1
|
Kallemeijn WW, Lanyon-Hogg T, Panyain N, Goya Grocin A, Ciepla P, Morales-Sanfrutos J, Tate EW. Proteome-wide analysis of protein lipidation using chemical probes: in-gel fluorescence visualization, identification and quantification of N-myristoylation, N- and S-acylation, O-cholesterylation, S-farnesylation and S-geranylgeranylation. Nat Protoc 2021; 16:5083-5122. [PMID: 34707257 DOI: 10.1038/s41596-021-00601-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/05/2021] [Indexed: 02/08/2023]
Abstract
Protein lipidation is one of the most widespread post-translational modifications (PTMs) found in nature, regulating protein function, structure and subcellular localization. Lipid transferases and their substrate proteins are also attracting increasing interest as drug targets because of their dysregulation in many disease states. However, the inherent hydrophobicity and potential dynamic nature of lipid modifications makes them notoriously challenging to detect by many analytical methods. Chemical proteomics provides a powerful approach to identify and quantify these diverse protein modifications by combining bespoke chemical tools for lipidated protein enrichment with quantitative mass spectrometry-based proteomics. Here, we report a robust and proteome-wide approach for the exploration of five major classes of protein lipidation in living cells, through the use of specific chemical probes for each lipid PTM. In-cell labeling of lipidated proteins is achieved by the metabolic incorporation of a lipid probe that mimics the specific natural lipid, concomitantly wielding an alkyne as a bio-orthogonal labeling tag. After incorporation, the chemically tagged proteins can be coupled to multifunctional 'capture reagents' by using click chemistry, allowing in-gel fluorescence visualization or enrichment via affinity handles for quantitative chemical proteomics based on label-free quantification (LFQ) or tandem mass-tag (TMT) approaches. In this protocol, we describe the application of lipid probes for N-myristoylation, N- and S-acylation, O-cholesterylation, S-farnesylation and S-geranylgeranylation in multiple cell lines to illustrate both the workflow and data obtained in these experiments. We provide detailed workflows for method optimization, sample preparation for chemical proteomics and data processing. A properly trained researcher (e.g., technician, graduate student or postdoc) can complete all steps from optimizing metabolic labeling to data processing within 3 weeks. This protocol enables sensitive and quantitative analysis of lipidated proteins at a proteome-wide scale at native expression levels, which is critical to understanding the role of lipid PTMs in health and disease.
Collapse
Affiliation(s)
- Wouter W Kallemeijn
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
- The Francis Crick Institute, London, UK
| | - Thomas Lanyon-Hogg
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Nattawadee Panyain
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
- Global Health Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Andrea Goya Grocin
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
- The Francis Crick Institute, London, UK
| | - Paulina Ciepla
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Julia Morales-Sanfrutos
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
- Proteomics Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Becker LC, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA. Final Report of the Amended Safety Assessment of Myristic Acid and Its Salts and Esters as Used in Cosmetics. Int J Toxicol 2019; 29:162S-86S. [DOI: 10.1177/1091581810374127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This report addresses the safety of the inorganic salts and esters of various fatty alcohols of myristic acid. Most of the esters are used as skin conditioning agents in many types of cosmetics in a range of concentrations. Myristate esters are readily hydrolyzed to the corresponding alcohols and acids, which are then further metabolized. Myristate salts readily dissociate in any likely cosmetic formulation. The Cosmetic Ingredient Review (CIR) Panel recognized that much of the data supporting the ingredients in this group were previously reviewed in safety assessments for related ingredients. Where specific data did not exist, the Panel considered structure—activity relationships in determining the safety of these ingredients as used in cosmetics. The Panel determined that myristic acid and its salts and esters are safe as cosmetic ingredients in the current practices of use and concentration.
Collapse
|
3
|
Mohammadzadeh F, Hosseini V, Mehdizadeh A, Dani C, Darabi M. A method for the gross analysis of global protein acylation by gas-liquid chromatography. IUBMB Life 2018; 71:340-346. [DOI: 10.1002/iub.1975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Fatemeh Mohammadzadeh
- Liver and Gastrointestinal Diseases Research Center; Tabriz University of Medical Sciences; 5166614756, Tabriz Iran
| | - Vahid Hosseini
- Department of Biochemistry and Clinical Laboratories; Tabriz University of Medical Sciences, Faculty of Medicine; 5166615731, Tabriz Iran
| | - Amir Mehdizadeh
- Liver and Gastrointestinal Diseases Research Center; Tabriz University of Medical Sciences; 5166614756, Tabriz Iran
- Endocrine Research Center; Tabriz University of Medical Sciences; 5166614756, Tabriz Iran
| | - Christian Dani
- Université Côte d'Azur, CNRS, Inserm, iBV; 06107, Nice France
| | - Masoud Darabi
- Liver and Gastrointestinal Diseases Research Center; Tabriz University of Medical Sciences; 5166614756, Tabriz Iran
| |
Collapse
|
4
|
Legrand P, Rioux V. Specific roles of saturated fatty acids: Beyond epidemiological data. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400514] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Philippe Legrand
- Laboratoire de Biochimie-Nutrition Humaine; Agrocampus Ouest; Rennes France
| | - Vincent Rioux
- Laboratoire de Biochimie-Nutrition Humaine; Agrocampus Ouest; Rennes France
| |
Collapse
|
5
|
Hoffman R, Gerber M. Evaluating and adapting the Mediterranean diet for non-Mediterranean populations: a critical appraisal. Nutr Rev 2013; 71:573-84. [PMID: 24032362 DOI: 10.1111/nure.12040] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This review outlines the limitations of current techniques for evaluating the Mediterranean diet in Mediterranean versus non-Mediterranean populations. Differences between the two populations with regard to the foods that are available, food processing and preparation techniques, and eating and lifestyle habits may influence the implementation and effects of a Mediterranean diet in non-Mediterranean regions. For example, the composition of food groups may vary significantly, due to differences in the specific foods within a food group and to differences in aspects of food production and preparation. Notable differences between the diets of Mediterranean versus non-Mediterranean populations include the source of monounsaturated fatty acids (olive oil versus meat), the amount of vegetables consumed and their manner of preparation, the source of alcohol (wine versus other) and the pattern of intake, and the types of meat and dairy products consumed. Lifestyle factors such as meal patterns and exposure to sunlight may also act as confounding factors when the overall benefits of a Mediterranean diet are assessed. Improving the calculation of Mediterranean diet scores and measuring plasma nutrient levels may help mitigate the effects of confounders. These considerations could have important health implications when a Mediterranean diet is implemented by non-Mediterranean populations.
Collapse
Affiliation(s)
- Richard Hoffman
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | | |
Collapse
|
6
|
|
7
|
Abstract
Many of the best-studied actin regulatory proteins use non-covalent means to modulate the properties of actin. Yet, actin is also susceptible to covalent modifications of its amino acids. Recent work is increasingly revealing that actin processing and its covalent modifications regulate important cellular events. In addition, numerous pathogens express enzymes that specifically use actin as a substrate to regulate their hosts' cells. Actin post-translational alterations have been linked to different normal and disease processes and the effects associated with metabolic and environmental stressors. Herein, we highlight specific co-translational and post-translational modifications of actin and discuss the current understanding of the role that these modifications play in regulating actin.
Collapse
Affiliation(s)
- Jonathan R Terman
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
8
|
In rat hepatocytes, myristic acid occurs through lipogenesis, palmitic acid shortening and lauric acid elongation. Animal 2012; 1:820-6. [PMID: 22444745 DOI: 10.1017/s1751731107000122] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The origin of myristic acid in mammalian cells and the regulation of its endogenous cellular low concentration are not known. Another intriguing question is the potential metabolic properties of endogenous myristic acid as compared with exogenous myristic acid. In the present paper, we hypothesised and demonstrated that, in liver cells, in addition to the usual fatty acid synthase (FAS) pathway that produces predominantly palmitic acid and minor amounts of myristic acid, part of endogenous cellular myristic acid also comes from a shortening of palmitic acid, likely by peroxisomal β-oxidation and from lauric acid by elongation. From a nutritional point of view, C16:0 is universally found in natural fats and its shortening to myristic acid could contribute to a non-negligible source of this fatty acid (FA) in the organism. Then, we measured the distribution of endogenously synthesised myristic acid in lipid species and compared it with that of exogenous myristic acid. Our results do not support the hypothesis of different metabolic fates of endogenous and exogenous myristic acid and suggest that whatever the origin of myristic acid, its cellular concentration and lipid distribution are highly regulated.
Collapse
|
9
|
Myristic acid increases dihydroceramide Δ4-desaturase 1 (DES1) activity in cultured rat hepatocytes. Lipids 2011; 47:117-28. [PMID: 22139871 DOI: 10.1007/s11745-011-3638-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 11/17/2011] [Indexed: 12/14/2022]
Abstract
Dihydroceramide Δ4-desaturase 1 (DES1) catalyzes the last step of the de novo ceramide biosynthesis, which consists of the introduction of a trans Δ4-double bond in the carbon chain of the dihydroceramide. It was previously observed that myristic acid binds DES1 through N-myristoylation. This N-terminal modification significantly increased the activity of the recombinant DES1 in COS-7 cells and targeted part of the enzyme initially present in the endoplasmic reticulum to the mitochondrial outer membrane, leading to an increase in ceramide levels. Since these results were obtained in a recombinant COS-7 cell model with high expression of rat DES1, the purpose of the present study was to investigate if the native DES1 enzyme was really upregulated by its N-myristoylation in cultured rat hepatocytes. We first showed that DES1 was the main dihydroceramide desaturase isoform expressed in rat hepatocytes. In this model, the wild-type myristoylable recombinant form of rat DES1 was found in both the endoplasmic reticulum and the mitochondria whereas the mutated non-myristoylable recombinant form (N-terminal glycine replaced by an alanine) was almost exclusively localized in the endoplasmic reticulum, which evidenced the importance of the myristoylation. Then, we showed that compared to other fatty acids, myristic acid was the only one to increase native DES1 activity, in both total cell lysates and mitochondrial fractions. The myristic acid-associated increase in DES1 activity was not linked to elevated mRNA or protein expression but more likely to its N-terminal myristoylation. Finally, the myristic acid-associated increase in DES1 activity slightly enhanced the number of apoptotic cells.
Collapse
|
10
|
Martin DDO, Beauchamp E, Berthiaume LG. Post-translational myristoylation: Fat matters in cellular life and death. Biochimie 2011; 93:18-31. [PMID: 21056615 DOI: 10.1016/j.biochi.2010.10.018] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/23/2010] [Indexed: 01/15/2023]
Abstract
Myristoylation corresponds to the irreversible covalent linkage of the 14-carbon saturated fatty acid, myristic acid, to the N-terminal glycine of many eukaryotic and viral proteins. It is catalyzed by N-myristoyltransferase. Typically, the myristate moiety participates in protein subcellular localization by facilitating protein-membrane interactions as well as protein-protein interactions. Myristoylated proteins are crucial components of a wide variety of functions, which include many signalling pathways, oncogenesis or viral replication. Initially, myristoylation was described as a co-translational reaction that occurs after the removal of the initiator methionine residue. However, it is now well established that myristoylation can also occur post-translationally in apoptotic cells. Indeed, during apoptosis hundreds of proteins are cleaved by caspases and in many cases this cleavage exposes an N-terminal glycine within a cryptic myristoylation consensus sequence, which can be myristoylated. The principal objective of this review is to provide an overview on the implication of myristoylation in health and disease with a special emphasis on post-translational myristoylation. In addition, new advancements in the detection and identification of myristoylated proteins are also briefly reviewed.
Collapse
Affiliation(s)
- Dale D O Martin
- Department of Cell Biology, School of Molecular and Systems Medicine, MSB-5-55, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
11
|
Legrand P, Rioux V. The complex and important cellular and metabolic functions of saturated fatty acids. Lipids 2010; 45:941-6. [PMID: 20625935 PMCID: PMC2974191 DOI: 10.1007/s11745-010-3444-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 06/21/2010] [Indexed: 12/27/2022]
Abstract
This review summarizes recent findings on the metabolism and biological functions of saturated fatty acids (SFA). Some of these findings show that SFA may have important and specific roles in the cells. Elucidated biochemical mechanisms like protein acylation (N-myristoylation, S-palmitoylation) and regulation of gene transcription are presented. In terms of physiology, SFA are involved for instance in lipogenesis, fat deposition, polyunsaturated fatty acids bioavailability and apoptosis. The variety of their functions demonstrates that SFA should no longer be considered as a single group.
Collapse
Affiliation(s)
- Philippe Legrand
- Laboratoire de Biochimie-Nutrition Humaine, Agrocampus Rennes, INRA USC 2012, 65 rue de Saint-Brieuc, CS 84215, Rennes Cedex, France.
| | | |
Collapse
|
12
|
Grillo MP, Lohr MT. Covalent binding of phenylacetic acid to protein in incubations with freshly isolated rat hepatocytes. Drug Metab Dispos 2009; 37:1073-82. [PMID: 19196839 DOI: 10.1124/dmd.108.026153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Phenylacetic acid (PAA) represents a substructure of a class of nonsteroidal anti-inflammatory carboxylic acid-containing drugs capable of undergoing metabolic activation in the liver to acylcoenzyme A (CoA)- and/or acyl glucuronide-linked metabolites that are proposed to be associated with the formation of immunogenic, and hence potentially hepatotoxic, drug-protein adducts. Herein, we investigated the ability of PAA to undergo phenylacetyl-S-acyl-CoA thioester (PA-CoA)-mediated covalent binding to protein in incubations with freshly isolated rat hepatocytes in suspension. Thus, when hepatocytes were incubated with phenylacetic acid carboxy-(14)C (100 microM) and analyzed for PA-CoA formation and covalent binding of PAA to protein and over a 3-h time period, both PA-CoA formation and covalent binding to protein increased rapidly, reaching 1.3 microM and 291 pmol equivalents/mg protein after 4 and 6 min of incubation, respectively. However, the covalent binding of PAA to protein was reversible and decreased by 72% at the 3-h time point. After 3 h of incubation, PAA was shown to be metabolized primarily to phenylacetyl-glycine amide (84%). No PAA-acyl glucuronide was detected in the incubation extracts. PA-CoA reacted readily with glutathione in buffer, forming PA-S-acyl-glutathione; however, this glutathione conjugate was not detected in hepatocyte incubation extracts. Coincubation of hepatocytes with lauric acid led to a marked inhibition of PA-CoA formation and a corresponding inhibition of covalent binding to protein. SDS-polyacrylamide gel electrophoresis analysis showed the formation of two protein adducts having molecular masses of approximately 29 and approximately 33 kDa. In summary, PA-CoA formation in rat hepatocytes leads to the highly selective, but reversible, covalent binding to hepatocyte proteins, but not to the transacylation of glutathione.
Collapse
Affiliation(s)
- Mark P Grillo
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, CA 94080, USA.
| | | |
Collapse
|
13
|
Michalski MC. Specific molecular and colloidal structures of milk fat affecting lipolysis, absorption and postprandial lipemia. EUR J LIPID SCI TECH 2009. [DOI: 10.1002/ejlt.200800254] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Beauchamp E, Rioux V, Legrand P. [New regulatory and signal functions for myristic acid]. Med Sci (Paris) 2009; 25:57-63. [PMID: 19154695 DOI: 10.1051/medsci/200925157] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myristic acid is a 14 carbon saturated fatty acid, which is mostly found in milk fat. In industrialized countries, its excessive consumption is correlated with an increase in plasma cholesterol and mortality due to cardiovascular diseases. Nevertheless, one feature of this fatty acid is its ability to acylate proteins, a reaction which is called N-terminal myristoylation. This article describes various examples of important cellular regulations where the intervention of myristic acid is proven. Modulations of the cellular concentration of this fatty acid and its associated myristoylation function might be used as regulators of these metabolic pathways.
Collapse
Affiliation(s)
- Erwan Beauchamp
- Laboratoire de Biochimie-Nutrition Humaine, Agrocampus Rennes-INRA USC 2012, 65, rue de Saint-Brieuc, 35042 Rennes Cedex, France
| | | | | |
Collapse
|
15
|
Beauchamp E, Goenaga D, Le Bloc'h J, Catheline D, Legrand P, Rioux V. Myristic acid increases the activity of dihydroceramide Delta4-desaturase 1 through its N-terminal myristoylation. Biochimie 2007; 89:1553-61. [PMID: 17716801 DOI: 10.1016/j.biochi.2007.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 07/03/2007] [Indexed: 11/16/2022]
Abstract
Dihydroceramide Delta4-desaturase (DES) catalyzes the desaturation of dihydroceramide into ceramide. In mammals, two gene isoforms named DES1 and DES2 have recently been identified. The regulation of these enzymes is still poorly understood. This study was designed to examine the possible N-myristoylation of DES1 and DES2 and the effect of this co-translational modification on dihydroceramide Delta4-desaturase activity. N-MyristoylTransferases (NMT) catalyze indeed the formation of a covalent linkage between myristoyl-CoA and the N-terminal glycine of candidate proteins, as found in the sequence of DES proteins. The expression of both rat DES in COS-7 cells evidenced first that DES1 but not DES2 was associated with an increased dihydroceramide Delta4-desaturase activity. Then, we showed that recombinant DES1 was myristoylated in vivo when expressed in COS-7 cells. In addition, in vitro myristoylation assay with a peptide substrate corresponding to the N-terminal sequence of the protein confirmed that NMT1 has a high affinity for DES1 myristoylation motif (apparent K(m)=3.92 microM). Compared to an unmyristoylable mutant form of DES1 (Gly replaced by an Ala), the dihydroceramide Delta4-desaturase activity of the myristoylable DES1-Gly was reproducibly and significantly higher. Finally, the activity of wild-type DES1 was also linearly increased in the presence of increased concentrations of myristic acid incubated with the cells. These results demonstrate that DES1 is a newly discovered myristoylated protein. This N-terminal modification has a great impact on dihydroceramide Delta4-desaturase activity. These results suggest therefore that myristic acid may play an important role in the biosynthesis of ceramide and in sphingolipid metabolism.
Collapse
Affiliation(s)
- Erwan Beauchamp
- Laboratoire de Biochimie, INRA-Agrocampus Rennes, 65 rue de Saint-Brieuc, CS 84215, 35042 Rennes Cedex, France
| | | | | | | | | | | |
Collapse
|
16
|
Rioux V, Legrand P. Saturated fatty acids: simple molecular structures with complex cellular functions. Curr Opin Clin Nutr Metab Care 2007; 10:752-8. [PMID: 18089958 DOI: 10.1097/mco.0b013e3282f01a75] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW This review summarizes recent findings on the biological functions of saturated fatty acids. Some of these findings suggest that saturated fatty acids may have important and specific regulatory roles in the cells. Until now these roles have largely been outweighed by the negative impact of dietary saturated fatty acids on atherosclerosis biomarkers. Elucidated biochemical mechanisms like protein acylation (N-myristoylation, S-palmitoylation) and putative physiological roles are described. RECENT FINDINGS The review will focus on the following topics: new aspects on the metabolism of saturated fatty acids; recent reports on the biochemical functions of saturated fatty acids; current investigations on the physiological roles (elucidated and putative) of saturated fatty acids; and a discussion of the nutritional dietary recommendations (amounts and types) of saturated fatty acids. SUMMARY Dietary saturated fatty acids are usually associated with negative consequences for human health. Experimental results on the relationship between doses, physiological effects, specificities and functions of individual saturated fatty acids are, however, conflicting. In this context, this review describes emerging recent evidence that some saturated fatty acids have important and specific biological roles. Such data are needed to allow a balanced view in terms of potential nutritional benefits of saturated fatty acids, and, if necessary, reassessment of the current nutritional dietary recommendations.
Collapse
Affiliation(s)
- Vincent Rioux
- Biochemistry and Human Nutrition Laboratory, Agrocampus Rennes, INRA USC 2012, Rennes, France
| | | |
Collapse
|
17
|
Isenberg JS, Jia Y, Fukuyama J, Switzer CH, Wink DA, Roberts DD. Thrombospondin-1 inhibits nitric oxide signaling via CD36 by inhibiting myristic acid uptake. J Biol Chem 2007; 282:15404-15. [PMID: 17416590 PMCID: PMC2430148 DOI: 10.1074/jbc.m701638200] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although CD36 is generally recognized to be an inhibitory signaling receptor for thrombospondin-1 (TSP1), the molecular mechanism for transduction of this signal remains unclear. Based on evidence that myristic acid and TSP1 each modulate endothelial cell nitric oxide signaling in a CD36-dependent manner, we examined the ability of TSP1 to modulate the fatty acid translocase activity of CD36. TSP1 and a CD36 antibody that mimics the activity of TSP1 inhibited myristate uptake. Recombinant TSP1 type 1 repeats were weakly inhibitory, but an anti-angiogenic peptide derived from this domain potently inhibited myristate uptake. This peptide also inhibited membrane translocation of the myristoylated CD36 signaling target Fyn and activation of Src family kinases. Myristate uptake stimulated cGMP synthesis via endothelial nitric-oxide synthase and soluble guanylyl cyclase. CD36 ligands blocked myristate-stimulated cGMP accumulation in proportion to their ability to inhibit myristate uptake. TSP1 also inhibited myristate-stimulated cGMP synthesis by engaging its receptor CD47. Myristate stimulated endothelial and vascular smooth muscle cell adhesion on type I collagen via the NO/cGMP pathway, and CD36 ligands that inhibit myristate uptake blocked this response. Therefore, the fatty acid translocase activity of CD36 elicits proangiogenic signaling in vascular cells, and TSP1 inhibits this response by simultaneously inhibiting fatty acid uptake via CD36 and downstream cGMP signaling via CD47.
Collapse
Affiliation(s)
- Jeff S. Isenberg
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Yifeng Jia
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Julia Fukuyama
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Christopher H. Switzer
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - David A. Wink
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
- To whom correspondence should be addressed: NIH, Building 10, Room 2A33, 10 Center Dr MSC1500, Bethesda, MD 20892 phone (301)496-6264, e-mail:
| |
Collapse
|
18
|
Les Acides Gras : Structures, Fonctions, Apports Nutritionnels Conseillés. CAHIERS DE NUTRITION ET DE DIETETIQUE 2007. [DOI: 10.1016/s0007-9960(07)91234-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Rioux V, Beauchamp E, Pedrono F, Daval S, Molle D, Catheline D, Legrand P. Identification and characterization of recombinant and native rat myristoyl-CoA: protein N-myristoyltransferases. Mol Cell Biochem 2006; 286:161-70. [PMID: 16538398 DOI: 10.1007/s11010-005-9108-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 12/08/2005] [Indexed: 01/19/2023]
Abstract
Compared to other species that possess a single functional myristoyl-CoA: protein N-myristoyltransferase gene copy, human, mouse and cow possess 2 NMT genes, and more than 2 protein isoforms. In mammals, the contribution of each gene transcript to multiple protein isoform expression and enzyme activity remains unclear. In order to get new insight on their respective physiological role, we have cloned and characterized the two rat NMT cDNAs. Rat NMT1 and NMT2 cDNAs contain 1491 and 1590 nucleotides, respectively, with high identity with their mouse homologues. Polypeptide sequences exhibited 68.1% identity between NMT1 and 2. Recombinant rat NMT1 and 2 showed major immunoreactive forms at 66 and 50 kDa, although NMT2 is 33-amino acid longer than NMT1. Both proteins exhibited functional myristoyltransferase activity but NMT2 appeared to be 4-time less active than NMT1. Studies of native protein expression revealed that the level and sizes of NMT proteins greatly vary among rat tissues although NMT1 and 2 did not display tissue specific expression at the mRNA level. Altogether, these results suggest that NMT2 may contribute little to total NMT activity levels in vivo.
Collapse
Affiliation(s)
- Vincent Rioux
- Laboratoire de Biochimie, INRA-Agrocampus, 35042 Rennes, France
| | | | | | | | | | | | | |
Collapse
|