1
|
Hilbert ZA, Bednarek JM, Schwiesow MJW, Chung KY, Moreau CT, Brown JCS, Elde NC. Distinct pathways of adaptive evolution in Cryptococcus neoformans reveal a mutation in adenylyl cyclase with trade-offs for pathogenicity. Curr Biol 2023; 33:4136-4149.e9. [PMID: 37708888 PMCID: PMC10592076 DOI: 10.1016/j.cub.2023.08.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/13/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
Pathogenic fungi populate a wide range of environments and infect a diversity of host species. Despite this substantial biological flexibility, the impact of interactions between fungi and their hosts on the evolution of pathogenicity remains unclear. We studied how repeated interactions between the fungus Cryptococcus neoformans and relevant environmental and mammalian host cells-amoeba and mouse macrophages-shape the evolution of this model fungal pathogen. First, using a collection of clinical and environmental isolates of C. neoformans, we characterized a range of survival phenotypes for these strains when exposed to host cells of different species. We then performed serial passages of an environmentally isolated C. neoformans strain through either amoeba or macrophages for ∼75 generations to observe how these interactions select for improved replication within hosts. In one adapted population, we identified a single point mutation in the adenylyl cyclase gene, CAC1, that swept to fixation and confers a strong competitive advantage for growth inside macrophages. Strikingly, this growth advantage in macrophages is inversely correlated with disease severity during mouse infections, suggesting that adaptation to specific host niches can markedly reduce the pathogenicity of these fungi. These results raise intriguing questions about the influence of cyclic AMP (cAMP) signaling on pathogenicity and highlight the role of seemingly small adaptive changes in promoting fundamental shifts in the intracellular behavior and virulence of these important human pathogens.
Collapse
Affiliation(s)
- Zoë A Hilbert
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Joseph M Bednarek
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Mara J W Schwiesow
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Krystal Y Chung
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Christian T Moreau
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jessica C S Brown
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Nels C Elde
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Kamath PL, Turner WC, Küsters M, Getz WM. Parasite-mediated selection drives an immunogenetic trade-off in plains zebras (Equus quagga). Proc Biol Sci 2014; 281:20140077. [PMID: 24718761 DOI: 10.1098/rspb.2014.0077] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pathogen evasion of the host immune system is a key force driving extreme polymorphism in genes of the major histocompatibility complex (MHC). Although this gene family is well characterized in structure and function, there is still much debate surrounding the mechanisms by which MHC diversity is selectively maintained. Many studies have investigated relationships between MHC variation and specific pathogens, and have found mixed support for and against the hypotheses of heterozygote advantage, frequency-dependent or fluctuating selection. Few, however, have focused on the selective effects of multiple parasite types on host immunogenetic patterns. Here, we examined relationships between variation in the equine MHC gene, ELA-DRA, and both gastrointestinal (GI) and ectoparasitism in plains zebras (Equus quagga). Specific alleles present at opposing population frequencies had antagonistic effects, with rare alleles associated with increased GI parasitism and common alleles with increased tick burdens. These results support a frequency-dependent mechanism, but are also consistent with fluctuating selection. Maladaptive GI parasite 'susceptibility alleles' were reduced in frequency, suggesting that these parasites may play a greater selective role at this locus. Heterozygote advantage, in terms of allele mutational divergence, also predicted decreased GI parasite burden in genotypes with a common allele. We conclude that an immunogenetic trade-off affects resistance/susceptibility to parasites in this system. Because GI and ectoparasites do not directly interact within hosts, our results uniquely show that antagonistic parasite interactions can be indirectly modulated through the host immune system. This study highlights the importance of investigating the role of multiple parasites in shaping patterns of host immunogenetic variation.
Collapse
Affiliation(s)
- Pauline L Kamath
- US Geological Survey, Northern Rocky Mountain Science Center, , 2327 University Way, Bozeman, MT 59715, USA, Department of Environmental Science, Policy, and Management, University of California, , 130 Mulford Hall No. 3114, Berkeley, CA 94720, USA, Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, , PO Box 1066 Blindern, Oslo 0361, Norway, Berkeley Etosha Anthrax Research Project, , Swakopmund, Namibia, School of Mathematical Sciences, University of KwaZulu-Natal, , Private Bag X54001, 14, Durban 4000, South Africa
| | | | | | | |
Collapse
|
3
|
Thomas DK, Lone AG, Selinger LB, Taboada EN, Uwiera RRE, Abbott DW, Inglis GD. Comparative variation within the genome of Campylobacter jejuni NCTC 11168 in human and murine hosts. PLoS One 2014; 9:e88229. [PMID: 24516617 PMCID: PMC3917866 DOI: 10.1371/journal.pone.0088229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/03/2014] [Indexed: 11/18/2022] Open
Abstract
Campylobacteriosis incited by C. jejuni is a significant enteric disease of human beings. A person working with two reference strains of C. jejuni National Collection of Type Cultures (NCTC) 11168 developed symptoms of severe enteritis including bloody diarrhea. The worker was determined to be infected by C. jejuni. In excess of 50 isolates were recovered from the worker's stool. All of the recovered isolates and the two reference strains were indistinguishable from each other based on comparative genomic fingerprint subtyping. Whole genome sequence analysis indicated that the worker was infected with a C. jejuni NCTC 11168 obtained from the American Type Culture Collection; this strain (NCTC 11168-GSv) is the genome sequence reference. After passage through the human host, major genetic changes including indel mutations within twelve contingency loci conferring phase variations were detected in the genome of C. jejuni. Specific and robust single nucleotide polymorphism (SNP) changes in the human host were also observed in two loci (Cj0144c, Cj1564). In mice inoculated with an isolate of C. jejuni NCTC 11168-GSv from the infected person, the isolate underwent further genetic variation. At nine loci, mutations specific to inoculated mice including five SNP changes were observed. The two predominant SNPs observed in the human host reverted in mice. Genetic variations occurring in the genome of C. jejuni in mice corresponded to increased densities of C. jejuni cells associated with cecal mucosa. In conclusion, C. jejuni NCTC 11168-GSv was found to be highly virulent in a human being inciting severe enteritis. Host-specific mutations in the person with enteritis occurred/were selected for in the genome of C. jejuni, and many were not maintained in mice. Information obtained in the current study provides new information on host-specific genetic adaptation by C. jejuni.
Collapse
Affiliation(s)
- Dallas K Thomas
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, Alberta, Canada
| | - Abdul G Lone
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, Alberta, Canada ; Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - L Brent Selinger
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | - Richard R E Uwiera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - D Wade Abbott
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, Alberta, Canada
| | - G Douglas Inglis
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, Alberta, Canada
| |
Collapse
|
4
|
Barclay VC. Variation in host resistance could limit the spread of more broadly virulent pathogens. Virulence 2013; 4:347-9. [PMID: 23689611 PMCID: PMC3714125 DOI: 10.4161/viru.25061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
Experimental viral evolution to specific host MHC genotypes reveals fitness and virulence trade-offs in alternative MHC types. Proc Natl Acad Sci U S A 2012; 109:3422-7. [PMID: 22323587 DOI: 10.1073/pnas.1112633109] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The unprecedented genetic diversity found at vertebrate MHC (major histocompatibility complex) loci influences susceptibility to most infectious and autoimmune diseases. The evolutionary explanation for how these polymorphisms are maintained has been controversial. One leading explanation, antagonistic coevolution (also known as the Red Queen), postulates a never-ending molecular arms race where pathogens evolve to evade immune recognition by common MHC alleles, which in turn provides a selective advantage to hosts carrying rare MHC alleles. This cyclical process leads to negative frequency-dependent selection and promotes MHC diversity if two conditions are met: (i) pathogen adaptation must produce trade-offs that result in pathogen fitness being higher in familiar (i.e., host MHC genotype adapted to) vs. unfamiliar host MHC genotypes; and (ii) this adaptation must produce correlated patterns of virulence (i.e., disease severity). Here we test these fundamental assumptions using an experimental evolutionary approach (serial passage). We demonstrate rapid adaptation and virulence evolution of a mouse-specific retrovirus to its mammalian host across multiple MHC genotypes. Critically, this adaptive response results in trade-offs (i.e., antagonistic pleiotropy) between host MHC genotypes; both viral fitness and virulence is substantially higher in familiar versus unfamiliar MHC genotypes. These data are unique in experimentally confirming the requisite conditions of the antagonistic coevolution model of MHC evolution and providing quantification of fitness effects for pathogen and host. These data help explain the unprecedented diversity of MHC genes, including how disease-causing alleles are maintained.
Collapse
|
6
|
Standing genetic variation in contingency loci drives the rapid adaptation of Campylobacter jejuni to a novel host. PLoS One 2011; 6:e16399. [PMID: 21283682 PMCID: PMC3025981 DOI: 10.1371/journal.pone.0016399] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/15/2010] [Indexed: 12/02/2022] Open
Abstract
The genome of the food-borne pathogen Campylobacter jejuni contains multiple highly mutable sites, or contingency loci. It has been suggested that standing variation at these loci is a mechanism for rapid adaptation to a novel environment, but this phenomenon has not been shown experimentally. In previous work we showed that the virulence of C. jejuni NCTC11168 increased after serial passage through a C57BL/6 IL-10-/- mouse model of campylobacteriosis. Here we sought to determine the genetic basis of this adaptation during passage. Re-sequencing of the 1.64Mb genome to 200-500X coverage allowed us to define variation in 23 contingency loci to an unprecedented depth both before and after in vivo adaptation. Mutations in the mouse-adapted C. jejuni were largely restricted to the homopolymeric tracts of thirteen contingency loci. These changes cause significant alterations in open reading frames of genes in surface structure biosynthesis loci and in genes with only putative functions. Several loci with open reading frame changes also had altered transcript abundance. The increase in specific phases of contingency loci during in vivo passage of C. jejuni, coupled with the observed virulence increase and the lack of other types of genetic changes, is the first experimental evidence that these variable regions play a significant role in C. jejuni adaptation and virulence in a novel host.
Collapse
|
7
|
Bell JA, St Charles JL, Murphy AJ, Rathinam VAK, Plovanich-Jones AE, Stanley EL, Wolf JE, Gettings JR, Whittam TS, Mansfield LS. Multiple factors interact to produce responses resembling spectrum of human disease in Campylobacter jejuni infected C57BL/6 IL-10-/- mice. BMC Microbiol 2009; 9:57. [PMID: 19296832 PMCID: PMC2669091 DOI: 10.1186/1471-2180-9-57] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 03/18/2009] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Campylobacter jejuni infection produces a spectrum of clinical presentations in humans--including asymptomatic carriage, watery diarrhea, and bloody diarrhea--and has been epidemiologically associated with subsequent autoimmune neuropathies. This microorganism is genetically variable and possesses genetic mechanisms that may contribute to variability in nature. However, relationships between genetic variation in the pathogen and variation in disease manifestation in the host are not understood. We took a comparative experimental approach to explore differences among different C. jejuni strains and studied the effect of diet on disease manifestation in an interleukin-10 deficient mouse model. RESULTS In the comparative study, C57BL/6 interleukin-10-/- mice were infected with seven genetically distinct C. jejuni strains. Four strains colonized the mice and caused disease; one colonized with no disease; two did not colonize. A DNA:DNA microarray comparison of the strain that colonized mice without disease to C. jejuni 11168 that caused disease revealed that putative virulence determinants, including loci encoding surface structures known to be involved in C. jejuni pathogenesis, differed from or were absent in the strain that did not cause disease. In the experimental study, the five colonizing strains were passaged four times in mice. For three strains, serial passage produced increased incidence and degree of pathology and decreased time to develop pathology; disease shifted from watery to bloody diarrhea. Mice kept on an ~6% fat diet or switched from an approximately 12% fat diet to an approximately 6% fat diet just before infection with a non-adapted strain also exhibited increased incidence and severity of disease and decreased time to develop disease, although the effects of diet were only statistically significant in one experiment. CONCLUSION C. jejuni strain genetic background and adaptation of the strain to the host by serial passage contribute to differences in disease manifestations of C. jejuni infection in C57BL/6 IL-10-/- mice; differences in environmental factors such as diet may also affect disease manifestation. These results in mice reflect the spectrum of clinical presentations of C. jejuni gastroenteritis in humans and contribute to usefulness of the model in studying human disease.
Collapse
Affiliation(s)
- Julia A Bell
- Comparative Enteric Diseases Laboratory, National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Crespi BJ, Summers K. Positive selection in the evolution of cancer. Biol Rev Camb Philos Soc 2006; 81:407-24. [PMID: 16762098 DOI: 10.1017/s1464793106007056] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 03/27/2006] [Accepted: 03/29/2006] [Indexed: 01/29/2023]
Abstract
We hypothesize that forms of antagonistic coevolution have forged strong links between positive selection at the molecular level and increased cancer risk. By this hypothesis, evolutionary conflict between males and females, mothers and foetuses, hosts and parasites, and other parties with divergent fitness interests has led to rapid evolution of genetic systems involved in control over fertilization and cellular resources. The genes involved in such systems promote cancer risk as a secondary effect of their roles in antagonistic coevolution, which generates evolutionary disequilibrium and maladaptation. Evidence from two sources: (1) studies on specific genes, including SPANX cancer/testis antigen genes, several Y-linked genes, the pem homebox gene, centromeric histone genes, the breast cancer gene BRCA1, the angiogenesis gene ANG, cadherin genes, cytochrome P450 genes, and viral oncogenes; and (2) large-scale database studies of selection on different functional categories of genes, supports our hypothesis. These results have important implications for understanding the evolutionary underpinnings of cancer and the dynamics of antagonistically-coevolving molecular systems.
Collapse
Affiliation(s)
- Bernard J Crespi
- Behavioural Ecology Research Group, Department of Biology, Simon Fraser University, Burnaby, BC V5A 1 S6 Canada.
| | | |
Collapse
|
9
|
Kralik P, Matiasovic J, Horin P. Genetic evidence for the existence of interleukin-23 and for variation in the interleukin-12 and interleukin-12 receptor genes in the horse. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2006; 1:179-186. [PMID: 20483249 DOI: 10.1016/j.cbd.2005.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 09/11/2005] [Accepted: 09/14/2005] [Indexed: 05/29/2023]
Abstract
Immune loci, characterized by features reflecting their role in defense reactions and consequently related to evolutionary mechanisms, including polymorphisms or association with disease are suitable candidates for comparative analysis. Interleukin-12 and related cytokines are key molecules regulating natural and specific immune responses. In this study, we analyzed four horse IL12-related genes: IL23p19, IL12Rbeta2, IL12p40, and IL12p35. Genomic nucleotide sequence of the horse IL23 p19 sub-unit encoding gene was determined. The horse IL23p19 gene consists of four exons; its total mRNA length is 1004 bp, with a coding region of 579 bp. The predicted amino acid sequence of the horse IL23p19 sub-unit showed 88.0% sequence identity with the human sequence. A partial genomic sequence highly homologous to human IL12Rbeta2 suggesting existence of this gene in the horse was retrieved. Single nucleotide polymorphisms (SNPs) were identified in all four genes analyzed. PCR-RFLP genotyping was developed for selected SNPs. Inter-breed differences in allele and genotype frequencies were observed in IL12p35 SNP 242. The results showed that horse IL12-related genes are comparable to their counterparts in other mammalian species in terms of their structure and their genetic variation.
Collapse
Affiliation(s)
- Petr Kralik
- Institute of Animal Genetics, Faculty of Veterinary Medicine, Palackého 1/3, CZ-612 42 Brno, Czech Republic
| | | | | |
Collapse
|
10
|
Camacho MT, Outschoorn I, Tellez A, Sequí J. Autoantibody profiles in the sera of patients with Q fever: characterization of antigens by immunofluorescence, immunoblot and sequence analysis. JOURNAL OF AUTOIMMUNE DISEASES 2005; 2:10. [PMID: 16280092 PMCID: PMC1298324 DOI: 10.1186/1740-2557-2-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 11/10/2005] [Indexed: 11/18/2022]
Abstract
Recent reports have shown that some of the immunological aspects of Q fever, a rickettsiosis caused by Coxiella burnetii, could be related to self-antigen responses. The aim of this study was to determine the specificity of the autoantibody response of patients with acute and chronic Coxiella infections. Smooth muscle and cardiac muscle-specific autoantibodies were observed in significant percentages in acutely or chronically affected Q fever patients when compared to healthy volunteers. Moreover, the incidence of cardiac muscle-specific autoantibody was significantly higher among chronically ill patients compared to acutely ill patients. Moreover, a band of 50 kD of a HeLa extract was detected in most of the sera of individuals with chronic infections and previous sequence analysis suggests that this antigen presents a high degree of homology with the human actin elongation factor 1 alpha. Further research would be necessary to confirm if antibodies to human cytoskeletal proteins could be of clinical importance in chronically infected Q fever patients.
Collapse
Affiliation(s)
- MT Camacho
- Departamento de Orientación Diagnóstica. Centro Nacional de Microbiologia. Instituto de Salud Carlos III. Ctra. Majadahonda -Pozuelo Km 12,5. 28080-Madrid. Spain
| | - I Outschoorn
- Departamento de Respuesta Inmune. Centro Nacional de Microbiologia. Instituto de Salud Carlos III. Ctra. Majadahonda -Pozuelo Km 12,5. 28080-Madrid. Spain
| | - A Tellez
- Departamento de Orientación Diagnóstica. Centro Nacional de Microbiologia. Instituto de Salud Carlos III. Ctra. Majadahonda -Pozuelo Km 12,5. 28080-Madrid. Spain
| | - J Sequí
- Servicio de Inmunología. Hospital Carlos III. Imsalud. c/ Sinesio Delgado n° 10. 28029-Madrid. Spain
| |
Collapse
|
11
|
Wandstrat AE, Nguyen C, Limaye N, Chan AY, Subramanian S, Tian XH, Yim YS, Pertsemlidis A, Garner HR, Morel L, Wakeland EK. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity 2005; 21:769-80. [PMID: 15589166 DOI: 10.1016/j.immuni.2004.10.009] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 10/21/2004] [Accepted: 10/27/2004] [Indexed: 01/12/2023]
Abstract
Susceptibility to autoimmunity in B6.Sle1b mice is associated with extensive polymorphisms between two divergent haplotypes of the SLAM/CD2 family of genes. The B6.Sle1b-derived SLAM/CD2 family haplotype is found in many other laboratory mouse strains but only causes autoimmunity in the context of the C57Bl/6 (B6) genome. Phenotypic analyses have revealed variations in the structure and expression of several members of the SLAM/CD2 family in T and B lymphocytes from B6.Sle1b mice. T lymphocytes from B6.Sle1b mice have modified signaling responses to stimulation at 4-6 weeks of age. While autoimmunity may be mediated by a combination of genes in the SLAM/CD2 family cluster, the strongest candidate is Ly108, a specific isoform of which is constitutively upregulated in B6.Sle1b lymphocytes.
Collapse
Affiliation(s)
- Amy E Wandstrat
- Center for Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Horín P, Smola J, Matiasovic J, Vyskocil M, Lukeszová L, Tomanová K, Králík P, Glasnák V, Schröffelová D, Knoll A, Sedlinská M, Krenková L, Jahn P. Polymorphisms in equine immune response genes and their associations with infections. Mamm Genome 2004; 15:843-50. [PMID: 15520887 DOI: 10.1007/s00335-004-2356-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 05/26/2004] [Indexed: 10/26/2022]
Abstract
Polymorphic markers identified in the horse genes encoding the interleukin 12 p40 subunit, interferon gamma, tumor necrosis factor receptor 1, and inducible nitric oxide synthase were identified and tested, along with additional markers, for associations with two important horse infections: Rhodococcus equi and Lawsonia intracellularis. Eight immune response-related and 14 microsatellite loci covering 12 out of 31 equine autosomes were used for the association analysis. Markers located on horse Chromosomes Eca10 and 15 were significantly associated with the presence of high numbers of R. equi in transtracheal aspirates. Significant associations of markers located on Eca9, 15, and 21 with fecal shedding of Lawsonia intracellularis were found. Marginal associations with tumor necrosis factor alpha, interferon gamma, and other genes suggested that variations in immune response-related genes could underlie the phenotypic variation observed.
Collapse
Affiliation(s)
- Petr Horín
- Faculty of Veterinary Medicine, Institute of Animal Genetics, Palackého 1/3, 61242 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|