1
|
Fares P, Duhaini M, Tripathy SK, Srour A, Kondapalli KC. Acidic pH of early endosomes governs SARS-CoV-2 transport in host cells. J Biol Chem 2025; 301:108144. [PMID: 39732172 PMCID: PMC11815683 DOI: 10.1016/j.jbc.2024.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/07/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
Endocytosis is a prominent mechanism for SARS-CoV-2 entry into host cells. Upon internalization into early endosomes (EEs), the virus is transported to late endosomes (LEs), where acidic conditions facilitate spike protein processing and viral genome release. Dynein and kinesin motors drive EE transport along microtubules; dynein moves EEs to the perinuclear region, while kinesins direct them towards the plasma membrane, creating a tug-of-war over the direction of transport. Here, we identify that the luminal pH of EEs is a key factor regulating the outcome of this tug-of-war. Among the known endosomal pH regulators, only the sodium-proton exchanger NHE9 has so far been genetically linked to severe COVID-19 risk. NHE9 functions as a proton leak pathway specifically on endosomes. We show that limiting acidification of EEs by increasing the expression of NHE9 leads to decreased infectivity of the SARS-CoV-2 spike-bearing virus in host cells. Our investigation identified the EE membrane lipid phosphatidylinositol-3-phosphate (PI3P) as a link between luminal pH changes and EE transport. Normally, as EEs mature, PI3P depletes. However, in cells with high NHE9 expression, PI3P persists longer on EEs. PI3P plays a pivotal role in the recruitment of motor proteins and the subsequent movement of EEs. Consistently, we observed that NHE9-mediated alkalization of EEs hindered perinuclear movement. Specifically, EE speed and run length were negatively impacted, ultimately leading to EEs falling off microtubules and impairing the delivery of viral cargo to LEs. NHE9 thus offers a unique opportunity as a viable therapeutic target to impede SARS-CoV-2 host cell entry.
Collapse
Affiliation(s)
- Perla Fares
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Mariam Duhaini
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Suvranta K Tripathy
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Ali Srour
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Kalyan C Kondapalli
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA.
| |
Collapse
|
2
|
Kang C, Fujioka K, Sun R. Atomistic Insight into the Lipid Nanodomains of Synaptic Vesicles. J Phys Chem B 2024; 128:2707-2716. [PMID: 38325816 DOI: 10.1021/acs.jpcb.3c07982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Membrane curvature, once regarded as a passive consequence of membrane composition and cellular architecture, has been shown to actively modulate various properties of the cellular membrane. These changes could also lead to segregation of the constituents of the membrane, generating nanodomains with precise biological properties. Proteins often linked with neurodegeneration (e.g., tau, alpha-synuclein) exhibit an unintuitive affinity for synaptic vesicles in neurons, which are reported to lack distinct, ordered nanodomains based on their composition. In this study, all-atom molecular dynamics simulations are used to study a full-scale synaptic vesicle of realistic Gaussian curvature and its effect on the membrane dynamics and lipid nanodomain organization. Compelling indicators of nanodomain formation, from the perspective of composition, surface areas per lipid, order parameter, and domain lifetime, are identified in the vesicle membrane, which are absent in a flat bilayer of the same lipid composition. Therefore, our study supports the idea that curvature may induce phase separation in an otherwise fluid, disordered membrane.
Collapse
Affiliation(s)
- Christopher Kang
- Department of Chemistry, The University of Hawai'i, Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Kazuumi Fujioka
- Department of Chemistry, The University of Hawai'i, Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Rui Sun
- Department of Chemistry, The University of Hawai'i, Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| |
Collapse
|
3
|
Kundu S, Jaiswal M, Babu Mullapudi V, Guo J, Kamat M, Basso KB, Guo Z. Investigation of Glycosylphosphatidylinositol (GPI)-Plasma Membrane Interaction in Live Cells and the Influence of GPI Glycan Structure on the Interaction. Chemistry 2024; 30:e202303047. [PMID: 37966101 PMCID: PMC10922586 DOI: 10.1002/chem.202303047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) need to interact with other components in the cell membrane to transduce transmembrane signals. A bifunctional GPI probe was employed for photoaffinity-based proximity labelling and identification of GPI-interacting proteins in the cell membrane. This probe contained the entire core structure of GPIs and was functionalized with photoreactive diazirine and clickable alkyne to facilitate its crosslinking with proteins and attachment of an affinity tag. It was disclosed that this probe was more selective than our previously reported probe containing only a part structure of the GPI core for cell membrane incorporation and an improved probe for studying GPI-cell membrane interaction. Eighty-eight unique membrane proteins, many of which are related to GPIs/GPI-anchored proteins, were identified utilizing this probe. The proteomics dataset is a valuable resource for further analyses and data mining to find new GPI-related proteins and signalling pathways. A comparison of these results with those of our previous probe provided direct evidence for the profound impact of GPI glycan structure on its interaction with the cell membrane.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Centre, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Barrado-Gil L, García-Dorival I, Galindo I, Alonso C, Cuesta-Geijo MÁ. Insights into the function of ESCRT complex and LBPA in ASFV infection. Front Cell Infect Microbiol 2023; 13:1163569. [PMID: 38125905 PMCID: PMC10731053 DOI: 10.3389/fcimb.2023.1163569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
The African swine fever virus (ASFV) is strongly dependent on an intact endocytic pathway and a certain cellular membrane remodeling for infection, possibly regulated by the endosomal sorting complexes required for transport (ESCRT). The ESCRT machinery is mainly involved in the coordination of membrane dynamics; hence, several viruses exploit this complex and its accessory proteins VPS4 and ALIX for their own benefit. In this work, we found that shRNA-mediated knockdown of VPS4A decreased ASFV replication and viral titers, and this silencing resulted in an enhanced expression of ESCRT-0 component HRS. ASFV infection slightly increased HRS expression but not under VPS4A depletion conditions. Interestingly, VPS4A silencing did not have an impact on ALIX expression, which was significantly overexpressed upon ASFV infection. Further analysis revealed that ALIX silencing impaired ASFV infection at late stages of the viral cycle, including replication and viral production. In addition to ESCRT, the accessory protein ALIX is involved in endosomal membrane dynamics in a lysobisphosphatydic acid (LBPA) and Ca2+-dependent manner, which is relevant for intraluminal vesicle (ILV) biogenesis and endosomal homeostasis. Moreover, LBPA interacts with NPC2 and/or ALIX to regulate cellular cholesterol traffic, and would affect ASFV infection. Thus, we show that LBPA blocking impacted ASFV infection at both early and late infection, suggesting a function for this unconventional phospholipid in the ASFV viral cycle. Here, we found for the first time that silencing of VPS4A and ALIX affects the infection later on, and blocking LBPA function reduces ASFV infectivity at early and later stages of the viral cycle, while ALIX was overexpressed upon infection. These data suggested the relevance of ESCRT-related proteins in ASFV infection.
Collapse
Affiliation(s)
| | | | | | | | - Miguel Ángel Cuesta-Geijo
- Departmento Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
5
|
Palacio PL, Pleet ML, Reátegui E, Magaña SM. Emerging role of extracellular vesicles in multiple sclerosis: From cellular surrogates to pathogenic mediators and beyond. J Neuroimmunol 2023; 377:578064. [PMID: 36934525 PMCID: PMC10124134 DOI: 10.1016/j.jneuroim.2023.578064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
Abstract
Multiple Sclerosis (MS) is a chronic, inflammatory demyelinating disease of the central nervous system (CNS) driven by a complex interplay of genetic and environmental factors. While the therapeutic arsenal has expanded significantly for management of relapsing forms of MS, treatment of individuals with progressive MS is suboptimal. This treatment inequality is in part due to an incomplete understanding of pathomechanisms at different stages of the disease-underscoring the critical need for new biomarkers. Extracellular vesicles (EVs) and their bioactive cargo have emerged as endogenous nanoparticles with great theranostic potential-as diagnostic and prognostic biomarkers and ultimately as therapeutic candidates for precision nanotherapeutics. The goals of this review are to: 1) summarize the current data investigating the role of EVs and their bioactive cargo in MS pathogenesis, 2) provide a high level overview of advances and challenges in EV isolation and characterization for translational studies, and 3) conclude with future perspectives on this evolving field.
Collapse
Affiliation(s)
- Paola Loreto Palacio
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Michelle L Pleet
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Setty M Magaña
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
6
|
Narbona J, Gordo RG, Tomé-Amat J, Lacadena J. A New Optimized Version of a Colorectal Cancer-Targeted Immunotoxin Based on a Non-Immunogenic Variant of the Ribotoxin α-Sarcin. Cancers (Basel) 2023; 15:cancers15041114. [PMID: 36831456 PMCID: PMC9954630 DOI: 10.3390/cancers15041114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Due to its incidence and mortality, cancer remains one of the main risks to human health and lifespans. In order to overcome this worldwide disease, immunotherapy and the therapeutic use of immunotoxins have arisen as promising approaches. However, the immunogenicity of foreign proteins limits the dose of immunotoxins administered, thereby leading to a decrease in its therapeutic benefit. In this study, we designed two different variants of non-immunogenic immunotoxins (IMTXA33αSDI and IMTXA33furαSDI) based on a deimmunized variant of the ribotoxin α-sarcin. The inclusion of a furin cleavage site in IMTXA33furαSDI would allow a more efficient release of the toxic domain to the cytosol. Both immunotoxins were produced and purified in the yeast Pichia pastoris and later functionally characterized (both in vitro and in vivo), and immunogenicity assays were carried out. The results showed that both immunotoxins were functionally active and less immunogenic than the wild-type immunotoxin. In addition, IMTXA33furαSDI showed a more efficient antitumor effect (both in vitro and in vivo) due to the inclusion of the furin linker. These results constituted a step forward in the optimization of immunotoxins with low immunogenicity and enhanced antitumor activity, which can lead to potential better outcomes in cancer treatment.
Collapse
Affiliation(s)
- Javier Narbona
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Rubén G. Gordo
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Jaime Tomé-Amat
- Centre for Plant Biotechnology and Genomics (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
7
|
Zhou Q, Wang Y, Han X, Fu S, Zhu C, Chen Q. Efficacy of Resveratrol Supplementation on Glucose and Lipid Metabolism: A Meta-Analysis and Systematic Review. Front Physiol 2022; 13:795980. [PMID: 35431994 PMCID: PMC9009313 DOI: 10.3389/fphys.2022.795980] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Background Lipids are ubiquitous metabolites with diverse functions. Excessive lipid accumulation can trigger lipid redistribution among metabolic organs such as adipose, liver and muscle, thus altering the lipid metabolism. It has been revealed that disturbed lipid metabolism would cause multiple disease complications and is highly correlated with human morbidity. Resveratrol (RSV), a phytoestrogen with antioxidant, can modulate insulin resistance and lipid profile. Recently, research on RSV supplementation to improve glucose and lipid metabolism has been controversial. A meta-analysis may provide a scientific reference for the relationship between lipid metabolism and RSV supplementation. Methods and Analysis We searched the PubMed, Cochrane Library, Web of Science, and Embase databases from inception to October 2021 using relevant keywords. A comprehensive search for randomized controlled trials (RCTs) was performed. For calculating pooled effects, continuous data were pooled by mean difference (MD) and 95% confidence interval (CI). Adopting the method of inverse-variance with a random-effect, all related statistical analyses were performed using the Rev Man V.5.3 and STATA V.15 software. Results A total of 25 articles were incorporated into the final meta-analysis after removal of duplicates by checking titles and abstracts and excluding non-relevant articles. The selected articles had a total of 1,171 participants, including 578 in the placebo group and 593 in the intervention group. According to the current meta-analysis, which demonstrated that there was a significant decrease in waist circumference (SMD = –0.36; 95% CI: –0.59, –0.14; P = 0.002; I2 = 88%), hemoglobin A1c (–0.48; –0.69, –0.27; P ≤ 0.001; I2 = 94%), total cholesterol (–0.15; –0.3, –0.01; P = 0.003; I2 = 94%), low density lipoprotein cholesterol (–0.42; –0.57, –0.27; P ≤ 0.001; I2 = 92%), high density lipoprotein cholesterol (0.16; –0.31, –0.02; P = 0.03; I2 = 81%) following resveratrol administration. Conclusion These results suggest that RSV has a dramatic impact on regulating lipid and glucose metabolism, and the major clinical value of resveratrol intake is for obese and diabetic patients. We hope that this study could provide more options for clinicians using RSV. Furthermore, in the future, large-scale and well-designed trials will be warranted to confirm these results. Systematic Review Registration Website [https://www.crd.york.ac.uk/prospero/#recordDetails], identifier [CRD42021244904].
Collapse
|
8
|
Retrofusion of intralumenal MVB membranes parallels viral infection and coexists with exosome release. Curr Biol 2021; 31:3884-3893.e4. [PMID: 34237268 PMCID: PMC8445322 DOI: 10.1016/j.cub.2021.06.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/04/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022]
Abstract
The endosomal system constitutes a highly dynamic vesicle network used to relay materials and signals between the cell and its environment.1 Once internalized, endosomes gradually mature into late acidic compartments and acquire a multivesicular body (MVB) organization through invagination of the limiting membrane (LM) to form intraluminal vesicles (ILVs).2 Cargoes sequestered into ILVs can either be delivered to lysosomes for degradation or secreted following fusion of the MVB with the plasma membrane.3 It has been speculated that commitment to ILVs is not a terminal event, and that a return pathway exists, allowing “back-fusion” or “retrofusion” of intraluminal membranes to the LM.4 The existence of retrofusion as a way to support membrane equilibrium within the MVB has been widely speculated in various cell biological contexts, including exosome uptake5 and major histocompatibility complex class II (MHC class II) antigen presentation.6, 7, 8, 9 Given the small physical scale, retrofusion of ILVs cannot be measured with conventional techniques. To circumvent this, we designed a chemically tunable cell-based system to monitor retrofusion in real time. Using this system, we demonstrate that retrofusion occurs as part of the natural MVB lifestyle, with attributes parallel to those of viral infection. Furthermore, we find that retrofusion and exocytosis coexist in an equilibrium, implying that ILVs inert to retrofusion comprise a significant fraction of exosomes destined for secretion. MVBs thus contain three types of ILVs: those committed to lysosomal degradation, those retrofusing ILVs, and those subject to secretion in the form of exosomes. Video abstract
MVBs are complex organelles with intraluminal vesicles bound by the limiting membrane Intraluminal membranes are in a dynamic equilibrium with the limiting membrane Retrofusion of internal vesicles is controlled by processes used for viral fusion Exosomes arise from internal MVB vesicles not participating in retrofusion
Collapse
|
9
|
Vazquez Reyes S, Ray S, Aguilera J, Sun J. Development of an In Vitro Membrane Model to Study the Function of EsxAB Heterodimer and Establish the Role of EsxB in Membrane Permeabilizing Activity of Mycobacterium tuberculosis. Pathogens 2020; 9:pathogens9121015. [PMID: 33276541 PMCID: PMC7761419 DOI: 10.3390/pathogens9121015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022] Open
Abstract
EsxA and EsxB are secreted as a heterodimer and have been shown to play critical roles in phagosome rupture and translocation of Mycobacterium tuberculosis into the cytosol. Recent in vitro studies have suggested that the EsxAB heterodimer is dissociated upon acidification, which might allow EsxA insertion into lipid membranes. While the membrane permeabilizing activity (MPA) of EsxA has been well characterized in liposomes composed of di-oleoyl-phosphatidylcholine (DOPC), the MPA of EsxAB heterodimer has not been detected through in vitro assays due to its negligible activity with DOPC liposomes. In this study, we established a new in vitro membrane assay to test the MPA activity of N-terminal acetylated EsxA (N-EsxA). We established that a dose-dependent increase in anionic charged lipids enhances the MPA of N-EsxA. The MPA of both N-EsxA and EsxAB were significantly increased with this new liposome system and made it possible to characterize the MPA of EsxAB in more physiologically-relevant conditions. We tested, for the first time, the effect of temperature on the MPA of N-EsxA and EsxAB in this new system. Interestingly, the MPA of N-EsxA was lower at 37 °C than at RT, and on the contrary, the MPA of EsxAB was higher at 37 °C than at RT. Surprisingly, after incubation at 37 °C, the MPA of N-EsxA continuously decreased over time, while MPA of EsxAB remained stable, suggesting EsxB plays a key role in stabilizing N-EsxA to preserve its MPA at 37 °C. In summary, this study established a new in vitro model system that characterizes the MPA of EsxAB and the role of EsxB at physiological-relevant conditions.
Collapse
Affiliation(s)
- Salvador Vazquez Reyes
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; (S.V.R.); (J.A.)
- Border Biomedical Research Center at University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Supriyo Ray
- Department of Chemistry & Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
- Department of Natural Sciences, Bowie State University, 14000 Jericho Park Rd, Bowie, MD 20715, USA
- Correspondence: (S.R.); (J.S.)
| | - Javier Aguilera
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; (S.V.R.); (J.A.)
- Border Biomedical Research Center at University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Jianjun Sun
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; (S.V.R.); (J.A.)
- Border Biomedical Research Center at University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
- Correspondence: (S.R.); (J.S.)
| |
Collapse
|
10
|
Petkovic M, Oses-Prieto J, Burlingame A, Jan LY, Jan YN. TMEM16K is an interorganelle regulator of endosomal sorting. Nat Commun 2020; 11:3298. [PMID: 32620747 PMCID: PMC7335067 DOI: 10.1038/s41467-020-17016-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
Communication between organelles is essential for their cellular homeostasis. Neurodegeneration reflects the declining ability of neurons to maintain cellular homeostasis over a lifetime, where the endolysosomal pathway plays a prominent role by regulating protein and lipid sorting and degradation. Here we report that TMEM16K, an endoplasmic reticulum lipid scramblase causative for spinocerebellar ataxia (SCAR10), is an interorganelle regulator of the endolysosomal pathway. We identify endosomal transport as a major functional cluster of TMEM16K in proximity biotinylation proteomics analyses. TMEM16K forms contact sites with endosomes, reconstituting split-GFP with the small GTPase RAB7. Our study further implicates TMEM16K lipid scrambling activity in endosomal sorting at these sites. Loss of TMEM16K function led to impaired endosomal retrograde transport and neuromuscular function, one of the symptoms of SCAR10. Thus, TMEM16K-containing ER-endosome contact sites represent clinically relevant platforms for regulating endosomal sorting.
Collapse
Affiliation(s)
- Maja Petkovic
- Departments of Physiology, Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, 94158, USA.
| | - Juan Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Lily Yeh Jan
- Departments of Physiology, Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Yuh Nung Jan
- Departments of Physiology, Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, 94158, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.
| |
Collapse
|
11
|
Raote I, Ernst AM, Campelo F, Rothman JE, Pincet F, Malhotra V. TANGO1 membrane helices create a lipid diffusion barrier at curved membranes. eLife 2020; 9:57822. [PMID: 32452385 PMCID: PMC7266638 DOI: 10.7554/elife.57822] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
We have previously shown TANGO1 organises membranes at the interface of the endoplasmic reticulum (ER) and ERGIC/Golgi (Raote et al., 2018). TANGO1 corrals retrograde membranes at ER exit sites to create an export conduit. Here the retrograde membrane is, in itself, an anterograde carrier. This mode of forward transport necessitates a mechanism to prevent membrane mixing between ER and the retrograde membrane. TANGO1 has an unusual membrane helix organisation, composed of one membrane-spanning helix (TM) and another that penetrates the inner leaflet (IM). We have reconstituted these membrane helices in model membranes and shown that TM and IM together reduce the flow of lipids at a region of defined shape. We have also shown that the helices align TANGO1 around an ER exit site. We suggest this is a mechanism to prevent membrane mixing during TANGO1-mediated transfer of bulky secretory cargos from the ER to the ERGIC/Golgi via a tunnel.
Collapse
Affiliation(s)
- Ishier Raote
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andreas M Ernst
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - James E Rothman
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Frederic Pincet
- Department of Cell Biology, Yale School of Medicine, New Haven, United States.,Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
12
|
Ruiz-de-la-Herrán J, Tomé-Amat J, Lázaro-Gorines R, Gavilanes JG, Lacadena J. Inclusion of a Furin Cleavage Site Enhances Antitumor Efficacy against Colorectal Cancer Cells of Ribotoxin α-Sarcin- or RNase T1-Based Immunotoxins. Toxins (Basel) 2019; 11:E593. [PMID: 31614771 PMCID: PMC6832446 DOI: 10.3390/toxins11100593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Immunotoxins are chimeric molecules that combine the specificity of an antibody to recognize and bind tumor antigens with the potency of the enzymatic activity of a toxin, thus, promoting the death of target cells. Among them, RNases-based immunotoxins have arisen as promising antitumor therapeutic agents. In this work, we describe the production and purification of two new immunoconjugates, based on RNase T1 and the fungal ribotoxin α-sarcin, with optimized properties for tumor treatment due to the inclusion of a furin cleavage site. Circular dichroism spectroscopy, ribonucleolytic activity studies, flow cytometry, fluorescence microscopy, and cell viability assays were carried out for structural and in vitro functional characterization. Our results confirm the enhanced antitumor efficiency showed by these furin-immunotoxin variants as a result of an improved release of their toxic domain to the cytosol, favoring the accessibility of both ribonucleases to their substrates. Overall, these results represent a step forward in the design of immunotoxins with optimized properties for potential therapeutic application in vivo.
Collapse
Affiliation(s)
- Javier Ruiz-de-la-Herrán
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Jaime Tomé-Amat
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
- Centre for Plant Biotechnology and Genomics (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain.
| | - Rodrigo Lázaro-Gorines
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Javier Lacadena
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| |
Collapse
|
13
|
McCauliff LA, Langan A, Li R, Ilnytska O, Bose D, Waghalter M, Lai K, Kahn PC, Storch J. Intracellular cholesterol trafficking is dependent upon NPC2 interaction with lysobisphosphatidic acid. eLife 2019; 8:50832. [PMID: 31580258 PMCID: PMC6855803 DOI: 10.7554/elife.50832] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022] Open
Abstract
Unesterified cholesterol accumulation in the late endosomal/lysosomal (LE/LY) compartment is the cellular hallmark of Niemann-Pick C (NPC) disease, caused by defects in the genes encoding NPC1 or NPC2. We previously reported the dramatic stimulation of NPC2 cholesterol transport rates to and from model membranes by the LE/LY phospholipid lysobisphosphatidic acid (LBPA). It had been previously shown that enrichment of NPC1-deficient cells with LBPA results in cholesterol clearance. Here we demonstrate that LBPA enrichment in human NPC2-deficient cells, either directly or via its biosynthetic precursor phosphtidylglycerol (PG), is entirely ineffective, indicating an obligate functional interaction between NPC2 and LBPA in cholesterol trafficking. We further demonstrate that NPC2 interacts directly with LBPA and identify the NPC2 hydrophobic knob domain as the site of interaction. Together these studies reveal a heretofore unknown step of intracellular cholesterol trafficking which is critically dependent upon the interaction of LBPA with functional NPC2 protein. Cholesterol is a type of fat that is essential for many processes in the body, such as repairing damaged cells and producing certain hormones. Normally, cholesterol enters cells from the bloodstream and is then moved to the parts of the cell that need it via a process known as ‘trafficking’. When cholesterol trafficking goes wrong, abnormally large amounts of cholesterol and other fats accumulate within the cell. Over time, these fatty deposits become toxic to cells and eventually damage the affected tissues. Niemann-Pick type C disease (NPC) is a severe genetic disorder affecting cholesterol trafficking. It is characterized by cholesterol build-up in multiple tissues, including the brain, which ultimately causes degeneration and death of nerve cells. Two proteins, NPC1 and NPC2, are involved in NPC disease. Both proteins normally help move cholesterol out of important trafficking compartments (known as the endosomal and lysosomal compartments) to other areas of the cell where it is needed. Patients with the disease can have mutations in either the gene for NPC1 or the gene for NPC2. This means that cells from NPC1 patients do not make enough functional NPC1 protein (but contain working NPC2), and vice versa. Previous studies had shown that giving cells with NPC1 mutations large amounts of the small molecule lysobisphosphatidic acid (LBPA for short) could compensate for the loss of NPC1, and stop the toxic build-up of cholesterol. McCauliff, Langan, Li et al. therefore wanted to explore exactly how LBPA was doing this. They had shown that LBPA dramatically increased the ability of purified NPC2 protein to transport cholesterol, and wondered if the effect of LBPA in the cells without NPC1 depended on NPC2. They predicted that boosting LBPA levels would not work in cells lacking NPC2. Biochemical experiments using purified protein showed that LBPA and NPC2 did indeed interact directly with each other. Systematically changing different building blocks of NPC2 revealed that a single region of the protein is sensitive to LBPA, and when this region was altered, LBPA could no longer interact with NPC2. Since LBPA is naturally produced by cells, they then stimulated cells grown in the laboratory to generate more LBPA using its precursor phosphatidylglycerol. They used cells from patients with mutations in either NPC1 or NPC2 and demonstrated that LBPA’s ability to reverse the accumulation of cholesterol was dependent on its interaction with NPC2. Thus, increasing LBPA levels in cells from patients with NPC1 mutations was beneficial, but had no effect on cells from patients with NPC2 mutations. These results shed new light not only on how cells transport cholesterol, but also on potential methods to combat disorders of cellular cholesterol trafficking. In the future, LBPA could be developed as a genetically tailored, patient-specific therapy for diseases like NPC.
Collapse
Affiliation(s)
- Leslie A McCauliff
- Department of Nutritional Sciences, Rutgers University, New Brunswick, United States.,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, United States
| | - Annette Langan
- Department of Nutritional Sciences, Rutgers University, New Brunswick, United States.,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, United States
| | - Ran Li
- Department of Nutritional Sciences, Rutgers University, New Brunswick, United States.,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, United States
| | - Olga Ilnytska
- Department of Nutritional Sciences, Rutgers University, New Brunswick, United States.,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, United States
| | - Debosreeta Bose
- Department of Nutritional Sciences, Rutgers University, New Brunswick, United States.,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, United States
| | - Miriam Waghalter
- Department of Nutritional Sciences, Rutgers University, New Brunswick, United States
| | - Kimberly Lai
- Department of Nutritional Sciences, Rutgers University, New Brunswick, United States
| | - Peter C Kahn
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, United States
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, United States.,Rutgers Center for Lipid Research, Rutgers University, New Brunswick, United States
| |
Collapse
|
14
|
Ray S, Vazquez Reyes S, Xiao C, Sun J. Effects of membrane lipid composition on Mycobacterium tuberculosis EsxA membrane insertion: A dual play of fluidity and charge. Tuberculosis (Edinb) 2019; 118:101854. [PMID: 31430698 PMCID: PMC6817408 DOI: 10.1016/j.tube.2019.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/29/2022]
Abstract
As a key virulence factor of Mycobacterium tuberculosis, EsxA or 6-kDa early secreted antigenic target (ESAT-6) has been implicated in phagosome rupture and mycobacterial translocation from the phagosome to the cytosol within macrophages. Our previous studies have shown that EsxA permeabilizes liposomal membrane at acidic pH and a membrane-permeabilization defective mutant Q5K attenuates mycobacterial cytosolic translocation and virulence in macrophages. To further probe the mechanism of EsxA membrane permeabilization, here we characterized the effects of various lipid compositions, including biologically relevant phagosome-mimicking lipids and lipid rafts, on the structural stability and membrane insertion of EsxA WT and Q5K. We have found a complex dual play of membrane fluidity and charge in regulating EsxA membrane insertion. Moreover, Q5K affects the membrane insertion through a structure- and lipid composition-independent mechanism. The results of this study provide a novel insights into the mechanism of EsxA membrane interaction.
Collapse
Affiliation(s)
- Supriyo Ray
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| | - Salvador Vazquez Reyes
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, TX, 79968, USA; Border Biomedical Research Center at University of Texas at El Paso, 500 West University Avenue, TX, 79968, USA
| | - Chuan Xiao
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA; Border Biomedical Research Center at University of Texas at El Paso, 500 West University Avenue, TX, 79968, USA
| | - Jianjun Sun
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, TX, 79968, USA; Border Biomedical Research Center at University of Texas at El Paso, 500 West University Avenue, TX, 79968, USA.
| |
Collapse
|
15
|
Wagner N, Stephan M, Höglinger D, Nadler A. A Click Cage: Organelle-Specific Uncaging of Lipid Messengers. Angew Chem Int Ed Engl 2018; 57:13339-13343. [PMID: 30048020 PMCID: PMC6175159 DOI: 10.1002/anie.201807497] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Indexed: 12/16/2022]
Abstract
Lipid messengers exert their function on short time scales at distinct subcellular locations, yet most experimental approaches for perturbing their levels trigger cell-wide concentration changes. Herein, we report on a coumarin-based photocaging group that can be modified with organelle-targeting moieties by click chemistry and thus enables photorelease of lipid messengers in distinct organelles. We show that caged arachidonic acid and sphingosine derivatives can be selectively delivered to mitochondria, the ER, lysosomes, and the plasma membrane. By comparing the cellular calcium transients induced by localized uncaging of arachidonic acid and sphingosine, we show that the precise intracellular localization of the released second messenger is crucial for the signaling outcome. Ultimately, we anticipate that this new class of caged compounds will greatly facilitate the study of cellular processes on the organelle level.
Collapse
Affiliation(s)
- Nicolai Wagner
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 10801307DresdenGermany
| | - Milena Stephan
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 10801307DresdenGermany
| | - Doris Höglinger
- Biochemistry Center (BZH)Heidelberg UniversityIm Neuenheimer Feld 32869128HeidelbergGermany
| | - André Nadler
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 10801307DresdenGermany
| |
Collapse
|
16
|
Wagner N, Stephan M, Höglinger D, Nadler A. Der Click‐Cage: Organell‐spezifische Photoaktivierung von Lipid‐Botenstoffen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nicolai Wagner
- Max-Planck-Institut für Molekulare Zellbiologie und Genetik Pfotenhauerstraße 108 01307 Dresden Deutschland
| | - Milena Stephan
- Max-Planck-Institut für Molekulare Zellbiologie und Genetik Pfotenhauerstraße 108 01307 Dresden Deutschland
| | - Doris Höglinger
- Biochemiezentrum (BZH)Universtität Heidelberg Im Neuenheimer Feld 328 69128 Heidelberg Deutschland
| | - André Nadler
- Max-Planck-Institut für Molekulare Zellbiologie und Genetik Pfotenhauerstraße 108 01307 Dresden Deutschland
| |
Collapse
|
17
|
Heitzig N, Kühnl A, Grill D, Ludewig K, Schloer S, Galla HJ, Grewal T, Gerke V, Rescher U. Cooperative binding promotes demand-driven recruitment of AnxA8 to cholesterol-containing membranes. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:349-358. [PMID: 29306076 DOI: 10.1016/j.bbalip.2018.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/22/2017] [Accepted: 01/01/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Nicole Heitzig
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Alexander Kühnl
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - David Grill
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Katharina Ludewig
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Sebastian Schloer
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Hans-Joachim Galla
- Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Str. 2, 48149 Muenster, Germany
| | - Thomas Grewal
- Faculty of Pharmacy A15, University of Sydney, Sydney, NSW 2006, Australia
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Ursula Rescher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW It is well established that the antiphospholipid syndrome (APS) is caused by antiphospholipid antibodies (aPL). While several underlying mechanisms have been described in the past, many open questions remain. Here, we will review data on endosomal signaling and, in particular, redox signaling in APS. RECENT FINDINGS Endosomal redox signaling has been implicated in several cellular processes including signaling of proinflammatory cytokines. We have shown that certain aPL can activate endosomal NADPH-oxidase (NOX) in several cell types followed by induction of proinflammatory and procoagulant cellular responses in vitro. Involvement of endosomes in aPL signaling has also been reported by others. In wild-type mice but not in NOX-deficient mice, aPL accelerate venous thrombus formation underscoring the relevance of endosomal NOX. Furthermore, hydroxychloroquine (HCQ) inhibits activation of endosomal NOX and prevents thrombus formation in aPL-treated mice. Endosomal redox signaling is an important novel mechanism involved in APS pathogenesis. This makes endosomes a potential target for future treatment approaches of APS.
Collapse
|
19
|
Vartabedian VF, Savage PB, Teyton L. The processing and presentation of lipids and glycolipids to the immune system. Immunol Rev 2017; 272:109-19. [PMID: 27319346 DOI: 10.1111/imr.12431] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The recognition of CD1-lipid complexes by T cells was discovered 20 years ago and has since been an emerging and expanding field of investigation. Unlike protein antigens, which are presented on MHC class I and II molecules, lipids can only be presented by CD1 molecules, a unique family of MHC-like proteins whose singularity is a hydrophobic antigen-binding groove. The processing and loading of lipid antigens inside this groove of CD1 molecules require localization to endosomal and lysosomal subcellular compartments and their acidic pHs. This particular environment provides the necessary glycolytic enzymes and lipases that process lipid and glycolipid antigens, as well as a set of lipid transfer proteins that load the final version of the antigen inside the groove of CD1. The overall sequence of events needed for efficient presentation of lipid antigens is now understood and presented in this review. However, a large number of important details have been elusive. This elusiveness is linked to the inherent technical difficulties of studying lipids and the lipid-protein interface in vitro and in vivo. Here, we will expose some of those limitations and describe new approaches to address them during the characterization of lipids and glycolipids antigen presentation.
Collapse
Affiliation(s)
- Vincent F Vartabedian
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Luc Teyton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
20
|
Trubiani O, Guarnieri S, Orciani M, Salvolini E, Di Primio R. Sphingolipid Microdomains Mediate CD38 Internalization: Topography of the Endocytosis. Int J Immunopathol Pharmacol 2016; 17:293-300. [PMID: 15461863 DOI: 10.1177/039463200401700309] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plasma membranes of several cell types contain specialized microdomains (or lipid rafts) enriched in sphingolipids, cholesterol, sphingomyelin, and glycosyl-phosphatidylinositol-anchored proteins. These membrane domains are characterized by detergent insolubility at low temperatures and low buoyant density. Human CD38 is the prototype of a gene family encoding surface molecules endowed with multiple functional activities. The endocytosis of the human CD38 molecule has been investigated in normal lymphocytes and in a number of leukemia- and lymphoma-derived cell lines demonstrating that internalization after CD38 ligation is a reproducible event involving only a fraction of the whole amount of the surface molecule. This study reports the results obtained by conventional, confocal, and electron microscopy on the effects induced by the engagement of the molecule with agonistic mAb, reproducing the signals mediated by its natural ligand. The results demonstrate that the endocytosis induced as consequence of CD38 ligation is preceded by a thorough rearrangement of the cell surface with formation of glycosphingolipid- and cholesterol-rich plasma membrane microdomains. These data suggest that specialized raft microdomains might be the plasma membrane structure through which CD38 translocates at intracellular level. The CD38/lipid interactions during the coated pit formation trigger a process that generate membrane curvature, considered as the first step of CD38 endocytosis. Moreover, ultrastructural studies show that early CD38+ endosomes are pleiomorphic and contain cisternal and vesicular regions. Late endosomes exhibit a complex organisation, containing uncoupled CD38-ligand multivesicular- or multilamellar-regions.
Collapse
Affiliation(s)
- O Trubiani
- Dipartimento di Scienze Odontostomatologiche, University of Chieti, Italy
| | | | | | | | | |
Collapse
|
21
|
Castellanos-Castro S, Cerda-García-Rojas CM, Javier-Reyna R, Pais-Morales J, Chávez-Munguía B, Orozco E. Identification of the phospholipid lysobisphosphatidic acid in the protozoan Entamoeba histolytica: An active molecule in endocytosis. Biochem Biophys Rep 2015; 5:224-236. [PMID: 28955828 PMCID: PMC5600446 DOI: 10.1016/j.bbrep.2015.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/25/2015] [Accepted: 12/21/2015] [Indexed: 12/15/2022] Open
Abstract
Phospholipids are essential for vesicle fusion and fission and both are fundamental events for Entamoeba histolytica phagocytosis. Our aim was to identify the lysobisphosphatidic acid (LBPA) in trophozoites and investigate its cellular fate during endocytosis. LBPA was detected by TLC in a 0.5 Rf spot of total lipids, which co-migrated with the LBPA standard. The 6C4 antibody, against LBPA recognized phospholipids extracted from this spot. Reverse phase LC-ESI-MS and MS/MS mass spectrometry revealed six LBPA species of m/z 772.58–802.68. LBPA was associated to pinosomes and phagosomes. Intriguingly, during pinocytosis, whole cell fluorescence quantification showed that LBPA dropped 84% after 15 min incubation with FITC-Dextran, and after 60 min, it increased at levels close to steady state conditions. Similarly, during erythrophagocytosis, after 15 min, LBPA also dropped in 36% and increased after 60 and 90 min. EhRab7A protein appeared in some vesicles with LBPA in steady state conditions, but after phagocytosis co-localization of both molecules increased and in late phases of erythrophagocytosis they were found in huge phagosomes or multivesicular bodies with many intraluminal vacuoles, and surrounding ingested erythrocytes and phagosomes. The 6C4 and anti-EhADH (EhADH is an ALIX family protein) antibodies and Lysotracker merged in about 50% of the vesicles in steady state conditions and throughout phagocytosis. LBPA and EhADH were also inside huge phagosomes. These results demonstrated that E. histolytica LBPA is associated to pinosomes and phagosomes during endocytosis and suggested differences of LBPA requirements during pinocytosis and phagocytosis.
LBPA is identified for the first time in the protozoan Entamoeba histolytica. LBPA is found in pinosomes and in 10–20 µm diameter phagosomes or multivesicular bodies. LBPA appeared associated with EhRab7A protein, a late endosomes marker. LBPA interacts with EhADH (an ALIX family protein) during phagocytosis.
Collapse
Affiliation(s)
- Silvia Castellanos-Castro
- Departamento de Infectómica y Patogénesis Molecular, Mexico.,Colegio de Ciencia y Tecnología, Universidad Autónoma de la Ciudad de México, Dr. García Diego 168, CP 06720, D.F. México, México
| | - Carlos M Cerda-García-Rojas
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Avenue IPN, 2508, CP 07360, D.F. México, México
| | | | | | | | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Mexico
| |
Collapse
|
22
|
de Araújo MEG, Lamberti G, Huber LA. Purification of Early and Late Endosomes. Cold Spring Harb Protoc 2015; 2015:pdb.top074443. [PMID: 26631131 DOI: 10.1101/pdb.top074443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Proteomic analysis of early and late endosomes has been constrained by the limited purity of the endosomal fractions that can be achieved by biochemical methods. Here we briefly review endocytic pathways, and then introduce fractionation strategies that have been used to improve the purity of isolated endosomes. In addition, we describe innovative proteomics analysis methods that have been shown to partially circumvent the limitations found in the enrichment steps.
Collapse
Affiliation(s)
- Mariana E G de Araújo
- Biocenter, Division of Cell Biology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Giorgia Lamberti
- Biocenter, Division of Cell Biology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Lukas A Huber
- Biocenter, Division of Cell Biology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| |
Collapse
|
23
|
Wijdeven RH, Jongsma MLM, Neefjes J, Berlin I. ER contact sites direct late endosome transport. Bioessays 2015; 37:1298-302. [DOI: 10.1002/bies.201500095] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ruud H. Wijdeven
- Division of Cell Biology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Marlieke L. M. Jongsma
- Department of Immunopathology; Sanquin Research and Landsteiner Laboratory AMC/UvA; Amsterdam The Netherlands
| | - Jacques Neefjes
- Division of Cell Biology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Ilana Berlin
- Division of Cell Biology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| |
Collapse
|
24
|
Ratnayake PU, Prabodha Ekanayaka EA, Komanduru SS, Weliky DP. Full-length trimeric influenza virus hemagglutinin II membrane fusion protein and shorter constructs lacking the fusion peptide or transmembrane domain: Hyperthermostability of the full-length protein and the soluble ectodomain and fusion peptide make significant contributions to fusion of membrane vesicles. Protein Expr Purif 2015; 117:6-16. [PMID: 26297995 DOI: 10.1016/j.pep.2015.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Influenza virus is a class I enveloped virus which is initially endocytosed into a host respiratory epithelial cell. Subsequent reduction of the pH to the 5-6 range triggers a structural change of the viral hemagglutinin II (HA2) protein, fusion of the viral and endosomal membranes, and release of the viral nucleocapsid into the cytoplasm. HA2 contains fusion peptide (FP), soluble ectodomain (SE), transmembrane (TM), and intraviral domains with respective lengths of ∼ 25, ∼ 160, ∼ 25, and ∼ 10 residues. The present work provides a straightforward protocol for producing and purifying mg quantities of full-length HA2 from expression in bacteria. Biophysical and structural comparisons are made between full-length HA2 and shorter constructs including SHA2 ≡ SE, FHA2 ≡ FP+SE, and SHA2-TM ≡ SE+TM constructs. The constructs are helical in detergent at pH 7.4 and the dominant trimer species. The proteins are highly thermostable in decylmaltoside detergent with Tm>90 °C for HA2 with stabilization provided by the SE, FP, and TM domains. The proteins are likely in a trimer-of-hairpins structure, the final protein state during fusion. All constructs induce fusion of negatively-charged vesicles at pH 5.0 with much less fusion at pH 7.4. Attractive protein/vesicle electrostatics play a role in fusion, as the proteins are positively-charged at pH 5.0 and negatively-charged at pH 7.4 and the pH-dependence of fusion is reversed for positively-charged vesicles. Comparison of fusion between constructs supports significant contributions to fusion from the SE and the FP with little effect from the TM.
Collapse
Affiliation(s)
- Punsisi U Ratnayake
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| | - E A Prabodha Ekanayaka
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| | - Sweta S Komanduru
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
25
|
Akgoc Z, Sena-Esteves M, Martin DR, Han X, d'Azzo A, Seyfried TN. Bis(monoacylglycero)phosphate: a secondary storage lipid in the gangliosidoses. J Lipid Res 2015; 56:1006-13. [PMID: 25795792 DOI: 10.1194/jlr.m057851] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 01/24/2023] Open
Abstract
Bis(monoacylglycero)phosphate (BMP) is a negatively charged glycerophospholipid with an unusual sn-1;sn-1' structural configuration. BMP is primarily enriched in endosomal/lysosomal membranes. BMP is thought to play a role in glycosphingolipid degradation and cholesterol transport. Elevated BMP levels have been found in many lysosomal storage diseases (LSDs), suggesting an association with lysosomal storage material. The gangliosidoses are a group of neurodegenerative LSDs involving the accumulation of either GM1 or GM2 gangliosides resulting from inherited deficiencies in β-galactosidase or β-hexosaminidase, respectively. Little information is available on BMP levels in gangliosidosis brain tissue. Our results showed that the content of BMP in brain was significantly greater in humans and in animals (mice, cats, American black bears) with either GM1 or GM2 ganglioside storage diseases, than in brains of normal subjects. The storage of BMP and ganglioside GM2 in brain were reduced similarly following adeno-associated viral-mediated gene therapy in Sandhoff disease mice. We also found that C22:6, C18:0, and C18:1 were the predominant BMP fatty acid species in gangliosidosis brains. The results show that BMP accumulates as a secondary storage material in the brain of a broad range of mammals with gangliosidoses.
Collapse
Affiliation(s)
- Zeynep Akgoc
- Department of Biology, Boston College, Chestnut Hill, MA 02467
| | - Miguel Sena-Esteves
- Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605
| | - Douglas R Martin
- Scott-Ritchey Research Center and Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849
| | - Xianlin Han
- Sanford-Burnham Medical Research Institute, Orlando, FL 32827
| | | | | |
Collapse
|
26
|
Espósito DLA, Nguyen JB, DeWitt DC, Rhoades E, Modis Y. Physico-chemical requirements and kinetics of membrane fusion of flavivirus-like particles. J Gen Virol 2015; 96:1702-11. [PMID: 25740960 PMCID: PMC4635454 DOI: 10.1099/vir.0.000113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Flaviviruses deliver their RNA genome into the host-cell cytoplasm by fusing their lipid envelope with a cellular membrane. Expression of the flavivirus pre-membrane and envelope glycoprotein genes in the absence of other viral genes results in the spontaneous assembly and secretion of virus-like particles (VLPs) with membrane fusion activity. Here, we examined the physico-chemical requirements for membrane fusion of VLPs from West Nile and Japanese encephalitis viruses. In a bulk fusion assay, optimal hemifusion (or lipid mixing) efficiencies were observed at 37 °C. Fusion efficiency increased with decreasing pH; half-maximal hemifusion was attained at pH 5.6. The anionic lipids bis(monoacylglycero)phosphate and phosphatidylinositol-3-phosphate, when present in the target membrane, significantly enhanced fusion efficiency, consistent with the emerging model that flaviviruses fuse with intermediate-to-late endosomal compartments, where these lipids are most abundant. In a single-particle fusion assay, VLPs catalysed membrane hemifusion, tracked as lipid mixing with the cellular membrane, on a timescale of 7–20 s after acidification. Lipid mixing kinetics suggest that hemifusion is a kinetically complex, multistep process.
Collapse
Affiliation(s)
- Danillo L A Espósito
- 1Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Jennifer B Nguyen
- 1Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - David C DeWitt
- 1Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Elizabeth Rhoades
- 1Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA 2Department of Physics, Yale University, New Haven, CT 06520, USA
| | - Yorgo Modis
- 1Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| |
Collapse
|
27
|
Jiménez-Rojo N, Sot J, Viguera AR, Collado MI, Torrecillas A, Gómez-Fernández JC, Goñi FM, Alonso A. Membrane permeabilization induced by sphingosine: effect of negatively charged lipids. Biophys J 2015; 106:2577-84. [PMID: 24940775 DOI: 10.1016/j.bpj.2014.04.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/14/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022] Open
Abstract
Sphingosine [(2S, 3R, 4E)-2-amino-4-octadecen-1, 3-diol] is the most common sphingoid long chain base in sphingolipids. It is the precursor of important cell signaling molecules, such as ceramides. In the last decade it has been shown to act itself as a potent metabolic signaling molecule, by activating a number of protein kinases. Moreover, sphingosine has been found to permeabilize phospholipid bilayers, giving rise to vesicle leakage. The present contribution intends to analyze the mechanism by which this bioactive lipid induces vesicle contents release, and the effect of negatively charged bilayers in the release process. Fluorescence lifetime measurements and confocal fluorescence microscopy have been applied to observe the mechanism of sphingosine efflux from large and giant unilamellar vesicles; a graded-release efflux has been detected. Additionally, stopped-flow measurements have shown that the rate of vesicle permeabilization increases with sphingosine concentration. Because at the physiological pH sphingosine has a net positive charge, its interaction with negatively charged phospholipids (e.g., bilayers containing phosphatidic acid together with sphingomyelins, phosphatidylethanolamine, and cholesterol) gives rise to a release of vesicular contents, faster than with electrically neutral bilayers. Furthermore, phosphorous 31-NMR and x-ray data show the capacity of sphingosine to facilitate the formation of nonbilayer (cubic phase) intermediates in negatively charged membranes. The data might explain the pathogenesis of Niemann-Pick type C1 disease.
Collapse
Affiliation(s)
- Noemi Jiménez-Rojo
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Jesús Sot
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Ana R Viguera
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - M Isabel Collado
- Servicio General de Resonancia Magnética Nuclear, Universidad del País Vasco, Bilbao, Spain
| | - Alejandro Torrecillas
- Sección de Biología Molecular, Servicio de Apoyo a la Investigación, Universidad de Murcia
| | - J C Gómez-Fernández
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Félix M Goñi
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Alicia Alonso
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain.
| |
Collapse
|
28
|
Tomé-Amat J, Ruiz-de-la-Herrán J, Martínez-del-Pozo Á, Gavilanes JG, Lacadena J. α-sarcin and RNase T1 based immunoconjugates: the role of intracellular trafficking in cytotoxic efficiency. FEBS J 2014; 282:673-84. [PMID: 25475209 DOI: 10.1111/febs.13169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/07/2014] [Accepted: 12/02/2014] [Indexed: 01/16/2023]
Abstract
Toxins have been thoroughly studied for their use as therapeutic agents in search of an improvement in toxic efficiency together with a minimization of their undesired side effects. Different studies have shown how toxins can follow different intracellular pathways which are connected with their cytotoxic action inside the cells. The work herein presented describes the different pathways followed by the ribotoxin α-sarcin and the fungal RNase T1, as toxic domains of immunoconjugates with identical binding domain, the single chain variable fragment of a monoclonal antibody raised against the glycoprotein A33. According to the results obtained both immunoconjugates enter the cells via early endosomes and, while α-sarcin can translocate directly into the cytosol to exert its deathly action, RNase T1 follows a pathway that involves lysosomes and the Golgi apparatus. These facts contribute to explaining the different cytotoxicity observed against their targeted cells, and reveal how the innate properties of the toxic domain, apart from its catalytic features, can be a key factor to be considered for immunotoxin optimization.
Collapse
Affiliation(s)
- Jaime Tomé-Amat
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Spain; Department of Food Science, Cornell University, Ithaca, NY, USA
| | | | | | | | | |
Collapse
|
29
|
Larios JA, Jausoro I, Benitez ML, Bronfman FC, Marzolo MP. Neurotrophins regulate ApoER2 proteolysis through activation of the Trk signaling pathway. BMC Neurosci 2014; 15:108. [PMID: 25233900 PMCID: PMC4177048 DOI: 10.1186/1471-2202-15-108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 09/15/2014] [Indexed: 12/27/2022] Open
Abstract
Background ApoER2 and the neurotrophin receptors Trk and p75NTR are expressed in the CNS and regulate key functional aspects of neurons, including development, survival, and neuronal function. It is known that both ApoER2 and p75NTR are processed by metalloproteinases, followed by regulated intramembrane proteolysis. TrkA activation by nerve growth factor (NGF) increases the proteolytic processing of p75NTR mediated by ADAM17. Reelin induces the sheeding of ApoER2 ectodomain depending on metalloproteinase activity. However, it is not known if there is a common regulation mechanism for processing these receptors. Results We found that TrkA activation by NGF in PC12 cells induced ApoER2 processing, which was dependent on TrkA activation and metalloproteinases. NGF-induced ApoER2 proteolysis was independent of mitogen activated protein kinase activity and of phosphatidylinositol-3 kinase activity. In contrast, the basal proteolysis of ApoER2 increased when both kinases were pharmacologically inhibited. The ApoER2 ligand reelin regulated the proteolytic processing of its own receptor but not of p75NTR. Finally, in primary cortical neurons, which express both ApoER2 and TrkB, we found that the proteolysis of ApoER2 was also regulated by brain-derived growth factor (BDNF). Conclusions Our results highlight a novel relationship between neurotrophins and the reelin-ApoER2 system, suggesting that these two pathways might be linked to regulate brain development, neuronal survival, and some pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Maria-Paz Marzolo
- Departamento de Biología Celular y Molecular, Laboratorio de Tráfico Intracelular y Señalización, Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Alameda 340, Santiago 8320000, Chile.
| |
Collapse
|
30
|
Biophysical properties of sphingosine, ceramides and other simple sphingolipids. Biochem Soc Trans 2014; 42:1401-8. [DOI: 10.1042/bst20140159] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Some of the simplest sphingolipids, namely sphingosine, ceramide and their phosphorylated compounds [sphingosine 1-phosphate (Sph-1-P) and ceramide 1-phosphate (Cer-1-P)], are potent metabolic regulators. Each of these lipids modifies in marked and specific ways the physical properties of the cell membranes, in what can be the basis for some of their physiological actions. The present paper is an overview of the mechanisms by which these sphingolipid signals, sphingosine and ceramide, in particular, are able to modify the properties of cell membranes.
Collapse
|
31
|
Grimm C, Holdt LM, Chen CC, Hassan S, Müller C, Jörs S, Cuny H, Kissing S, Schröder B, Butz E, Northoff B, Castonguay J, Luber CA, Moser M, Spahn S, Lüllmann-Rauch R, Fendel C, Klugbauer N, Griesbeck O, Haas A, Mann M, Bracher F, Teupser D, Saftig P, Biel M, Wahl-Schott C. High susceptibility to fatty liver disease in two-pore channel 2-deficient mice. Nat Commun 2014; 5:4699. [DOI: 10.1038/ncomms5699] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/10/2014] [Indexed: 12/15/2022] Open
|
32
|
Lim WLF, Martins IJ, Martins RN. The involvement of lipids in Alzheimer's disease. J Genet Genomics 2014; 41:261-74. [PMID: 24894353 DOI: 10.1016/j.jgg.2014.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 12/14/2022]
Abstract
It has been estimated that Alzheimer's disease (AD), the most common form of dementia, will affect approximately 81 million individuals by 2040. To date, the actual cause and cascade of events in the progression of this disease have not been fully determined. Furthermore, there is currently no definitive blood test or simple diagnostic method for AD. Considerable efforts have been put into proteomic approaches to develop a diagnostic blood test, but to date these efforts have not been successful. More recently, there has been a stronger focus on lipidomic studies in the hope of increasing our understanding of the underlying mechanisms leading to AD and developing an AD blood test. It is well known that the strongest genetic risk factor for AD is the ε4 variant of apolipoprotein E (APOE). Evidence suggests that the ApoE protein, a major lipid transporter, plays a key role in the pathogenesis of AD, and its role in both normal and aberrant lipid metabolism warrants further extensive investigation. Here, we review ApoE-lipid interactions, as well as the roles that lipids may play in the pathogenesis of AD.
Collapse
Affiliation(s)
- Wei Ling Florence Lim
- School of Medical Sciences, Edith Cowan University, Joondalup 6027, Australia; Centre of Excellence in Alzheimer's Disease Research and Care, Joondalup 6027, Australia
| | - Ian James Martins
- School of Medical Sciences, Edith Cowan University, Joondalup 6027, Australia; Centre of Excellence in Alzheimer's Disease Research and Care, Joondalup 6027, Australia
| | - Ralph Nigel Martins
- School of Medical Sciences, Edith Cowan University, Joondalup 6027, Australia; Centre of Excellence in Alzheimer's Disease Research and Care, Joondalup 6027, Australia; McCusker Foundation for Alzheimer's Disease Research Inc., Suite 22, Hollywood Medical Centre, Nedlands 6009, Australia; School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands 6009, Australia.
| |
Collapse
|
33
|
Wu QY, Liang Q. Interplay between curvature and lateral organization of lipids and peptides/proteins in model membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1116-1122. [PMID: 24417311 DOI: 10.1021/la4039123] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Membrane curvature plays a crucial role in the realization of many cellular membrane functions such as signaling and trafficking. Here, using coarse-grained molecular dynamics (MD) simulation, we present an effective method of producing curved model membranes and systematically investigated the interplay between the curvature and lateral sorting of lipids and transmembrane (TM) peptides/proteins in the model membranes. We first confirmed the experimental results of the lateral organization of lipid domains in curved ternary membranes. Then, we focused on exploring the lateral sorting of TM peptides/proteins with symmetric shape in the curved membranes. The results showed that the lateral inhomogeneous packing of lipids induced by the curvature and/or the component heterogeneity drives the peptides/proteins to accumulate in the curved regions in both the unary and ternary membranes. However, whether the peptides/proteins can stably and compactly reside in the curved regions is determined by their final packing configuration, which may be influenced by the membrane curvature in the curved regions. Additionally, the insertion of peptides/proteins may enhance the membrane curvature. This work provided some theoretical insights into understanding the mechanism of the interplay of membrane curvature and lateral organization (especially the lateral sorting of the peptides/proteins with symmetric shape) in the biomembrane in some biological processes.
Collapse
Affiliation(s)
- Qing-Yan Wu
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University , Jinhua 321004, PR China
| | | |
Collapse
|
34
|
Alfsen A, Tatischeff I. The Lipid Bilayer of Biological Vesicles: A Liquid-Crystalline Material as Nanovehicles of Information. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jbnb.2014.52013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Räägel H, Hein M, Kriiska A, Säälik P, Florén A, Langel Ü, Pooga M. Cell-penetrating peptide secures an efficient endosomal escape of an intact cargo upon a brief photo-induction. Cell Mol Life Sci 2013; 70:4825-39. [PMID: 23852439 PMCID: PMC11113630 DOI: 10.1007/s00018-013-1416-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/14/2013] [Accepted: 06/24/2013] [Indexed: 11/30/2022]
Abstract
Since their discovery, cell-penetrating peptides (CPPs) have provided a novel, efficient, and non-invasive mode of transport for various (bioactive) cargos into cells. Despite the ever-growing number of successful implications of the CPP-mediated delivery, issues concerning their intracellular trafficking, significant targeting to degradative organelles, and limited endosomal escape are still hindering their widespread use. To overcome these obstacles, we have utilized a potent photo-induction technique with a fluorescently labeled protein cargo attached to an efficient CPP, TP10. In this study we have determined some key requirements behind this induced escape (e.g., dependence on peptide-to-cargo ratio, time and cargo), and have semi-quantitatively assessed the characteristics of the endosomes that become leaky upon this treatment. Furthermore, we provide evidence that the photo-released cargo remains intact and functional. Altogether, we can conclude that the photo-induced endosomes are specific large complexes-condensed non-acidic vesicles, where the released cargo remains in its native intact form. The latter was confirmed with tubulin as the cargo, which upon photo-induction was incorporated into microtubules. Because of this, we propose that combining the CPP-mediated delivery with photo-activation technique could provide a simple method for overcoming major limitations faced today and serve as a basis for enhanced delivery efficiency and a subsequent elevated cellular response of different bioactive cargo molecules.
Collapse
Affiliation(s)
- Helin Räägel
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Margot Hein
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Asko Kriiska
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Pille Säälik
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Anders Florén
- The Arrhenius Laboratories for Natural Sciences, Department of Neurochemistry and Neurotoxicology, Stockholm University, 106 91 Stockholm, Sweden
| | - Ülo Langel
- The Arrhenius Laboratories for Natural Sciences, Department of Neurochemistry and Neurotoxicology, Stockholm University, 106 91 Stockholm, Sweden
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Margus Pooga
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| |
Collapse
|
36
|
Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature 2013; 499:233-7. [PMID: 23823722 DOI: 10.1038/nature12360] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 06/06/2013] [Indexed: 12/11/2022]
Abstract
Phosphoinositides serve crucial roles in cell physiology, ranging from cell signalling to membrane traffic. Among the seven eukaryotic phosphoinositides the best studied species is phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), which is concentrated at the plasma membrane where, among other functions, it is required for the nucleation of endocytic clathrin-coated pits. No phosphatidylinositol other than PI(4,5)P2 has been implicated in clathrin-mediated endocytosis, whereas the subsequent endosomal stages of the endocytic pathway are dominated by phosphatidylinositol-3-phosphates(PI(3)P). How phosphatidylinositol conversion from PI(4,5)P2-positive endocytic intermediates to PI(3)P-containing endosomes is achieved is unclear. Here we show that formation of phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2) by class II phosphatidylinositol-3-kinase C2α (PI(3)K C2α) spatiotemporally controls clathrin-mediated endocytosis. Depletion of PI(3,4)P2 or PI(3)K C2α impairs the maturation of late-stage clathrin-coated pits before fission. Timed formation of PI(3,4)P2 by PI(3)K C2α is required for selective enrichment of the BAR domain protein SNX9 at late-stage endocytic intermediates. These findings provide a mechanistic framework for the role of PI(3,4)P2 in endocytosis and unravel a novel discrete function of PI(3,4)P2 in a central cell physiological process.
Collapse
|
37
|
Molecular adaptations allow dynein to generate large collective forces inside cells. Cell 2013; 152:172-82. [PMID: 23332753 DOI: 10.1016/j.cell.2012.11.044] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 09/06/2012] [Accepted: 11/08/2012] [Indexed: 12/22/2022]
Abstract
Many cellular processes require large forces that are generated collectively by multiple cytoskeletal motor proteins. Understanding how motors generate force as a team is therefore fundamentally important but is poorly understood. Here, we demonstrate optical trapping at single-molecule resolution inside cells to quantify force generation by motor teams driving single phagosomes. In remarkable paradox, strong kinesins fail to work collectively, whereas weak and detachment-prone dyneins team up to generate large forces that tune linearly in strength and persistence with dynein number. Based on experimental evidence, we propose that leading dyneins in a load-carrying team take short steps, whereas trailing dyneins take larger steps. Dyneins in such a team bunch close together and therefore share load better to overcome low/intermediate loads. Up against higher load, dyneins "catch bond" tenaciously to the microtubule, but kinesins detach rapidly. Dynein therefore appears uniquely adapted to work in large teams, which may explain how this motor executes bewilderingly diverse cellular processes.
Collapse
|
38
|
Perraki A, Cacas JL, Crowet JM, Lins L, Castroviejo M, German-Retana S, Mongrand S, Raffaele S. Plasma membrane localization of Solanum tuberosum remorin from group 1, homolog 3 is mediated by conformational changes in a novel C-terminal anchor and required for the restriction of potato virus X movement]. PLANT PHYSIOLOGY 2012; 160:624-37. [PMID: 22855937 PMCID: PMC3461544 DOI: 10.1104/pp.112.200519] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/31/2012] [Indexed: 05/18/2023]
Abstract
The formation of plasma membrane (PM) microdomains plays a crucial role in the regulation of membrane signaling and trafficking. Remorins are a plant-specific family of proteins organized in six phylogenetic groups, and Remorins of group 1 are among the few plant proteins known to specifically associate with membrane rafts. As such, they are valuable to understand the molecular bases for PM lateral organization in plants. However, little is known about the structural determinants underlying the specific association of group 1 Remorins with membrane rafts. We used a structure-function approach to identify a short C-terminal anchor (RemCA) indispensable and sufficient for tight direct binding of potato (Solanum tuberosum) REMORIN 1.3 (StREM1.3) to the PM. RemCA switches from unordered to α-helical structure in a nonpolar environment. Protein structure modeling indicates that RemCA folds into a tight hairpin of amphipathic helices. Consistently, mutations reducing RemCA amphipathy abolished StREM1.3 PM localization. Furthermore, RemCA directly binds to biological membranes in vitro, shows higher affinity for Detergent-Insoluble Membranes lipids, and targets yellow fluorescent protein to Detergent-Insoluble Membranes in vivo. Mutations in RemCA resulting in cytoplasmic StREM1.3 localization abolish StREM1.3 function in restricting potato virus X movement. The mechanisms described here provide new insights on the control and function of lateral segregation of plant PM.
Collapse
|
39
|
Tronchère H, Bolino A, Laporte J, Payrastre B. Myotubularins and associated neuromuscular diseases. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.12.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Abstract
Endocytosis is a fundamental process in which eukaryotic cells internalise molecules and macromolecules via deformation of the membrane and generation of membrane-bound carriers. Functional aspects are not only limited to uptake of nutrients, but also play a primary role in evolutionary conserved processes such as the regulation of plasma membrane protein activity (i.e. signal-transducing receptors, small-molecule transporters and ion channels), cell motility and mitosis. The macromolecular nature of the material transported by endocytosis makes this route one of the most important targets for nanomedicine. Indeed, many nanoparticle formulations have been customised to enter cells through endocytosis and deliver the cargo within the cell. In this critical review, we present an overview of the biology of endocytosis and discuss its implications in cell internalisation of nanoparticles. We discuss how nanoparticle size, shape and surface chemistry can control this process effectively. Finally, we discuss different drug delivery strategies on how to evade lysosomal degradation to promote effective release of the cargo (376 references).
Collapse
Affiliation(s)
- Irene Canton
- The Krebs Institute, The Centre for Membrane Interaction and Dynamics, The Sheffield Cancer Research Centre, and the Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | | |
Collapse
|
41
|
Rabenosyn-5 defines the fate of the transferrin receptor following clathrin-mediated endocytosis. Proc Natl Acad Sci U S A 2012; 109:E471-80. [PMID: 22308388 DOI: 10.1073/pnas.1115495109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cell surface receptors and other proteins internalize through diverse mechanisms at the plasma membrane and are sorted to different destinations. Different subpopulations of early endosomes have been described, raising the question of whether different internalization mechanisms deliver cargo into different subsets of early endosomes. To address this fundamental question, we developed a microscopy platform to detect the precise position of endosomes relative to the plasma membrane during the uptake of ligands. Axial resolution is maximized by concurrently applied total internal reflection fluorescence and epifluorescence-structured light. We found that transferrin receptors are delivered selectively from clathrin-coated pits on the plasma membrane into a specific subpopulation of endosomes enriched in the multivalent Rab GTPase and phosphoinositide-binding protein Rabenosyn-5. Depletion of Rabenosyn-5, but not of other early endosomal proteins such as early endosome antigen 1, resulted in impaired transferrin uptake and lysosomal degradation of transferrin receptors. These studies reveal a critical role for Rabenosyn-5 in determining the fate of transferrin receptors internalized by clathrin-mediated endocytosis and, more broadly, a mechanism whereby the delivery of cargo from the plasma membrane into specific early endosome subpopulations is required for its appropriate intracellular traffic.
Collapse
|
42
|
Abstract
Endosomes along the degradation pathway exhibit a multivesicular appearance and differ in their lipid compositions. Association of proteins to specific membrane lipids and presumably also lipid-lipid interactions contribute to the formation of functional membrane platforms that regulate endosome biogenesis and function. This chapter provides a brief review of the functions of endosomal lipids in the degradation pathway, a discussion of techniques that allow studying lipid-based mechanisms and a selection of step-by-step protocols for in vivo and in vitro methods commonly used to study lipid roles in endocytosis. The techniques described here have been used to elucidate the function of the late endosomal lipid lysobisphosphatidic acid and allow the monitoring of lipid distribution, levels and dynamics, as well as the characterization of lipid-binding partners.
Collapse
|
43
|
Moon PG, You S, Lee JE, Hwang D, Baek MC. Urinary exosomes and proteomics. MASS SPECTROMETRY REVIEWS 2011; 30:1185-1202. [PMID: 21544848 DOI: 10.1002/mas.20319] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 05/30/2023]
Abstract
A number of highly abundant proteins in urine have been identified through proteomics approaches, and some have been considered as disease-biomarker candidates. These molecules might be clinically useful in diagnosis of various diseases. However, none has proven to be specifically indicative of perturbations of cellular processes in cells associated with urogenital diseases. Exosomes could be released into urine which flows through the kidney, ureter, bladder and urethra, with a process of filtration and reabsorption. Urinary exosomes have been recently suggested as alternative materials that offer new opportunities to identify useful biomarkers, because these exosomes secreted from epithelial cells lining the urinary track might reflect the cellular processes associated with the pathogenesis of diseases in their donor cells. Proteomic analysis of such urinary exosomes assists the search of urinary biomarkers reflecting pathogenesis of various diseases and also helps understanding the function of urinary exosomes in urinary systems. Thus, it has been recently suggested that urinary exosomes are one of the most valuable targets for biomarker development and to understand pathophysiology of relevant diseases.
Collapse
Affiliation(s)
- Pyong-Gon Moon
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | | | | | | | | |
Collapse
|
44
|
Du X, Kumar J, Ferguson C, Schulz TA, Ong YS, Hong W, Prinz WA, Parton RG, Brown AJ, Yang H. A role for oxysterol-binding protein-related protein 5 in endosomal cholesterol trafficking. ACTA ACUST UNITED AC 2011; 192:121-35. [PMID: 21220512 PMCID: PMC3019559 DOI: 10.1083/jcb.201004142] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ORP5 works together with Niemann Pick C-1 to facilitate exit of cholesterol from endosomes and lysosomes. Oxysterol-binding protein (OSBP) and its related proteins (ORPs) constitute a large and evolutionarily conserved family of lipid-binding proteins that target organelle membranes to mediate sterol signaling and/or transport. Here we characterize ORP5, a tail-anchored ORP protein that localizes to the endoplasmic reticulum. Knocking down ORP5 causes cholesterol accumulation in late endosomes and lysosomes, which is reminiscent of the cholesterol trafficking defect in Niemann Pick C (NPC) fibroblasts. Cholesterol appears to accumulate in the limiting membranes of endosomal compartments in ORP5-depleted cells, whereas depletion of NPC1 or both ORP5 and NPC1 results in luminal accumulation of cholesterol. Moreover, trans-Golgi resident proteins mislocalize to endosomal compartments upon ORP5 depletion, which depends on a functional NPC1. Our results establish the first link between NPC1 and a cytoplasmic sterol carrier, and suggest that ORP5 may cooperate with NPC1 to mediate the exit of cholesterol from endosomes/lysosomes.
Collapse
Affiliation(s)
- Ximing Du
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yonamine I, Bamba T, Nirala NK, Jesmin N, Kosakowska-Cholody T, Nagashima K, Fukusaki E, Acharya JK, Acharya U. Sphingosine kinases and their metabolites modulate endolysosomal trafficking in photoreceptors. ACTA ACUST UNITED AC 2011; 192:557-67. [PMID: 21321100 PMCID: PMC3044112 DOI: 10.1083/jcb.201004098] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Alterations in sphingosine kinase activity change the degradation rates of Rhodopsin and the transient receptor potential (TRP) channel by lysosomes and can result in retinal degeneration. Internalized membrane proteins are either transported to late endosomes and lysosomes for degradation or recycled to the plasma membrane. Although proteins involved in trafficking and sorting have been well studied, far less is known about the lipid molecules that regulate the intracellular trafficking of membrane proteins. We studied the function of sphingosine kinases and their metabolites in endosomal trafficking using Drosophila melanogaster photoreceptors as a model system. Gain- and loss-of-function analyses show that sphingosine kinases affect trafficking of the G protein–coupled receptor Rhodopsin and the light-sensitive transient receptor potential (TRP) channel by modulating the levels of dihydrosphingosine 1 phosphate (DHS1P) and sphingosine 1 phosphate (S1P). An increase in DHS1P levels relative to S1P leads to the enhanced lysosomal degradation of Rhodopsin and TRP and retinal degeneration in wild-type photoreceptors. Our results suggest that sphingosine kinases and their metabolites modulate photoreceptor homeostasis by influencing endolysosomal trafficking of Rhodopsin and TRP.
Collapse
Affiliation(s)
- Ikuko Yonamine
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Callan-Jones A, Sorre B, Bassereau P. Curvature-driven lipid sorting in biomembranes. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004648. [PMID: 21421916 DOI: 10.1101/cshperspect.a004648] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It has often been suggested that the high curvature of transport intermediates in cells may be a sufficient means to segregate different lipid populations based on the relative energy costs of forming bent membranes. In this review, we present in vitro experiments that highlight the essential physics of lipid sorting at thermal equilibrium: It is driven by a trade-off between bending energy, mixing entropy, and interactions between species. We collect evidence that lipid sorting depends strongly on lipid-lipid and protein-lipid interactions, and hence on the underlying composition of the membrane and on the presence of bound proteins.
Collapse
Affiliation(s)
- Andrew Callan-Jones
- CNRS UMR 5207, Laboratoire de Physique Théorique et Astroparticules, Université Montpellier II, 34095 Montpellier Cedex 05, France
| | | | | |
Collapse
|
47
|
Role of lipid rafts in innate immunity and phagocytosis of polystyrene latex microspheres. Colloids Surf B Biointerfaces 2011; 84:317-24. [PMID: 21316932 DOI: 10.1016/j.colsurfb.2011.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 01/08/2011] [Accepted: 01/13/2011] [Indexed: 12/11/2022]
Abstract
Understanding of the association of phagocytosis of polymers with signaling of innate immunity of macrophages is the major purpose of this study. Polymer conjugates have been utilized for clinical therapy of cancer and infections, such as Mycobacterium tuberculosis, as effective vectors of drug-delivery systems. They are incorporated through phagocytosis into macrophages and activate innate immunity signaling, which plays a crucial role in its therapeutic and side effects. Macrophage phagocytosis of polystyrene latex microspheres was examined and assayed by treatment of macrophages with the cholesterol depletor methyl-β-cyclodextrin (MβCD) or the sphingolipid depletor n-octyl-β-D-glucopyranoside (OGP). Expressions of various mRNAs during phagocytosis were quantified by real-time PCR. Phagocytosis of polystyrene latex microspheres by various macrophages, such as murine monocyte-derived macrophage J774, rat alveolar macrophage NR8383, and murine Kupffer cell KC13-2, was suppressed by treatment with MβCD or OGP in a concentration-dependent manner. The expression of mRNAs of TNFα, IL-1β, IL-6 and CXCL10 genes induced by lipopolysaccharide (LPS) was not suppressed by treatment with MβCD in J774 cells. Moreover, genes that were induced by LPS were up-regulated even in the absence of LPS by the phagocytosis of polymer conjugates, but such up-regulations were not suppressed by the treatment with MβCD. It was shown that lipid rafts play a significant role in incorporation of polymer conjugates through phagocytosis of macrophages, but their association with signal transduction in innate immunity is very limited.
Collapse
|
48
|
Tengstrand EA, Miwa GT, Hsieh FY. Bis(monoacylglycerol)phosphate as a non-invasive biomarker to monitor the onset and time-course of phospholipidosis with drug-induced toxicities. Expert Opin Drug Metab Toxicol 2010; 6:555-70. [DOI: 10.1517/17425251003601961] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
49
|
Jovic M, Sharma M, Rahajeng J, Caplan S. The early endosome: a busy sorting station for proteins at the crossroads. Histol Histopathol 2010; 25:99-112. [PMID: 19924646 DOI: 10.14670/hh-25.99] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endocytosis marks the entry of internalized receptors into the complex network of endocytic trafficking pathways. Endocytic vesicles are rapidly targeted to a distinct membrane-bound endocytic organelle referred to as the early endosome. Despite the existence of numerous internalization routes, early endosomes (EE) serve as a focal point of the endocytic pathway. Sorting events initiated at this compartment determine the subsequent fate of internalized proteins and lipids, destining them either for recycling to the plasma membrane, degradation in lysosomes or delivery to the trans-Golgi network. Sorting of endocytic cargo to the latter compartments is accomplished through the formation of distinct microdomains within early endosomes, through the coordinate recruitment and assembly of the sorting machinery. An elaborate network of interactions between endocytic regulatory proteins ensures synchronized sorting of cargo to microdomains followed by morphological changes at the early endosomal membranes. Consequently, the cargo targeted either for recycling back to the plasma membrane, or for retrograde transport to the trans-Golgi network, localizes to newly-formed tubular membranes. With a high ratio of membrane surface to lumenal volume, these tubules effectively concentrate the recycling cargo, ensuring efficient transport out of the EE. Conversely, receptors sorted for degradation cluster at the flat clathrin lattices involved in invaginations of the limiting membrane, associating with newly formed intralumenal vesicles. In this review we will discuss the characteristics of early endosomes, their role in the regulation of endocytic transport, and their aberrant function in a variety of diseases.
Collapse
Affiliation(s)
- Marko Jovic
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | | | | | | |
Collapse
|
50
|
Hullin-Matsuda F, Luquain-Costaz C, Bouvier J, Delton-Vandenbroucke I. Bis(monoacylglycero)phosphate, a peculiar phospholipid to control the fate of cholesterol: Implications in pathology. Prostaglandins Leukot Essent Fatty Acids 2009; 81:313-24. [PMID: 19857945 DOI: 10.1016/j.plefa.2009.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/21/2009] [Accepted: 09/21/2009] [Indexed: 12/15/2022]
Abstract
Bis(monoacylglycero)phosphate (BMP) is a structural isomer of phosphatidylglycerol that exhibits an unusual sn1:sn1' stereoconfiguration, based on the position of the phosphate moiety on its two glycerol units. Early works have underlined the high concentration of BMP in the lysosomal compartment, especially during some lysosomal storage disorders and drug-induced phospholipidosis. Despite numerous studies, both biosynthetic and degradative pathways of BMP remained not completely elucidated. More recently, BMP has been localized in the internal membranes of late endosomes where it forms specialized lipid domains. Its involvement in both dynamics and lipid/protein sorting functions of late endosomes has started to be documented, especially in the control of cellular cholesterol distribution. BMP also plays an important role in the late endosomal/lysosomal degradative pathway. Another peculiarity of BMP is to be naturally enriched in docosahexaenoic acid and/or to specifically incorporate this fatty acid compared to other polyunsaturated fatty acids, which may confer specific biophysical and functional properties to this phospholipid. This review summarizes and updates our knowledge on BMP with an emphasis on its possible implication in human health and diseases, especially in relation to cholesterol homeostasis.
Collapse
Affiliation(s)
- F Hullin-Matsuda
- Université de Lyon, UMR 870 Inserm, Insa-Lyon, UMR 1135 Inra, Univ Lyon 1, Hospices Civils de Lyon, IMBL, 20 Ave A. Einstein, 69621 Villeurbanne, France
| | | | | | | |
Collapse
|