1
|
Nguyen AT, McSorley SJ. Fighting the enemy within: Systemic immune defense against mucosal Salmonella infection. Immunol Lett 2024; 270:106930. [PMID: 39343314 DOI: 10.1016/j.imlet.2024.106930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Salmonella infection remains a persistent global health threat, as different serovars induce a range of clinical disease, depending upon bacterial virulence and host susceptibility. While some Salmonella serovars induce gastroenteritis in healthy individuals, others can cause more serious systemic enteric fever or invasive nontyphoidal Salmonellosis. The rise of antibiotic resistance, coupled with the absence of effective vaccines for most serovars, perpetuates the spread of Salmonella in endemic regions. A detailed mechanistic understanding of immunity to Salmonella infections has been aided by the availability of mouse models that have served as a valuable tool for understanding host-pathogen interactions under controlled laboratory conditions. These mouse studies have delineated the processes by which early inflammation is triggered after infection, how adaptive immunity is initiated in lymphoid tissues, and the contribution of lymphocyte memory responses to resistance. While recent progress has been made in vaccine development for some causes of enteric fever, deeper understanding of Salmonella-specific immune memory might allow the formation of new vaccines for all serovars. This review will provide a summary of our understanding of vaccination and protective immunity to Salmonella with a focus on recent developments in T cell memory formation.
Collapse
Affiliation(s)
- Alana T Nguyen
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Stephen J McSorley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Chevrier N. Decoding the Body Language of Immunity: Tackling the Immune System at the Organism Level. ACTA ACUST UNITED AC 2019; 18:19-26. [PMID: 32490290 DOI: 10.1016/j.coisb.2019.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The immune system is a dynamic mesh of molecules, cells and tissues spanning the entire organism. Despite a wealth of knowledge about the components of the immune system, little is known about the general rules governing the organismal circuitry of immunity. Deciphering the immune system at the scale of the whole organism is crucial to understanding fundamental problems in immunobiology and physiology, and to manipulate immunity for maintaining health and preventing disease. Here I discuss the emerging principles of inter-organ communications during immune responses by focusing on three common themes that are the regulation of the (i) composition, (ii) condition and (iii) coordination of communicating organs by molecular and cellular factors. Based on these common principles, I emphasize fundamental gaps in our knowledge of organismal immune processes and the outlook to tackle immunity at the scale of the whole organism.
Collapse
Affiliation(s)
- Nicolas Chevrier
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Hu Y, Lu W, Shen Y, Xu Y, Yuan Z, Zhang C, Wu J, Ni Y, Liu S, Cao J. Immune changes of Schistosoma japonicum infections in various rodent disease models. Exp Parasitol 2012; 131:180-9. [DOI: 10.1016/j.exppara.2012.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 11/16/2022]
|
4
|
Towards identification of the mechanisms of action of parasite-derived peptide GK1 on the immunogenicity of an influenza vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1338-43. [PMID: 19605594 DOI: 10.1128/cvi.00106-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Previous studies have shown that the synthetic peptide GK1, derived from Taenia crassiceps cysticerci, enhances the immunogenicity of the commercial inactivated influenza vaccine Fluzone in both young and aged mice. In particular, antibody responses were much improved. Since GK1 is a peptide and is rapidly cleared from the body, it offers the possibility to improve vaccine performance without undesirable effects. This study was therefore designed to understand the mechanisms of action involved in the adjuvant properties of GK1. For this, transgenic mice expressing a T-cell receptor specific for an epitope from the influenza virus hemagglutinin (HA) protein were employed. The GK1 peptide significantly increased the in vivo proliferative response of HA-specific CD4+ T cells when it was coimmunized with the HA epitope. Dendritic cells treated in vitro with GK1 were capable of enhancing T-cell activation. Furthermore, in synergy with lipopolysaccharide, GK1 enhanced the expression of major histocompatibility complex class II and costimulatory molecules of dendritic cells and promoted the secretion of proinflammatory cytokines and chemokines upon antigen-driven T-cell interaction. These data provide important insights into the mechanism that underlies the GK1 adjuvant capacity observed previously and underline the feasibility of using the transgenic mouse model described herein as a tool for investigation of the modes of action of different influenza vaccine adjuvants.
Collapse
|
5
|
Abstract
A promising role of cellular therapies in cancer treatment is reflected by the constantly growing number of clinical trials with adoptively transferred cells. Direct and indirect cell labeling for the nuclear imaging of transferred cells has been proven reliable for imaging adoptive cellular therapies. Both methods show their advantages and limitations. Direct labeling is a relatively easy, inexpensive, and well-established methodology. Indirect labeling using a reporter gene imaging paradigm allows for reliable, stable, and harmless visualization of cellular trafficking, persistence, proliferation, and function at the target site. It is expected that new human-derived reporter genes will be rapidly translated into clinical applications that require repetitive imaging for the effective monitoring of various genetic and cellular therapies.
Collapse
Affiliation(s)
- Vladimir Ponomarev
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
6
|
Mischo A, Eppolito C, Li Q, Shrikant PA. Characterizing host immune responses by monitoring fluorescently marked cells. Immunol Invest 2007; 36:791-805. [PMID: 18161529 DOI: 10.1080/08820130701715852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Axel Mischo
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | | | | |
Collapse
|
7
|
Fahmy TM, Fong PM, Park J, Constable T, Saltzman WM. Nanosystems for simultaneous imaging and drug delivery to T cells. AAPS J 2007; 9:E171-80. [PMID: 17614359 PMCID: PMC2751406 DOI: 10.1208/aapsj0902019] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 05/11/2007] [Indexed: 01/22/2023] Open
Abstract
The T-cell response defines the pathogenesis of many common chronic disease states, including diabetes, rheumatoid arthritis, and transplant rejection. Therefore, a diagnostic strategy that visualizes this response can potentially lead to early therapeutic intervention, avoiding catastrophic organ failure or prolonged sickness. In addition, the means to deliver a drug dose to those cells in situ with the same specificity used to image those cells would provide for a powerful therapeutic alternative for many disease states involving T cells. In this report, we review emerging nanosystems that can be used for simultaneous tracking and drug delivery to those cells. Because of their versatility, these systems--which combine specific receptor targeting with an imaging agent and drug delivery--are suited to both basic science and applications, from developing therapeutic strategies for autoimmune and alloimmune diseases, to noninvasive tracking of pathogenic T-cell migration.
Collapse
Affiliation(s)
- Tarek M Fahmy
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA.
| | | | | | | | | |
Collapse
|
8
|
Arya M, Ahmed H, Silhi N, Williamson M, Patel HRH. Clinical importance and therapeutic implications of the pivotal CXCL12-CXCR4 (chemokine ligand-receptor) interaction in cancer cell migration. Tumour Biol 2007; 28:123-31. [PMID: 17510563 DOI: 10.1159/000102979] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 12/01/2006] [Indexed: 12/20/2022] Open
Abstract
Chemokines are small, secreted proteins and are now the largest known cytokine family. They mediate their effects through a family of G-protein-coupled receptors and were initially recognized for their ability to act as chemo-attractants and activators of specific types of leucocytes in a variety of immune and inflammatory responses. However, during the past 5 years there has been a chemokine revolution in cancer and all scientists and clinicians in oncology-related fields are now aware of their crucial role at all stages of neoplastic transformation and progression. The most important chemokine ligand-receptor interaction is that of the CXCL12 (stromal cell-derived factor-1, SDF-1) ligand with its exclusive receptor CXCR4; this interaction has a pivotal role in the directional migration of cancer cells during the metastatic process. This has been demonstrated by in vitro and in vivo experiments in addition to retrospective clinical studies. These findings have exciting implications in the field of cancer therapeutics, with several small molecule CXCR4 antagonists having been developed, which may provide clinical benefit in the therapy of cancer metastasis. Interestingly, it is likely that the effect of the anti-HER2 antibody [trastuzumab (Herceptin] in breast cancer involves downregulation of the CXCR4 receptor. Unfortunately, a major problem is that chemokine receptors are expressed in other cells within the body, particularly those of the immune system and it is not clear what effects long-term CXCR4 antagonism could have on innate and adaptive immunity. However, there is little doubt that the great strides made in elucidating the complex relationship between chemokines and their role in cancer will soon translate into significant survival benefits for patients.
Collapse
|
9
|
Mathew JP, Taylor BS, Bader GD, Pyarajan S, Antoniotti M, Chinnaiyan AM, Sander C, Burakoff SJ, Mishra B. From bytes to bedside: data integration and computational biology for translational cancer research. PLoS Comput Biol 2007; 3:e12. [PMID: 17319736 PMCID: PMC1808026 DOI: 10.1371/journal.pcbi.0030012] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jomol P Mathew
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Miller TA, Schaefer FW. Characterization of a single dose methylprednisolone acetate immune suppression model using Cryptosporidium muris and Cryptosporidium parvum. Vet Parasitol 2006; 141:66-83. [PMID: 16757117 DOI: 10.1016/j.vetpar.2006.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 04/08/2006] [Accepted: 04/11/2006] [Indexed: 11/27/2022]
Abstract
An immunosuppressive dose of methylprednisolone acetate (MPA) was compared with a non-immunosuppressive dose using Cryptosporidium oocyst production as an indicator of immunosuppression. To be classified as immunosuppressive, the dose had to satisfy five criteria. First, the dose had to abrogate normal immune defenses allowing the propagation of an organism to which the host is normally resistant, i.e. Cryptosporidium parvum in adult mice. Second, the dose had to decrease overall circulating CD4 T-lymphocyte numbers by greater than 80%. Third, the immunosuppressive dose had to prolong the infection beyond the normal infection length, and fourth, increase the severity of an active infection. Lastly, after complete recovery from a C. muris infection, immunosuppression must suppress the naturally acquired post infection immunity and allow reinfection. In mice immunosuppression with 600 mgMPA/kg lasted approximately 14 days and satisfied all five criteria. Fecal oocyst production could be perpetuated by dosing at 10-day intervals. A 200 mgMPA/kg dose transiently lowered CD4 counts by over 80%, but failed to override the naturally acquired post infection immunity or allow infection with C. parvum. The immunosuppressed blood profile consisted of an immediate sharp rise of mature segmented neutrophils combined with a severe decrease in circulating T-lymphocyte numbers. The rise and fall of neutrophils proved to be a good indicator of the severity and duration of immunosuppression. The thymus and spleen likewise contracted and then expanded in accordance with the steroid effect. The metabolism of MPA resulted in the eventual recovery of immune function signified by the cessation of C. parvum oocyst production. The recovery blood profile was associated with circulating CD8 counts near control levels, continuing 80% depression of CD4 counts and a dropping total neutrophil count. This study shows that the 600 mg/kg MPA dose is a good model for immunosuppression, which satisfies all five criteria for immunosuppression with low morbidity and low mortality.
Collapse
Affiliation(s)
- Thomas A Miller
- US Environmental Protection Agency, Cincinnati, OH 45268, USA
| | | |
Collapse
|
11
|
Voigtländer C, Rössner S, Cierpka E, Theiner G, Wiethe C, Menges M, Schuler G, Lutz MB. Dendritic cells matured with TNF can be further activated in vitro and after subcutaneous injection in vivo which converts their tolerogenicity into immunogenicity. J Immunother 2006; 29:407-15. [PMID: 16799336 DOI: 10.1097/01.cji.0000210081.60178.b4] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dendritic cell (DC) maturation can occur by different types of stimuli. Previously, we described that murine DC matured with tumor necrosis factor (TNF) up-regulate surface MHC and costimulatory molecules but lack cytokine release, and therefore termed them semi-mature DC. These TNF/DC-induced tolerance after intravenous (i.v.) injection in a model of experimental autoimmune encephalomyelitis (EAE). Here, we show that TNF/DC are not terminally differentiated but can still respond to the microbial stimulus lipopolysaccharide. Subcutaneously injected TNF/DC induce an unpolarized T(H)1/T(H)2 response and are not protective in the experimental autoimmune encephalomyelitis model. Although TNF/DC home to the draining lymph node, they remain negative for intracellular cytokine stainings. However, the nonmigrating, endogenous DC started to produce interleukin (IL)-12p40, TNF and little IL-6, IL-10, and MCP-1 in a bystander fashion. Together, DC matured with the inflammatory stimulus TNF remains responsive to further signals in vitro and in vivo. These signals can be provided by pathogens or the subcutaneous injection route, which can convert them from tolerogenic to immunogenic DC. These findings are important for selecting the appropriate injection route of human DC for tumor immunotherapy.
Collapse
Affiliation(s)
- Constanze Voigtländer
- Department of Dermatology, University Hospital Erlangen, Hartmannstr 14, 91052 Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Filatenkov AA, Jacovetty EL, Fischer UB, Curtsinger JM, Mescher MF, Ingulli E. CD4 T cell-dependent conditioning of dendritic cells to produce IL-12 results in CD8-mediated graft rejection and avoidance of tolerance. THE JOURNAL OF IMMUNOLOGY 2005; 174:6909-17. [PMID: 15905533 DOI: 10.4049/jimmunol.174.11.6909] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rejection of ectopic heart transplants expressing OVA requires OVA-specific CD4 and CD8 T cells. In the absence of CD4 T cells, OVA-specific CD8 T cells proliferate and migrate to the graft, but fail to develop cytolytic functions. With CD4 T cells present, clonal expansion of the CD8 T cells is only marginally increased but the cells now develop effector functions and mediate rapid graft rejection. In the presence of CD4 T cells, Ag and B7 levels do not increase on dendritic cells but IL-12 production is up-regulated, and this requires CD154 expression on the CD4 T cells. OVA-specific CD8 T cells lacking the IL-12 receptor fail to differentiate or mediate graft rejection even when CD4 T cells are present. Thus, CD4 T cells condition dendritic cells by inducing the production of IL-12, which is needed as the "third signal" for CD8 T cell differentiation and avoidance of tolerance.
Collapse
|
13
|
Abstract
Helper T (Th) cell-regulated B cell immunity progresses in an ordered cascade of cellular development that culminates in the production of antigen-specific memory B cells. The recognition of peptide MHC class II complexes on activated antigen-presenting cells is critical for effective Th cell selection, clonal expansion, and effector Th cell function development (Phase I). Cognate effector Th cell-B cell interactions then promote the development of either short-lived plasma cells (PCs) or germinal centers (GCs) (Phase II). These GCs expand, diversify, and select high-affinity variants of antigen-specific B cells for entry into the long-lived memory B cell compartment (Phase III). Upon antigen rechallenge, memory B cells rapidly expand and differentiate into PCs under the cognate control of memory Th cells (Phase IV). We review the cellular and molecular regulators of this dynamic process with emphasis on the multiple memory B cell fates that develop in vivo.
Collapse
|
14
|
Gangopadhyay NN, Shen H, Landreneau R, Luketich JD, Schuchert MJ. Isolation and tracking of a rare lymphoid progenitor cell which facilitates bone marrow transplantation in mice. J Immunol Methods 2004; 292:73-81. [PMID: 15350513 DOI: 10.1016/j.jim.2004.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 06/01/2004] [Accepted: 06/02/2004] [Indexed: 12/23/2022]
Abstract
Bone marrow cells are composed of pluripotent stem cells to terminally differentiated cells, with a wide variety of abundance of each cell type. In the past, many of the cell types within this heterogeneous population have been characterized either by expression of specific proteins or using functional markers. In spite of promising results obtained with the latter method, various cell types within bone marrow have not been well characterized due to the low abundance of a specific cell type. Considering the demand for a reliable technique to enrich cell types, a wide variety of approaches, ranging from simple nylon wool columns to high-speed cell sorting, have evolved. Only limited success has been obtained with approaches ranging from the detection of MHC antigen to positron emission tomography to track the ontogeny of specific bone marrow-derived cells in studies of syngeneic or allogeneic transplantation. The present study describes a relatively simple method to enrich and track a rare bone marrow cell (facilitating cell, FC), which can facilitate allogeneic bone marrow stem cell transplantation in mice. The isolation technique is comprised of enrichment of FC by magnetic activated cell sorting (MACS) system followed by purification through high-speed cell sorter. An initial inoculation of 30,000 FC obtained from male mice was detected in the thymus, spleen, and bone marrow of allogeneic female recipients, by using 32P-labeled dCTP in a specific PCR for Y-chromosome. This technique may improve the efficiency of isolation of other rare cells from the bone marrow.
Collapse
Affiliation(s)
- Nupur N Gangopadhyay
- Division of Thoracic Surgery, Department of Surgery, School of Medicine, University of Pittsburgh, W1554 BST, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
15
|
Pabst O, Herbrand H, Bernhardt G, Förster R. Elucidating the functional anatomy of secondary lymphoid organs. Curr Opin Immunol 2004; 16:394-9. [PMID: 15245731 DOI: 10.1016/j.coi.2004.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Functional anatomy offers an attempt to exploit anatomical information as a platform from which to decipher mechanistic details of complex or multistep immunological processes. Immune function depends on structural organization, therefore this approach contributes to a comprehensive understanding of the immune system. Major advances in functional anatomy require progress in both experimental techniques and analytical equipment - largely synonymous to refinement of the anatomist's favorite tool, the microscope. Here, we describe how currently available techniques co-operate to gain new insights into the biology of secondary lymphoid organs.
Collapse
Affiliation(s)
- Oliver Pabst
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | | | |
Collapse
|
16
|
|
17
|
Braddock M. 2nd International Conference on Immune-Mediated Diseases & 8th International Anti-Inflammation Meeting. Expert Opin Investig Drugs 2004; 13:555-64. [PMID: 15155131 DOI: 10.1517/13543784.13.5.555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Martin Braddock
- Discovery Bioscience, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire LE11 5RH, England, UK.
| |
Collapse
|
18
|
Abstract
Ever since the realization that T lymphocytes are key players in the defense against pathogens and tumors, a major aim of immunologists has been to understand the relationship between the functional and migratory properties of antigen-specific T cells. The current paradigm proposes that T cells follow organ-specific trafficking pathways to exit from blood into the extravascular compartment. T cell homing is regulated at the level of adhesion molecules and chemokine receptors, whose expression is linked tightly to the differentiation state of the cell. Naïve T lymphocytes follow relatively uniform recirculation routes through secondary lymphoid organs, the molecular cues of which are fairly well understood. As effector and memory T cells must be capable of reaching virtually any site in the body, their migratory behavior is considerably more heterogeneous. During the past few years, innovative approaches for tracking T cells in vivo have emerged. Here, we review recent technical developments in experimental methods for the visualization of T cells both at the population and single cell level in vivo, and discuss what these methods have taught us about T cell trafficking.
Collapse
Affiliation(s)
- Amaya Iparraguirre
- CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, Boston, Mass., USA
| | | |
Collapse
|
19
|
Germain RN. Immunological techniques. Curr Opin Immunol 2003. [DOI: 10.1016/s0952-7915(03)00081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|