1
|
Dick S, Funchal C, Pelaez PDL, Loureiro SO, Vivian L, Pessutto FDB, Almeida LM, Wannmacher CMD, Pessoa-Pureur R. Cytoskeleton of human mononuclear cells as a possible peripheral marker for phenylalanine neurotoxicity in PKU. Neurochem Res 2002; 27:1569-76. [PMID: 12515306 DOI: 10.1023/a:1021664905830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this work we tested human mononuclear cells as a peripheral marker to study neurotoxicity of phenylalanine (Phe). Slices of cerebral cortex of rats or human mononuclear cells were incubated with different concentrations of Phe and/or Ala in the presence of 32P-orthophosphate, the cytoskeletal fraction was extracted, and the radioactivity incorporated into intermediate filament proteins was measured. Our results show that 2 mM Phe as well as 1 mM Ala are effective in increasing the 32P in vitro incorporation into IFs in both tissues. When cerebral cortex slices or mononuclear cells were incubated with different concentrations of Phe and/or Ala, the effects on the 32P in vitro incorporation into IF proteins was compatible with an antagonistic mechanism of action of the two amino acids on the enzymes of the phosphorylating system. In addition, these blood cells may be a possible peripheral marker to study neurotoxicity of Phe in patients with PKU.
Collapse
Affiliation(s)
- Sabrina Dick
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Jones MH, He X, Giddings TH, Winey M. Yeast Dam1p has a role at the kinetochore in assembly of the mitotic spindle. Proc Natl Acad Sci U S A 2001; 98:13675-80. [PMID: 11698664 PMCID: PMC61100 DOI: 10.1073/pnas.241417098] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2001] [Indexed: 11/18/2022] Open
Abstract
During mitosis, replicated chromosomes are separated to daughter cells by the microtubule-based mitotic spindle. Chromosomes attach to the mitotic spindle through specialized DNA/protein structures called kinetochores, but the mechanism of attachment is not well understood. We show here that the yeast microtubule-binding protein, Dam1p, associates physically and functionally with kinetochores, suggesting a role in kinetochore attachment to the spindle. An epitope-tagged version of Dam1p colocalizes with the integral kinetochore component Ndc10p/Cbf2p in immunofluorescence analysis of chromosome spreads. In addition, Dam1p is associated preferentially with centromeric DNA as shown by chromatin immunoprecipitation experiments, and this association depends on Ndc10p/Cbf2p. We also demonstrate genetic interactions between DAM1 and CTF19 or SLK19 genes encoding kinetochore proteins. Although the defect caused by the dam1-1 mutation leads to activation of the spindle checkpoint surveillance system and consequent persistence of sister chromatid cohesion, the metaphase arrest spindle abnormally elongates, resulting in virtually complete chromosome missegregation. Execution point experiments indicate that Dam1p has a role in formation of a metaphase spindle and in anaphase spindle elongation. Finally, we have observed that the protein encoded by the dam1-1 allele becomes delocalized at the nonpermissive temperature, correlating with the subsequent onset of the mutant phenotype. Our studies are consistent with a role for Dam1p in attachment of sister chromatids through the kinetochore to the mitotic spindle before chromosome segregation.
Collapse
Affiliation(s)
- M H Jones
- Department of Molecular, Cellular, and Developmental Biology, Campus Box 347, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | | | |
Collapse
|
3
|
Abstract
During anaphase, mitotic spindles elongate up to five times their metaphase length. This process, known as anaphase B, is essential for correct segregation of chromosomes. Here, we examine the control of spindle length during anaphase in the budding yeast Saccharomyces cerevisiae. We show that microtubule stabilization during anaphase requires the microtubule-associated protein Stu2. We further show that the activity of Stu2 is opposed by the activity of the kinesin-related protein Kip3. Reexamination of the kinesin homology tree suggests that KIP3 is the S. cerevisiae orthologue of the microtubule-destabilizing subfamily of kinesins (Kin I). We conclude that a balance of activity between evolutionally conserved microtubule-stabilizing and microtubule-destabilizing factors is essential for correct spindle elongation during anaphase B.
Collapse
Affiliation(s)
- Fedor Severin
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse, 01307 Dresden, Germany
| | - Bianca Habermann
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse, 01307 Dresden, Germany
| | | | - Tony Hyman
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse, 01307 Dresden, Germany
| |
Collapse
|
4
|
Gunawardane RN, Lizarraga SB, Wiese C, Wilde A, Zheng Y. gamma-Tubulin complexes and their role in microtubule nucleation. Curr Top Dev Biol 2001; 49:55-73. [PMID: 11005014 DOI: 10.1016/s0070-2153(99)49004-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- R N Gunawardane
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
Segregation of DNA in bacterial cells is an efficient process that assures that every daughter cell receives a copy of genomic and plasmid DNA. In this review, we focus primarily on observations in recent years, including the visualization of DNA and proteins at the subcellular level, that have begun to define the events that separate DNA molecules. Unlike the process of chromosome segregation in higher cells, segregation of the bacterial chromosome is a continuous process in which chromosomes are separated as they are replicated. Essential to separation is the initial movement of sister origins to opposite ends of the cell. Subsequent replication and controlled condensation of DNA are the driving forces that move sister chromosomes toward their respective origins, which establishes the polarity required for segregation. Final steps in the resolution and separation of sister chromosomes occur at the replication terminus, which is localized at the cell center. In contrast to the chromosome, segregation of low-copy plasmids, such as Escherichia coli F, P1, and R1, is by mechanisms that resemble those used in eukaryotic cells. Each plasmid has a centromere-like site to which plasmid-specified partition proteins bind to promote segregation. Replication of plasmid DNA, which occurs at the cell center, is followed by rapid partition protein-mediated separation of sister plasmids, which become localized at distinct sites on either side of the division plane. The fundamental similarity between chromosome and plasmid segregation-placement of DNA to specific cell sites-implies an underlying cellular architecture to which both DNA and proteins refer.
Collapse
Affiliation(s)
- G S Gordon
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111, USA.
| | | |
Collapse
|
6
|
Wigge PA, Kilmartin JV. The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol 2001; 152:349-60. [PMID: 11266451 PMCID: PMC2199619 DOI: 10.1083/jcb.152.2.349] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We have purified a complex from Saccharomyces cerevisiae containing the spindle components Ndc80p, Nuf2p, Spc25p, and Spc24p. Temperature-sensitive mutants in NDC80, SPC25, and SPC24 show defects in chromosome segregation. In spc24-1 cells, green fluorescence protein (GFP)-labeled centromeres fail to split during spindle elongation, and in addition some centromeres may detach from the spindle. Chromatin immunoprecipitation assays show an association of all four components of the complex with the yeast centromere. Homologues of Ndc80p, Nuf2p, and Spc24p were found in Schizosaccharomyces pombe and GFP tagging showed they were located at the centromere. A human homologue of Nuf2p was identified in the expressed sequence tag database. Immunofluorescent staining with anti-human Nuf2p and with anti-HEC, the human homologue of Ndc80p, showed that both proteins are at the centromeres of mitotic HeLa cells. Thus the Ndc80p complex contains centromere-associated components conserved between yeasts and vertebrates.
Collapse
Affiliation(s)
- Philip A. Wigge
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | - John V. Kilmartin
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| |
Collapse
|
7
|
Abstract
A novel 135 kDa centrosomal component (Cep135) was identified by immunoscreening of a mammalian expression library with monoclonal antibodies raised against clam centrosomes. It is predicted to be a highly coiled-coil protein with an extensive alpha-helix, suggesting that Cep135 is a structural component of the centrosome. To evaluate how the protein is arranged in the centrosomal structure, we overexpressed Cep135 polypeptides in CHO cells by transient transfection. HA- or GFP-tagged full (amino acids 1-1144) as well as truncated (#10, 29-1144; Delta3, 29-812) polypeptides become localized at the centrosome and induce cytoplasmic dots of various size and number in CHO cells. Centrosomes are associated with massive approximately 7 nm filaments and dense particles organized in a whorl-like arrangement in which parallel-oriented dense lines appear with a regular approximately 7 nm periodicity. The same filamentous aggregates are also detected in cytoplasmic dots, indicating that overexpressed Cep135 can assemble into elaborate higher-ordered structures in and outside the centrosome. Sf9 cells infected with baculovirus containing Cep135 sequences induce filamentous polymers which are distinctive from the whorl seen in CHO cells; #10 forms highly packed spheroids, but the Delta3-containing structure looks loose. Both structures show an internal repeating unit of dense and less dense stripes. Although the distance between the outer end of two adjacent dense lines is similar between two types of polymers ( approximately 120 nm), the dense stripe of Delta3 polymers ( approximately 40 nm) is wider than #10 ( approximately 30 nm). The light band of Delta3 ( approximately 40 nm) is thus narrower than #10 ( approximately 60 nm). Since thin fibers are frequently seen to extend from one dense line to the next, the coiled-coil rod of Cep135 may span the light band. These results suggest that overexpressed Cep135 assemble into distinctive polymers in a domain-specific manner.
Collapse
Affiliation(s)
- J H Ryu
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
8
|
Carreras AL, de Mattos-Dutra A, Meirelles R, da Rocha BB, Wannmacher CM, Pessoa-Pureur R. Phenylalanine inhibition of the phosphorylation of cytoskeletal proteins from cerebral cortex of young rats is prevented by alanine. Eur J Clin Invest 2000; 30:536-42. [PMID: 10849023 DOI: 10.1046/j.1365-2362.2000.00669.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Phenylalanine has been considered the main responsible agent for the brain damage that occurs in phenylketonuria. METHODS AND RESULTS In this work we studied the effect of this amino acid on the in vitro phosphorylation of cytoskeletal proteins of the cerebral cortex of rats. We observed that 2 mM phenylalanine, a concentration usually found in the plasma of phenylketonuric patients, decreased the in vitro 32P incorporation into these proteins. In addition, we investigated the effect of alanine on the inhibition of 32P incorporation into cytoskeletal proteins caused by phenylalanine. We observed that 0.5 mM alanine did not alter 32P incorporation but prevented the inhibition provoked by phenylalanine. CONCLUSION In case the inhibition of cytoskeletal protein phosphorylation by phenylalanine also occurs in human phenylketonuria, it is possible that alanine supplementation to the phenylalanine-restricted diet may be beneficial to these patients.
Collapse
Affiliation(s)
- A L Carreras
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Maddox PS, Bloom KS, Salmon ED. The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae. Nat Cell Biol 2000; 2:36-41. [PMID: 10620805 PMCID: PMC2879060 DOI: 10.1038/71357] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microtubule assembly in Saccharomyces cerevisiae is initiated from sites within spindle pole bodies (SPBs) in the nuclear envelope. Microtubule plus ends are thought to be organized distal to the SPBs, while minus ends are proximal. Several hypotheses for the function of microtubule motor proteins in force generation and regulation of microtubule assembly propose that assembly and disassembly occur at minus ends as well as at plus ends. Here we analyse microtubule assembly relative to the SPBs in haploid yeast cells expressing green fluorescent protein fused to alpha-tubulin, a microtubule subunit. Throughout the cell cycle, analysis of fluorescent speckle marks on cytoplasmic astral microtubules reveals that there is no detectable assembly or disassembly at minus ends. After laser-photobleaching, metaphase spindles recover about 63% of the bleached fluorescence, with a half-life of about 1 minute. After anaphase onset, photobleached marks in the interpolar spindle are persistent and do not move relative to the SPBs. In late anaphase, the elongated spindles disassemble at the microtubule plus ends. These results show for astral and anaphase interpolar spindle microtubules, and possibly for metaphase spindle microtubules, that microtubule assembly and disassembly occur at plus, and not minus, ends.
Collapse
Affiliation(s)
- P S Maddox
- Department of Biology, CB3280, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA.
| | | | | |
Collapse
|
10
|
Kaverina I, Krylyshkina O, Small JV. Microtubule targeting of substrate contacts promotes their relaxation and dissociation. J Cell Biol 1999; 146:1033-44. [PMID: 10477757 PMCID: PMC2169483 DOI: 10.1083/jcb.146.5.1033] [Citation(s) in RCA: 383] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We recently showed that substrate contact sites in living fibroblasts are specifically targeted by microtubules (Kaverina, I., K. Rottner, and J.V. Small. 1998. J. Cell Biol. 142:181-190). Evidence is now provided that microtubule contact targeting plays a role in the modulation of substrate contact dynamics. The results are derived from spreading and polarized goldfish fibroblasts in which microtubules and contact sites were simultaneously visualized using proteins conjugated with Cy-3, rhodamine, or green fluorescent protein. For cells allowed to spread in the presence of nocodazole the turnover of contacts was retarded, as compared with controls and adhesions that were retained under the cell body were dissociated after microtubule reassembly. In polarized cells, small focal complexes were found at the protruding cell front and larger adhesions, corresponding to focal adhesions, at the retracting flanks and rear. At retracting edges, multiple microtubule contact targeting preceded contact release and cell edge retraction. The same effect could be observed in spread cells, in which microtubules were allowed to reassemble after local disassembly by the application of nocodazole to one cell edge. At the protruding front of polarized cells, focal complexes were also targeted and as a result remained either unchanged in size or, more rarely, were disassembled. Conversely, when contact targeting at the cell front was prevented by freezing microtubule growth with 20 nM taxol and protrusion stimulated by the injection of constitutively active Rac, peripheral focal complexes became abnormally enlarged. We further found that the local application of inhibitors of myosin contractility to cell edges bearing focal adhesions induced the same contact dissociation and edge retraction as observed after microtubule targeting. Our data are consistent with a mechanism whereby microtubules deliver localized doses of relaxing signals to contact sites to retard or reverse their development. We propose that it is via this route that microtubules exert their well-established control on cell polarity.
Collapse
Affiliation(s)
- Irina Kaverina
- Institute of Molecular Biology, Austrian Academy of Sciences, A-5020 Salzburg, Austria
| | - Olga Krylyshkina
- Institute of Molecular Biology, Austrian Academy of Sciences, A-5020 Salzburg, Austria
| | - J. Victor Small
- Institute of Molecular Biology, Austrian Academy of Sciences, A-5020 Salzburg, Austria
| |
Collapse
|