1
|
Schumann J, Basiouni S, Gück T, Fuhrmann H. Treating canine atopic dermatitis with unsaturated fatty acids: the role of mast cells and potential mechanisms of action. J Anim Physiol Anim Nutr (Berl) 2014; 98:1013-20. [DOI: 10.1111/jpn.12181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 02/13/2014] [Indexed: 12/12/2022]
Affiliation(s)
- J. Schumann
- Institute of Physiological Chemistry; Faculty of Veterinary Medicine; University of Leipzig; Leipzig Germany
| | - S. Basiouni
- Institute of Physiological Chemistry; Faculty of Veterinary Medicine; University of Leipzig; Leipzig Germany
- Department of Clinical Pathology; Faculty of Veterinary Medicine; Benha University; Moshtohor Toukh Qalioubeya Egypt
| | - T. Gück
- Hills Pet Nutrition; Hamburg Germany
| | - H. Fuhrmann
- Institute of Physiological Chemistry; Faculty of Veterinary Medicine; University of Leipzig; Leipzig Germany
| |
Collapse
|
2
|
Fatty acid composition in fetal, neonatal, and cultured cardiomyocytes in rats. In Vitro Cell Dev Biol Anim 2013; 49:798-804. [PMID: 23949778 DOI: 10.1007/s11626-013-9668-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 07/09/2013] [Indexed: 11/27/2022]
Abstract
Reconstructed myocardial tissue still does not have enough pulsatile contraction. It is well known that fetal and mature neonatal cardiomyocytes utilize glucose and lipid, respectively, as their energy substrates, and that cultured ones mainly use glucose in spite of their age comparable to neonate ones, probably due to insufficient supply of lipids from culture medium. In the present study, we compared 7 saturated, 6 monounsaturated, and 11 polyunsaturated fatty acid contents in cultured cardiomyocytes (Cul group) with those in fetal (Fet group, approximately 17 d after impregnation) and neonatal (Neo group, 9 d old) rats, where the age of the Cul cells were set nearly equal to the Neo ones. Saturated fatty acid contents in the Cul group were generally lower than those in the Fet group and were close to those in the Neo group, except for C12:0 of which content was highest in the Neo group. Monounsaturated fatty acid contents in the Cul group were generally lower than those in the Fet group but similar to or higher than those in the Neo group, except for C24:1n-9 of which content was again highest in the Neo group. In contrast, most of polyunsaturated fatty acid (PUFA) contents in the Cul group appeared lower than those in both the Fet and Neo groups, and differences in 5 of 10 detected PUFAs were significant between the Cul and Neo groups. The results suggest that PUFA contents in cultured cardiomyocytes might be insufficient to exert enough contractile ability. In conclusion, it could be necessary for cultured cardiomyocytes to uptake more lipid; PUFAs in particular.
Collapse
|
3
|
The influence of polyunsaturated fatty acids on the phospholipase D isoforms trafficking and activity in mast cells. Int J Mol Sci 2013; 14:9005-17. [PMID: 23698760 PMCID: PMC3676769 DOI: 10.3390/ijms14059005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 11/16/2022] Open
Abstract
The impact of polyunsaturated fatty acid (PUFA) supplementation on phospholipase D (PLD) trafficking and activity in mast cells was investigated. The enrichment of mast cells with different PUFA including α-linolenic acid (LNA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid (LA) or arachidonic acid (AA) revealed a PUFA-mediated modulation of the mastoparan-stimulated PLD trafficking and activity. All PUFA examined, except AA, prevented the migration of the PLD1 to the plasma membrane. For PLD2 no PUFA effects on trafficking could be observed. Moreover, PUFA supplementation resulted in an increase of mastoparan-stimulated total PLD activity, which correlated with the number of double bonds of the supplemented fatty acids. To investigate, which PLD isoform was affected by PUFA, stimulated mast cells were supplemented with DHA or AA in the presence of specific PLD-isoform inhibitors. It was found that both DHA and AA diminished the inhibition of PLD activity in the presence of a PLD1 inhibitor. By contrast, only AA diminished the inhibition of PLD activity in the presence of a PLD2 inhibitor. Thus, PUFA modulate the trafficking and activity of PLD isoforms in mast cells differently. This may, in part, account for the immunomodulatory effect of unsaturated fatty acids and contributes to our understanding of the modulation of mast cell activity by PUFA.
Collapse
|
4
|
Baracos VE, Mazurak VC, Ma DWL. n-3 Polyunsaturated fatty acids throughout the cancer trajectory: influence on disease incidence, progression, response to therapy and cancer-associated cachexia. Nutr Res Rev 2012; 17:177-92. [PMID: 19079925 DOI: 10.1079/nrr200488] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Evidence from epidemiological studies suggests that diets rich in n-3 PUFA may be associated with reduced cancer risk. These observations have formed the rationale for exploring the mechanisms by which n-3 PUFA may be chemoprotective and have resulted in significant advances in our mechanistic understanding of n-3 PUFA action on tumour growth. Various interrelated and integrated mechanisms may be at work by which n-3 PUFA influence cancer at all stages of initiation, promotion, progression, and neoplastic transformation. More recently, experimental studies have reported enhanced tumour cell death with chemotherapy when fish oil is provided while toxic side effects to the host are reduced. Furthermore, cancer-associated wasting has been shown to be attenuated by fish oil supplementation. Clinical evidence suggests that the n-3 PUFA status of newly diagnosed cancer patients and individuals undergoing chemotherapy is low. Therefore, both the disease itself and therapeutic treatments may be contributing factors in the decline of n-3 PUFA status. Dietary supplementation to maintain and replenish n-3 PUFA status at key points in the cancer disease trajectory may provide additional health benefits and an enhanced quality of life. The present review will focus on and critically examine current research efforts related to the putative anti-cancer effects of n-3 PUFA and their suggested ability to palliate cancer-associated and treatment-associated symptoms.
Collapse
Affiliation(s)
- Vickie E Baracos
- Department of Oncology, Division of Palliative Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | | | | |
Collapse
|
5
|
n-3 polyunsaturated fatty acids suppress phosphatidylinositol 4,5-bisphosphate-dependent actin remodelling during CD4+ T-cell activation. Biochem J 2012; 443:27-37. [PMID: 22250985 DOI: 10.1042/bj20111589] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
n-3 PUFA (polyunsaturated fatty acids), i.e. DHA (docosahexaenoic acid), found in fish oil, exhibit anti-inflammatory properties; however, the molecular mechanisms remain unclear. Since PtdIns(4,5)P2 resides in raft domains and DHA can alter the size of rafts, we hypothesized that PtdIns(4,5)P2 and downstream actin remodelling are perturbed by the incorporation of n-3 PUFA into membranes, resulting in suppressed T-cell activation. CD4+ T-cells isolated from Fat-1 transgenic mice (membranes enriched in n-3 PUFA) exhibited a 50% decrease in PtdIns(4,5)P2. Upon activation by plate-bound anti-CD3/anti-CD28 or PMA/ionomycin, Fat-1 CD4+ T-cells failed to metabolize PtdIns(4,5)P2. Furthermore, actin remodelling failed to initiate in Fat-1 CD4+ T-cells upon stimulation; however, the defect was reversed by incubation with exogenous PtdIns(4,5)P2. When Fat-1 CD4+ T-cells were stimulated with anti-CD3/anti-CD28-coated beads, WASP (Wiskott-Aldrich syndrome protein) failed to translocate to the immunological synapse. The suppressive phenotype, consisting of defects in PtdIns(4,5)P2 metabolism and actin remodelling, were recapitulated in CD4+ T-cells isolated from mice fed on a 4% DHA triacylglycerol-enriched diet. Collectively, these data demonstrate that n-3 PUFA, such as DHA, alter PtdIns(4,5)P2 in CD4+ T-cells, thereby suppressing the recruitment of WASP to the immunological synapse, and impairing actin remodelling in CD4+ T-cells.
Collapse
|
6
|
Gélinas R, Thompson-Legault J, Bouchard B, Daneault C, Mansour A, Gillis MA, Charron G, Gavino V, Labarthe F, Des Rosiers C. Prolonged QT interval and lipid alterations beyond β-oxidation in very long-chain acyl-CoA dehydrogenase null mouse hearts. Am J Physiol Heart Circ Physiol 2011; 301:H813-23. [PMID: 21685264 DOI: 10.1152/ajpheart.01275.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Patients with very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency frequently present cardiomyopathy and heartbeat disorders. However, the underlying factors, which may be of cardiac or extra cardiac origins, remain to be elucidated. In this study, we tested for metabolic and functional alterations in the heart from 3- and 7-mo-old VLCAD null mice and their littermate counterparts, using validated experimental paradigms, namely, 1) ex vivo perfusion in working mode, with concomitant evaluation of myocardial contractility and metabolic fluxes using (13)C-labeled substrates under various conditions; as well as 2) in vivo targeted lipidomics, gene expression analysis as well as electrocardiogram monitoring by telemetry in mice fed various diets. Unexpectedly, when perfused ex vivo, working VLCAD null mouse hearts maintained values similar to those of the controls for functional parameters and for the contribution of exogenous palmitate to β-oxidation (energy production), even at high palmitate concentration (1 mM) and increased energy demand (with 1 μM epinephrine) or after fasting. However, in vivo, these hearts displayed a prolonged rate-corrected QT (QTc) interval under all conditions examined, as well as the following lipid alterations: 1) age- and condition-dependent accumulation of triglycerides, and 2) 20% lower docosahexaenoic acid (an omega-3 polyunsaturated fatty acid) in membrane phospholipids. The latter was independent of liver but affected by feeding a diet enriched in saturated fat (exacerbated) or fish oil (attenuated). Our finding of a longer QTc interval in VLCAD null mice appears to be most relevant given that such condition increases the risk of sudden cardiac death.
Collapse
Affiliation(s)
- Roselle Gélinas
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Xue H, Sawyer MB, Wischmeyer PE, Baracos VE. Nutrition modulation of gastrointestinal toxicity related to cancer chemotherapy: from preclinical findings to clinical strategy. JPEN J Parenter Enteral Nutr 2011; 35:74-90. [PMID: 21224434 DOI: 10.1177/0148607110377338] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chemotherapy-induced gut toxicity is a major dose-limiting toxicity for many anticancer drugs. Gastrointestinal (GI) complications compromise the efficacy of chemotherapy, promote overall malnutrition, aggravate cancer cachexia, and may contribute to worsened prognosis. The GI tract is an attractive target for nutrition modulation, owing to its direct exposure to the diet, participation in uptake and metabolism of nutrients, high rate of cell turnover, and plasticity to nutrition stimuli. Glutamine, ω-3 polyunsaturated fatty acids, and probiotics/prebiotics are therapeutic factors that potentially modulate GI toxicity related to cancer treatments. Preclinical and clinical evidence are reviewed to critically define plausible benefits of these factors and their potential development into adjuncts to cancer chemotherapy. Mechanisms underlying the action of these nutrients are being unraveled in the laboratory. Optimal strategies to translate these findings into clinical care still remain to be elucidated. Key questions that remain to be answered include the following: which nutrient or combination of nutrients is selected for which patient and chemotherapy regimen? What mechanisms are responsible for modulation, and how are nutrient(s) administered in a clinically optimal manner? Research exploring interactions between different nutrients in GI protection is ongoing and demands further understanding. How nutrition preparations given to chemotherapy-treated patients are formulated in terms of component selection and dose optimization should be carefully studied and justified.
Collapse
Affiliation(s)
- Hongyu Xue
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
8
|
Espada CE, Berra MA, Martinez MJ, Eynard AR, Pasqualini ME. Effect of Chia oil (Salvia Hispanica) rich in omega-3 fatty acids on the eicosanoid release, apoptosis and T-lymphocyte tumor infiltration in a murine mammary gland adenocarcinoma. Prostaglandins Leukot Essent Fatty Acids 2007; 77:21-8. [PMID: 17618100 DOI: 10.1016/j.plefa.2007.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 05/11/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
We investigated the effects of certain dietary polyunsaturated fatty acids (PUFAs) and related eicosanoids on the growth and metastasis formation of a murine mammary gland adenocarcinoma. Salvia hispanica (ChO) and Carthamus tinctorius (SaO) vegetable oil sources of omega-3 and -6 PUFAs and a commercial diet as control (CO), were used. We analysed fatty acids of neoplastic cells (NC) membranes by GLC; the eicosanoids 12- HETE and 12-HHT (LOX and COX metabolites) by HPLC and apoptosis and T-lymphocyte infiltration by flow cytometry and microscopy. NC from ChO groups showed lower levels of arachidonic acid and of both eicosanoids compared to SaO and CO (p<0.05). The ChO diet decreased the tumor weight and metastasis number (p<0.05). Apoptosis and T-lymphocyte infiltration were higher and mitosis decreased with respect to the other diets (p<0.05). Present data showed that ChO, an ancient and almost unknown source of omega-3, inhibits growth and metastasis in this tumor model.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism
- Adenocarcinoma/drug therapy
- Adenocarcinoma/immunology
- Adenocarcinoma/metabolism
- Animals
- Apoptosis
- Cell Membrane/metabolism
- Eicosanoids/metabolism
- Fatty Acids, Omega-3/analysis
- Fatty Acids, Unsaturated/metabolism
- Female
- Lymphocytes, Tumor-Infiltrating/drug effects
- Male
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/metabolism
- Mice
- Mice, Inbred BALB C
- Mitosis
- Phytotherapy
- Plant Oils/chemistry
- Plant Oils/therapeutic use
- Prostaglandin-Endoperoxide Synthases/metabolism
- Salvia/chemistry
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- C E Espada
- Ia Cátedra de Biología Celular, Histología y Embriología, Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Casilla de Correos 220, 5000, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
9
|
Pardini RS. Nutritional intervention with omega-3 fatty acids enhances tumor response to anti-neoplastic agents. Chem Biol Interact 2006; 162:89-105. [PMID: 16846596 DOI: 10.1016/j.cbi.2006.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 05/19/2006] [Accepted: 05/22/2006] [Indexed: 11/29/2022]
Abstract
Nutritional intervention with specific fatty acids depresses tumor growth and enhances tumor responsiveness to chemotherapy. Supplementation of tumors with long chained omega-3 polyunsaturated fatty acids results in enrichment of tumor phospholipid fractions with omega-3 fatty acids resulting in an altered membrane composition and function. Tumors enriched with long chained omega-3 polyunsaturated fatty acids possess membranes with increased fluidity, an elevated unsaturation index, enhanced transport capabilities that results in accumulation of selective anti-cancer agents, increased activity of selected drug activating enzymes, and alteration of signaling pathways important for cancer progression. These nutritionally induced changes in tumor fatty acid composition result in increased sensitivity to chemotherapy, especially in tumor lines that are resistant to chemotherapy and cause specific enhancement of cytotoxicity to tumor cells and protection of normal cells. Pre-disposing tumors to increased chemo-sensitivity through nutritional intervention with specific fatty acids has the potential to improve patient response to chemotherapy with fewer untoward side effects if these pre-clinical findings carry over into a clinical setting.
Collapse
Affiliation(s)
- Ronald S Pardini
- Department of Biochemistry, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
10
|
Cha MC, Lin A, Meckling KA. Low dose docosahexaenoic acid protects normal colonic epithelial cells from araC toxicity. BMC Pharmacol 2005; 5:7. [PMID: 15788091 PMCID: PMC1079882 DOI: 10.1186/1471-2210-5-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Accepted: 03/23/2005] [Indexed: 11/10/2022] Open
Abstract
Background The nucleoside analogue arabinosylcytosine (araC) has been used for many years in the treatment of acute leukemia. Evidence in the literature suggests that araC may inhibit the growth of human colon carcinoma cell lines as well. Because araC action interferes with normal nucleoside metabolism, it is highly toxic to a number of normal cell types including bone marrow and intestinal mucosa cells. Here we investigate whether the omega-3 fatty acid docosahexaenoic acid (DHA) could selectively target araC toxicity toward colonic tumor cells while protecting the normal cells in vitro. Results Cultures of normal rat colonic epithelial cells (4D/WT) and those transformed by v-src (D/v-src) were supplemented with graded concentrations of DHA or arachidonic acid (AA) alone or in combination with araC. AraC was only 1.6 fold more toxic to D/v-src than 4D/WT in cultures without added fatty acids. Supplementing with as little as 3 μM of either AA or DHA increased araC toxicity by more than 30-fold in the tumorigenic cells. The toxic effect of araC on the normal cells was also increased by the fatty acid supplementation. IC50 values were decreased 1.7 fold by DHA in the 4D/WT cells but a more than 7-fold decrease was observed during AA supplementation. As a result, the therapeutic index of araC (IC50 normal/IC50 tumor) was more than 3-fold higher in the DHA than the AA supplemented cells. The expression of protein kinase C isoform epsilon was decreased in AA alone supplemented D/v-src cultures but in combination with araC decreased only in DHA supplemented 4D/WT cells. Conclusion Low dose DHA supplementation may enhance araC chemotherapy in colon cancer while protecting normal tissues, possibly through control of PKC signalling pathways.
Collapse
Affiliation(s)
- Ming C Cha
- Department of Human Biology and Nutritional Sciences University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Angela Lin
- Department of Human Biology and Nutritional Sciences University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Kelly A Meckling
- Department of Human Biology and Nutritional Sciences University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
11
|
Farkas E, de Wilde MC, Kiliaan AJ, Meijer J, Keijser JN, Luiten PGM. Dietary long chain PUFAs differentially affect hippocampal muscarinic 1 and serotonergic 1A receptors in experimental cerebral hypoperfusion. Brain Res 2002; 954:32-41. [PMID: 12393230 DOI: 10.1016/s0006-8993(02)03300-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The chronic dietary intake of essential polyunsaturated fatty acids (PUFAs) can modulate learning and memory by being incorporated into neuronal plasma membranes. Representatives of two PUFA families, the n-3 and n-6 types become integrated into membrane phospholipids, where the actual (n-6)/(n-3) ratio can determine membrane fluidity and thus the function of membrane-bound proteins. In the present experiment we studied hippocampal neurotransmitter receptors after chronic administration of n-3 PUFA enriched diets in a brain hypoperfusion model, which mimics decreased cerebral perfusion as it occurs in ageing and dementia. Male Wistar rats received experimental diets with a decreased (n-6)/(n-3) ratio from weaning on. Chronic experimental cerebral hypoperfusion was imposed by a permanent, bilateral occlusion of the common carotid arteries (2VO) at the age of 4 months. The experiment was terminated when the rats were 7 months old. Three receptor types, the muscarinic 1, serotonergic 1A and the glutaminergic NMDA receptors were labeled in hippocampal slices by autoradiographic methods. Image analysis demonstrated that 2VO increased muscarinic 1 and NMDA receptor density, specifically in the dentate gyrus and the CA3 region, respectively. The increased ratio of n-3 fatty acids in combination with additional dietary supplements enhanced the density of the serotonergic 1A and muscarinic 1 receptors, while n-3 fatty acids alone increased binding only to the muscarinic 1 receptors. Since the examined receptor types reacted differently to the diets, we concluded that besides changes in membrane fluidity, the biochemical regulation of receptor sensitivity might also play a role in increasing hippocampal receptor density.
Collapse
MESH Headings
- Animals
- Brain Ischemia/metabolism
- Carotid Artery, Common/surgery
- Cerebral Cortex/blood supply
- Cerebrovascular Circulation/drug effects
- Cerebrovascular Disorders
- Dietary Fats, Unsaturated/administration & dosage
- Fatty Acids, Essential/administration & dosage
- Hippocampus/metabolism
- Male
- Perfusion
- Rats
- Rats, Wistar
- Receptor, Muscarinic M1
- Receptors, Muscarinic/metabolism
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, Serotonin/metabolism
- Receptors, Serotonin, 5-HT1
Collapse
Affiliation(s)
- Eszter Farkas
- Group of Molecular Neurobiology, Department of Animal Physiology, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
12
|
Farkas E, de Wilde MC, Kiliaan AJ, Luiten PGM. Systemic effects of dietary n-3 PUFA supplementation accompany changes of CNS parameters in cerebral hypoperfusion. Ann N Y Acad Sci 2002; 977:77-86. [PMID: 12480735 DOI: 10.1111/j.1749-6632.2002.tb04800.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dietary supplementation with long-chain polyunsaturated fatty acids (PUFAs) has become an attractive possibility to alleviate or prevent cerebrovascular pathophysiology. To characterize the potentially beneficial cerebrovascular action of n-3 PUFAs that predominantly occur in fish oil, we set up an experimental paradigm where rats with chronic cerebral hypoperfusion were supplied with n-3 PUFA-enriched diets. Cerebral hypoperfusion was created by a permanent, bilateral occlusion of the common carotid arteries (2VO) of rats at the age of 4 months, with a survival of 3 months. Simultaneously, the rats were provided with experimental diets from the time of weaning until the termination of the experiments. The control diet was comparable to standard rat chow, while diet 1 contained additional n-3 PUFAs and diet 2 was further enriched with structural phospholipids and neurotransmitter precursors. In summary, the data show that diet 2 improved spatial learning of 2VO rats in the Morris water maze. Both diet 1 and diet 2 augmented blood-brain barrier parameters and increased the density of the M1-type muscarinic cholinergic receptors in the hippocampus independent of the rate of cerebral perfusion. In addition to an overview of these results, changes that were supportive or accompanying those described in the CNS are also presented. Briefly, plasma corticosterone concentration was elevated most explicitly by 2VO, while the relative weight of the liver and spleen increased due to the diets. The data draw attention to changes not only in the CNS, but also in the periphery as a consequence of chronic supplementation with n-3 PUFA-enriched diets.
Collapse
Affiliation(s)
- Eszter Farkas
- Department of Molecular Neurobiology, University of Groningen, Haren, the Netherlands.
| | | | | | | |
Collapse
|