this kinase have been reported. In this review, we discuss the current knowledge of the duplicitous nature of Lyn in the modulation of myeloid cell signaling and function.
Collapse
Affiliation(s)
- Patrizia Scapini
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0451, USA
| | | | | | | |
Collapse
|
49
|
Viperin is required for optimal Th2 responses and T-cell receptor–mediated activation of NF-κB and AP-1. Blood 2009; 113:3520-9. [DOI: 10.1182/blood-2008-07-171942] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Viperin (virus inhibitory protein, endoplasmic reticulum [ER]–associated, interferon-inducible) has been identified as a highly inducible ER protein that has antiviral activity. Here, we characterized the phenotype of mice deficient in viperin and examined the biological function of viperin in peripheral T-cell activation and differentiation. Splenic CD4+ T cells deficient in viperin exhibited normal anti–T-cell receptor (TCR)–induced proliferation and IL-2 production, but produced significantly less T helper 2 (Th2) cytokines, including IL-4, IL-5, and IL-13, in association with impaired GATA3 activation, after stimulation with anti-CD3 antibody, which was not restored upon costimulation with anti-CD28. Th2 differentiation of viperin-deficient naive T cells was also impaired in the presence of strong TCR signaling and minimum IL-4, but not under optimal Th2-skewed conditions. In parallel, viperin-deficient T cells showed decreases in NF-κB1/p50 and AP-1/JunB DNA binding activities after TCR engagement. Thus, viperin facilitates TCR-mediated GATA-3 activation and optimal Th2 cytokine production by modulating NF-κB and AP-1 activities.
Collapse
|
50
|
Wälchli S, Aasheim HC, Skånland SS, Spilsberg B, Torgersen ML, Rosendal KR, Sandvig K. Characterization of clathrin and Syk interaction upon Shiga toxin binding. Cell Signal 2009; 21:1161-8. [PMID: 19289168 DOI: 10.1016/j.cellsig.2009.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 03/05/2009] [Indexed: 11/19/2022]
Abstract
Shiga toxin (Stx) is a bacterial toxin that binds to its receptor Gb3 at the plasma membrane. It is taken up by endocytosis and transported retrogradely via the Golgi apparatus to the endoplasmic reticulum. The toxin is then translocated to the cytosol where it exerts its toxic effect. We have previously shown that phosphorylation of clathrin heavy chain (CHC) is an early event following Stx binding to HeLa cells, and that this requires the activity of the tyrosine kinase Syk. Here, we have investigated this event in more detail in the B lymphoid cell line Ramos, which expresses high endogenous levels of both Syk and Gb3. We report that efficient endocytosis of Stx in Ramos cells requires Syk activity and that Syk is recruited to the uptake site of Stx. Furthermore, in response to Stx treatment, CHC and Syk were rapidly phosphorylated in a Src family kinase dependent manner at Y1477 and Y352, respectively. We show that these phosphorylated residues act as binding sites for the direct interaction between Syk and CHC. Interestingly, Syk-CHC complex formation could be induced by both Stx and B cell receptor stimulation.
Collapse
Affiliation(s)
- Sébastien Wälchli
- Department of Biochemistry, Institute for Cancer Research, Faculty Division: The Norwegian Radium Hospital, Montebello, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|