1
|
Clairet C, Gay EJ, Porquier A, Blaise F, Marais CL, Balesdent MH, Rouxel T, Soyer JL, Fudal I. Regulation of effector gene expression as concerted waves in Leptosphaeria maculans: a two-player game. THE NEW PHYTOLOGIST 2024; 242:247-261. [PMID: 38358035 DOI: 10.1111/nph.19581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
Effector genes, encoding molecules involved in disease establishment, are concertedly expressed throughout the lifecycle of plant-pathogenic fungi. However, little is known about how effector gene expression is regulated. Since many effector genes are located in repeat-rich regions, the role of chromatin remodeling in their regulation was recently investigated, notably establishing that the repressive histone modification H3K9me3, deposited by KMT1, was involved in several fungal species including Leptosphaeria maculans. Nevertheless, previous data suggest that a second regulatory layer, probably involving a specific transcription factor (TF), might be required. In L. maculans, a Dothideomycete causing stem canker of oilseed rape, we identified the ortholog of Pf2, a TF belonging to the Zn2Cys6 fungal-specific family, and described as essential for pathogenicity and effector gene expression. We investigated its role together with KMT1, by inactivating and over-expressing LmPf2 in a wild-type strain and a ∆kmt1 mutant. Functional analyses of the corresponding transformants highlighted an essential role of LmPf2 in the establishment of pathogenesis and we found a major effect of LmPf2 on the induction of effector gene expression once KMT1 repression is lifted. Our results show, for the first time, a dual control of effector gene expression.
Collapse
Affiliation(s)
- Colin Clairet
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Elise J Gay
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Antoine Porquier
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Françoise Blaise
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | | | | | - Thierry Rouxel
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Jessica L Soyer
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Isabelle Fudal
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| |
Collapse
|
2
|
Gay EJ, Jacques N, Lapalu N, Cruaud C, Laval V, Balesdent MH, Rouxel T. Location and timing govern tripartite interactions of fungal phytopathogens and host in the stem canker species complex. BMC Biol 2023; 21:247. [PMID: 37936151 PMCID: PMC10631019 DOI: 10.1186/s12915-023-01726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/05/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Leptosphaeria maculans "brassicae" (Lmb) and Leptosphaeria biglobosa "brassicae" (Lbb) make up a species complex involved in the stem canker (blackleg) disease of rapeseed (Brassica napus). They coinfect rapeseed together, from the early stage of infection on leaves to the final necrotic stage at the stem base, and both perform sexual crossings on plant residues. L. biglobosa is suggested to be a potential biocontrol agent against Lmb, but there has been no mechanistic investigation of the different types of interactions that may occur between the plant and the two fungal species. RESULTS We investigated the bi- or tripartite interaction mechanisms by (i) confronting Lmb and Lbb in culture conditions or during cotyledon infection, with different timing and/or spore concentration regimes, (ii) performing RNA-Seq experiments in vitro or on the kinetics of infection of cotyledons infected by Lmb and/or Lbb to evaluate the transcriptomic activity and the plant response when both fungal species are inoculated together. Lbb infection of B. napus cotyledons was typical of a necrotrophic behavior, with a very early setup of one pathogenicity program and very limited colonization of tissues. This contrasted with the complex succession of pathogenicity programs of the hemibiotroph Lmb. During simultaneous co-infection by both species, Lmb was strongly impacted in its growth and transcriptomic dynamics both in vitro and in planta, while Lbb was unaffected by the presence of Lmb. However, the drastic inhibition of Lmb growth by Lbb was ineffective in the case of delayed inoculation with Lbb or a lower amount of spores of Lbb compared to Lmb. CONCLUSIONS Our data suggest that Lmb growth inhibition by Lbb is the result of a combination of factors that may include competition for trophic resources, the generation by Lbb of an environment unsuitable for the lifecycle of Lmb or/and the effect on Lmb of plant defense responses induced by Lbb. It indicates that growth inhibition occurs in very specific conditions (i.e., co-inoculation at the same place of an equal amount of inoculum) that are unlikely to occur in the field where their coexistence does not prevent any species from completing their life cycle.
Collapse
Affiliation(s)
- Elise J Gay
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Noémie Jacques
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Nicolas Lapalu
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Valerie Laval
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | | | - Thierry Rouxel
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France.
| |
Collapse
|
3
|
Gay EJ, Soyer JL, Lapalu N, Linglin J, Fudal I, Da Silva C, Wincker P, Aury JM, Cruaud C, Levrel A, Lemoine J, Delourme R, Rouxel T, Balesdent MH. Large-scale transcriptomics to dissect 2 years of the life of a fungal phytopathogen interacting with its host plant. BMC Biol 2021; 19:55. [PMID: 33757516 PMCID: PMC7986464 DOI: 10.1186/s12915-021-00989-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The fungus Leptosphaeria maculans has an exceptionally long and complex relationship with its host plant, Brassica napus, during which it switches between different lifestyles, including asymptomatic, biotrophic, necrotrophic, and saprotrophic stages. The fungus is also exemplary of "two-speed" genome organisms in the genome of which gene-rich and repeat-rich regions alternate. Except for a few stages of plant infection under controlled conditions, nothing is known about the genes mobilized by the fungus throughout its life cycle, which may last several years in the field. RESULTS We performed RNA-seq on samples corresponding to all stages of the interaction of L. maculans with its host plant, either alive or dead (stem residues after harvest) in controlled conditions or in field experiments under natural inoculum pressure, over periods of time ranging from a few days to months or years. A total of 102 biological samples corresponding to 37 sets of conditions were analyzed. We show here that about 9% of the genes of this fungus are highly expressed during its interactions with its host plant. These genes are distributed into eight well-defined expression clusters, corresponding to specific infection lifestyles or to tissue-specific genes. All expression clusters are enriched in effector genes, and one cluster is specific to the saprophytic lifestyle on plant residues. One cluster, including genes known to be involved in the first phase of asymptomatic fungal growth in leaves, is re-used at each asymptomatic growth stage, regardless of the type of organ infected. The expression of the genes of this cluster is repeatedly turned on and off during infection. Whatever their expression profile, the genes of these clusters are enriched in heterochromatin regions associated with H3K9me3 or H3K27me3 repressive marks. These findings provide support for the hypothesis that part of the fungal genes involved in niche adaptation is located in heterochromatic regions of the genome, conferring an extreme plasticity of expression. CONCLUSION This work opens up new avenues for plant disease control, by identifying stage-specific effectors that could be used as targets for the identification of novel durable disease resistance genes, or for the in-depth analysis of chromatin remodeling during plant infection, which could be manipulated to interfere with the global expression of effector genes at crucial stages of plant infection.
Collapse
Affiliation(s)
- Elise J Gay
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Jessica L Soyer
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Nicolas Lapalu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Juliette Linglin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Isabelle Fudal
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057, Evry, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Anne Levrel
- INRAE, Institut Agro, Univ Rennes, IGEPP, 35653, Le Rheu, France
| | - Jocelyne Lemoine
- INRAE, Institut Agro, Univ Rennes, IGEPP, 35653, Le Rheu, France
| | - Regine Delourme
- INRAE, Institut Agro, Univ Rennes, IGEPP, 35653, Le Rheu, France
| | - Thierry Rouxel
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Marie-Hélène Balesdent
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France.
| |
Collapse
|
4
|
Vincenot L, Balesdent MH, Li H, Barbetti MJ, Sivasithamparam K, Gout L, Rouxel T. Occurrence of a new subclade of Leptosphaeria biglobosa in Western Australia. PHYTOPATHOLOGY 2008; 98:321-329. [PMID: 18944083 DOI: 10.1094/phyto-98-3-0321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Stem canker of crucifers is caused by an ascomycete species complex comprising of two main species, Leptosphaeria maculans and L. biglobosa. These are composed of at least seven distinct subclades based on biochemical data or on sequences of internal transcribed spacer (ITS), the mating type MAT1-2 or fragments of actin or beta-tubulin genes. In the course of a wide-scale characterization of the race structure of L. maculans from Western Australia, a few isolates from two locations failed to amplify specific sequences of L. maculans, i.e., the mating-type or minisatellite alleles. Based on both pathogenicity tests and ITS size, these isolates were classified as belonging to the L. biglobosa species. Parsimony and distance analyses performed on ITS, actin and beta-tubulin sequences revealed that these isolates formed a new L. biglobosa subclade, more related to the Canadian L. biglobosa 'canadensis' subclade than to the L. biglobosa 'australensis' isolates previously described in Australia (Victoria). They are termed here as L. biglobosa 'occiaustralensis'. These isolates were mainly recovered from resistant oilseed rape cultivars that included the Brassica rapa sp. sylvestris-derived resistance source, but not from the susceptible cv. Westar. The pathogenicity of L. biglobosa 'occiaustralensis' to cotyledons of most oilseed rape genotypes was higher than that of L. biglobosa 'canadensis' or L. biglobosa 'australensis' isolates.
Collapse
Affiliation(s)
- L Vincenot
- INRA, UMR 1290 (BIOGER-CPP), Route de Saint Cyr, 78026 Versailles Cedex, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Luo JL, Bao K, Nie M, Zhang WQ, Xiao M, Li B. Cladistic and phenetic analyses of relationships among Fusarium spp. in Dongtan wetland by morphology and isozymes. BIOCHEM SYST ECOL 2007. [DOI: 10.1016/j.bse.2006.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Balesdent MH, Barbetti MJ, Li H, Sivasithamparam K, Gout L, Rouxel T. Analysis of Leptosphaeria maculans Race Structure in a Worldwide Collection of Isolates. PHYTOPATHOLOGY 2005; 95:1061-1071. [PMID: 18943304 DOI: 10.1094/phyto-95-1061] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Leptosphaeria maculans, the causal agent of stem canker of oilseed rape, develops gene-for-gene interactions with its hosts. To date, eight L. maculans avirulence (Avr) genes, AvrLm1 to AvrLm8, have been genetically characterized. An additional Avr gene, AvrLm9, that interacts with the resistance gene Rlm9, was genetically characterized here following in vitro crosses of the pathogen. A worldwide collection of 63 isolates, including the International Blackleg of Crucifers Network collection, was genotyped at these nine Avr loci. In a first step, isolates were classified into pathogenicity groups (PGs) using two published differential sets. This analysis revealed geographical disparities as regards the proportion of each PG. Genotyping of isolates at all Avr loci confirmed the disparities between continents, in terms of Avr allele frequencies, particularly for AvrLm2, AvrLm3, AvrLm7, AvrLm8, and AvrLm9, or in terms of race structure, diversity, and complexity. Twenty-six distinct races were identified in the collection. A larger number of races (n = 18) was found in Australia than in Europe (n = 8). Mean number of virulence alleles per isolate was also higher in Australia (5.11 virulence alleles) than in Europe (4.33) and Canada (3.46). Due to the diversity of populations of L. maculans evidenced here at the race level, a new, open terminology is proposed for L. maculans race designation, indicating all Avr loci for which the isolate is avirulent.
Collapse
|
7
|
Mendes-Pereira E, Balesdent MH, Brun H, Rouxel T. Molecular phylogeny of the Leptosphaeria maculans-L. biglobosa species complex. ACTA ACUST UNITED AC 2004; 107:1287-304. [PMID: 15000231 DOI: 10.1017/s0953756203008554] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Leptosphaeria maculans (anamorph Phoma lingam), the ascomycete causing stem canker of crucifers, is a species complex that can be separated into at least seven distinct subgroups using a combination of biochemical and molecular criteria. In the present study sequences of the entire ITS region, including the 5.8S rDNA, of 38 isolates representing the seven subgroups, along with specimens from culture collections, were analysed, compared to those of closely related Leptosphaperia species, and the phylogeny inferred using parsimony and distance analyses. A well-supported clade encompassed all isolates of the seven subgroups along with L. conferta, a known saprobe of dried crucifer stems. The L. maculans isolates were further separated into two well-supported clades corresponding to L. maculans s. str. and the recently named L. biglobosa. Parsimony and distance analyses further separated groups within both species, usually corresponding to specific host plants or geographic origin, e.g. L. maculans 'brassicae' from cultivated Brassica, L. maculans 'lepidii'. from Lepidium sp., L. biglobosa 'brassicae', from various Brassica species, L. biglobosa 'thlaspii' from Thlaspi arvense, L. biglobosa 'erysimii' from Erysimum sp., and L. biglobosa 'canadensis' mostly found in central Canada. The oldest L. maculans specimens maintained in international collections clustered with either L. maculans 'brassicae', L. biglobosa 'brassicae', or a still different group closely related to L. biglobosa 'thlaspii'. The evolutionary relationships between the seven infraspecific groups are discussed in terms of phytopathological relevance and species isolation linked with specific life cycle, geographic isolation or host specificity.
Collapse
Affiliation(s)
- Edouard Mendes-Pereira
- Unité Phytopathologie et Méthodologies de la Détection Versailles, Institut National de la Recherche Agronomique, Route de Saint Cyr, F-78026 Versailles, France
| | | | | | | |
Collapse
|
8
|
Balesdent MH, Attard A, Kühn ML, Rouxel T. New Avirulence Genes in the Phytopathogenic Fungus Leptosphaeria maculans. PHYTOPATHOLOGY 2002; 92:1122-33. [PMID: 18944223 DOI: 10.1094/phyto.2002.92.10.1122] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
ABSTRACT Leptosphaeria maculans, the causal agent of stem canker of oilseed rape (Brassica napus), develops gene-for-gene interactions with oilseed rape, and four L. maculans avirulence (AVR) genes (AvrLm1, AvrLm2, AvrLm4, and alm1) were previously genetically characterized. Based on the analysis of progeny of numerous in vitro crosses between L. maculans isolates showing either already characterized or new differential interactions, this work aims to provide an overview of the AVR genes that may specify incompatibility toward B. napus and the related species B. juncea and B. rapa. Two novel differential interactions were thus identified between L. maculans and B. napus genotypes, one of them corresponding to a complete resistance to European races of L. maculans. In both cases, a single gene control of avirulence was established (genes AvrLm3 and AvrLm7). Similarly, a single gene control of avirulence toward a B. rapa genotype, also resistant to European L. maculans isolates, was demonstrated (gene AvrLm8). Finally, a digenic control of avirulence toward B. juncea was established (genes AvrLm5 and AvrLm6). Linkage analyses demonstrated that at least four unlinked L. maculans genomic regions, including at least one AVR gene cluster (AvrLm1-AvrLm2-AvrLm6), are involved in host specificity. The AvrLm3-AvrLm4-AvrLm7 region may correspond either to a second AVR gene cluster or to a multiallelic AVR gene.
Collapse
|
9
|
Howlett BJ, Idnurm A, Pedras MS. Leptosphaeria maculans, the causal agent of blackleg disease of Brassicas. Fungal Genet Biol 2001; 33:1-14. [PMID: 11407881 DOI: 10.1006/fgbi.2001.1274] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The loculoascomycete Leptosphaeria maculans (anamorph: Phoma lingam) causes blackleg of Brassicas, including Brassica napus (canola or rapeseed). This fungus probably comprises several morphologically similar species; taxonomic relationships between them are being clarified and nomenclature is being revised. The pathotype ("A" group) responsible for major economic losses to canola has been studied in more detail than other members of this species complex and is the focus of this review. L. maculans is haploid, outcrossing, can be transformed, and has a genome size of about 34 Mb. Preliminary genetic and physical maps have been developed and three genes involved in host specificity have been mapped. As yet, few genes have been characterized. Chemical analysis of fungal secondary metabolites has aided understanding of taxonomic relationships and of the host-fungal interaction by the unraveling of pathways for detoxification of antimicrobial phytoalexins. Several phytotoxins (host and nonhost specific) have been identified and a complex pattern of regulation of their synthesis by fungal and host metabolites has been discovered.
Collapse
Affiliation(s)
- B J Howlett
- School of Botany, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | | | | |
Collapse
|
10
|
Balesdent MH, Attard A, Ansan-Melayah D, Delourme R, Renard M, Rouxel T. Genetic Control and Host Range of Avirulence Toward Brassica napus Cultivars Quinta and Jet Neuf in Leptosphaeria maculans. PHYTOPATHOLOGY 2001; 91:70-76. [PMID: 18944280 DOI: 10.1094/phyto.2001.91.1.70] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Leptosphaeria maculans causes blackleg of oilseed rape. Gene-for-gene interactions between race PG3 and Brassica napus cv. Quinta were related to interaction between the fungal avirulence (Avr) gene AvrLm1 and the corresponding resistance gene Rlm1. AvrLm1 isolates were aviru-lent on cvs. Doublol, Vivol, Columbus, and Capitol, and no recombinant phenotypes were observed in the progeny of two AvrLm1 x avrLm1 crosses, suggesting that all of these cultivars may possess Rlm1 or genes displaying the same recognition spectrum, or that a cluster of Avr genes is present at the Avrlm1 locus. In one cross, segregation distortion was observed at the AvrLm1 locus that could be explained by interaction between AvrLm1 and one unlinked deleterious gene, termed Del1. Incompatibility toward cvs. Jet Neuf and Darmor.bzh was governed by a single gene, unlinked to AvrLm1 or Del1. This avirulence gene was termed AvrLm4. Preliminary plant genetic analysis suggested the occurrence of a corresponding dominant resistance gene, termed Rlm4, present in the Quinta line analyzed and linked to Rlm1.
Collapse
|
11
|
Genetic diversity of isolates of the Leptosphaeria maculans species complex from Australia, Europe and North America using amplified fragment length polymorphism analysis. ACTA ACUST UNITED AC 2000. [DOI: 10.1017/s095375629900235x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Somda I, Delourme R, Renard M, Brun H. Pathogenicity of Leptosphaeria maculans Isolates on a Brassica napus-B. juncea Recombinant Line. PHYTOPATHOLOGY 1999; 89:169-175. [PMID: 18944792 DOI: 10.1094/phyto.1999.89.2.169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT The Brassica napus-B. juncea recombinant line (MX), resistant to Leptosphaeria maculans, was produced by interspecific crosses and bears one gene (Jlm1) from the B. juncea B genome. We investigated whether this new resistance was race specific by characterizing protection against a large sample of L. maculans isolates. The pathogenicity of 119 isolates of L. maculans comprising 105 A-group isolates and 14 B-group isolates was studied at the cotyledon stage under controlled conditions using the MX line, the susceptible B. napus cultivar Westar, and the resistant B. juncea cultivar Picra. All but one of the isolates were pathogenic on 'Westar'. Only 3 of the 105 A-group isolates caused very mild symptoms on 'Picra'. Two of these strains were isolated from the MX line and the other from Sinapis arvensis. The other 102 strains caused hypersensitive-type responses. Most B-group isolates were pathogenic on 'Picra'. There were differences in pathogenicity among A-group isolates tested on the MX line, whereas all B-group isolates were pathogenic on this line. A-group isolates obtained from the MX line were more frequently pathogenic on the MX line than those obtained from B. napus cultivars. One isolate from S. arvensis infected the MX line. These results suggest that the resistance of the MX line is unlikely to be durable. Thus, the new resistance gene Jlm1 should probably be used in association with other sources of resistance, in plant breeding schemes, to prevent the breakdown of this resistance.
Collapse
|
13
|
|
14
|
Balesdent MH, Jedryczka M, Jain L, Mendes-Pereira E, Bertrandy J, Rouxel T. Conidia as a Substrate for Internal Transcribed Spacer-Based PCR Identification of Members of the Leptosphaeria maculans Species Complex. PHYTOPATHOLOGY 1998; 88:1210-1217. [PMID: 18944856 DOI: 10.1094/phyto.1998.88.11.1210] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT The blackleg disease of oilseed rape is caused by an ascomycete species complex termed Leptosphaeria maculans (anamorph Phoma lingam). L. maculans isolates collected worldwide were gathered in the International Blackleg of Crucifers Network (IBCN) collection. Representative IBCN isolates, along with one P. nigrificans isolate, were further analyzed using polymerase chain reaction (PCR) amplification of the internal transcribed spacer (ITS) region. ITS size polymorphism discriminated three groups: (i) P. nigrificans, (ii) Tox(+) and 'Lepidium' isolates, and (iii) NA1, NA2, NA3, 'Thlaspi', and 'Erysimum' isolates. Digestion of the ITS region with 19 selected endonucleases showed restriction site polymorphism between the different subgroups: digestion with RsaI could discriminate Tox(+) from 'Lepidium' isolates, whereas digestion with four enzymes, i.e., HaeIII, EcoRII, RsaI, and AluI, was needed to discriminate between NA1, NA2, NA3, 'Thlaspi', and 'Erysimum' isolates. No restriction site polymorphism was observed between isolates within the 'Thlaspi', Tox(+), NA1, and NA2 subgroups. Direct amplification of the ITS region could be achieved using intact conidia, collected either in axenic cultures or on leaf lesions, with only a 4-min 95 degrees C denaturation step prior to PCR reaction. A routine identification protocol requiring no DNA extraction and a sequential use of a few restriction enzymes following PCR has been used successfully for large-scale identification of French field isolates.
Collapse
|
15
|
Faris-Mokaiesh S, Boccara M, Denis JB, Derrien A, Spire D. Differentiation of the "Ascochyta complex" fungi of pea by biochemical and molecular markers. Curr Genet 1996; 29:182-90. [PMID: 8821666 DOI: 10.1007/bf02221583] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Isolates of three closely related pea pathogens, Ascochyta pisi, Ascochyta pinodes (teleomorph Mycosphaerella pinodes) and Phoma medicaginis var. pinodella, were compared by means of isozyme analysis and restriction fragment length polymorphisms (RFLP) of amplified rDNA spacers. Three enzyme systems differentiated A. pisi from M. pinodes and P. m. pinodella. The internal transcribed spacers (ITSs) of the three fungi showed no intraspecific and very little interspecific variation after digestion with 12 endonucleases. Digestion of the intergenic spacer (IGS) with HinfI, and Sau3A revealed uniformity in A. pisi patterns which consistently differed from those of M. pinodes and P. m. pinodella. No clear distinction could be made between the latter two fungi which both showed intraspecific variability. Both biochemical and molecular markers thus discriminated between two Ascochyta species. The results also indicated a closer relationship between two organisms belonging to different genera (Ascochyta and Phoma) than between two species of the same genus (Ascochyta).
Collapse
Affiliation(s)
- S Faris-Mokaiesh
- Station de Pathologie Végétale, Institut National de la Recherche Agronomique, Versailles, France
| | | | | | | | | |
Collapse
|