1
|
Ge Y, Huang ZY, Pan J, Li CX, Zheng GW, Xu JH. Regiospecific C-H amination of (-)-limonene into (-)-perillamine by multi-enzymatic cascade reactions. BIORESOUR BIOPROCESS 2022; 9:88. [PMID: 38647597 PMCID: PMC10992285 DOI: 10.1186/s40643-022-00571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND (-)-Limonene, one of cyclic monoterpenes, is an important renewable compound used widely as a key building block for the synthesis of new biologically active molecules and fine chemicals. (-)-Perillamine, as derived from (-)-limonene, is a highly useful synthon for constructing more complicated and functionally relevant chemicals. AIM We aimed to report a more sustainable and more efficient method for the regiospecific C-H amination of (-)-limonene into (-)-perillamine. RESULTS Here, we report an artificial penta-enzymatic cascade system for the transformation of the cheap and easily available (-)-limonene into (-)-perillamine for the first time. This system is composed of cytochrome P450 monooxygenase, alcohol dehydrogenase and w-transaminase for the main reactions, as well as formate dehydrogenase and NADH oxidase for cofactor recycling. After optimization of the multi-enzymatic cascade system, 10 mM (-)-limonene was smoothly converted into 5.4 mM (-)-perillamine in a one-pot two-step biotransformation, indicating the feasibility of multi-enzymatic C7-regiospecific amination of the inert C-H bond of (-)-limonene. This method represents a concise and efficient route for the biocatalytic synthesis of derivatives from similar natural products.
Collapse
Affiliation(s)
- Yue Ge
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Zheng-Yu Huang
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jiang Pan
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Chun-Xiu Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Gao-Wei Zheng
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
2
|
Tikhov RM, Kuznetsov NY. Construction of piperidine-2,4-dione-type azaheterocycles and their application in modern drug development and natural product synthesis. Org Biomol Chem 2020; 18:2793-2812. [DOI: 10.1039/d0ob00287a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The review surveys the existing routes to piperidine-2,4-dione-type heterocycles including derivatives with the most vital types of biological activity. This heterocyclic platform is ideal for the construction of modern drugs and natural products.
Collapse
Affiliation(s)
- Rabdan M. Tikhov
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Nikolai Yu. Kuznetsov
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russian Federation
| |
Collapse
|
3
|
Vickers C, Backfisch G, Oellien F, Piel I, Lange UEW. Enzymatic Late‐Stage Oxidation of Lead Compounds with Solubilizing Biomimetic Docking/Protecting groups. Chemistry 2018; 24:17936-17947. [DOI: 10.1002/chem.201802331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/12/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Clare Vickers
- Neuroscience Discovery, Medicinal ChemistryAbbVie (Deutschland) GmbH & Co. KG Knollstrasse D-67061 Ludwigshafen Germany
| | - Gisela Backfisch
- Development Sciences, DMPK and Bioanalytical ResearchAbbVie (Deutschland) GmbH & Co. KG Knollstrasse D-67061 Ludwigshafen Germany
| | - Frank Oellien
- Neuroscience Discovery, Medicinal ChemistryAbbVie (Deutschland) GmbH & Co. KG Knollstrasse D-67061 Ludwigshafen Germany
| | - Isabel Piel
- Neuroscience Discovery, Medicinal ChemistryAbbVie (Deutschland) GmbH & Co. KG Knollstrasse D-67061 Ludwigshafen Germany
| | - Udo E. W. Lange
- Neuroscience Discovery, Medicinal ChemistryAbbVie (Deutschland) GmbH & Co. KG Knollstrasse D-67061 Ludwigshafen Germany
| |
Collapse
|
4
|
Yang Y, Chi YT, Toh HH, Li Z. Evolving P450pyr monooxygenase for highly regioselective terminal hydroxylation of n-butanol to 1,4-butanediol. Chem Commun (Camb) 2015; 51:914-7. [DOI: 10.1039/c4cc08479a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Directed evolution of a P450pyr created I83M/I82T mutant as the first catalyst for highly regioselective terminal hydroxylation of n-butanol to 1,4-butanediol.
Collapse
Affiliation(s)
- Yi Yang
- Department of Chemical
- Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Yu Tse Chi
- Department of Chemical
- Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Hui Hung Toh
- Department of Chemical
- Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Zhi Li
- Department of Chemical
- Biomolecular Engineering
- National University of Singapore
- Singapore
| |
Collapse
|
5
|
Gao P, Li A, Lee HH, Wang DIC, Li Z. Enhancing Enantioselectivity and Productivity of P450-Catalyzed Asymmetric Sulfoxidation with an Aqueous/Ionic Liquid Biphasic System. ACS Catal 2014. [DOI: 10.1021/cs5010344] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Pengfei Gao
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore 117585
- Singapore−MIT
Alliance, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
| | - Aitao Li
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore 117585
| | - Heng Hiang Lee
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore 117585
| | - Daniel I. C. Wang
- Singapore−MIT
Alliance, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
- Department
of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Zhi Li
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore 117585
- Singapore−MIT
Alliance, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
| |
Collapse
|
6
|
Yang Y, Liu J, Li Z. Engineering of P450pyr Hydroxylase for the Highly Regio- and Enantioselective Subterminal Hydroxylation of Alkanes. Angew Chem Int Ed Engl 2014; 53:3120-4. [DOI: 10.1002/anie.201311091] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 11/09/2022]
|
7
|
Yang Y, Liu J, Li Z. Engineering of P450pyr Hydroxylase for the Highly Regio- and Enantioselective Subterminal Hydroxylation of Alkanes. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201311091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Zhang J, Xu T, Li Z. Enantioselective Biooxidation of Racemictrans-Cyclic Vicinal Diols: One-Pot Synthesis of Both Enantiopure (S,S)-Cyclic Vicinal Diols and (R)-α-Hydroxy Ketones. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201300301] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Yamada S, Miyagawa TA, Yamada R, Shiratori-Takano H, Sayo N, Saito T, Takano H, Beppu T, Ueda K. Amide-transforming activity of Streptomyces: possible application to the formation of hydroxy amides and aminoalcohols. Appl Microbiol Biotechnol 2013; 97:6223-30. [DOI: 10.1007/s00253-013-4952-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/21/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
|
10
|
Pham SQ, Gao P, Li Z. Engineering of recombinant E. coli cells co-expressing P450pyrTM monooxygenase and glucose dehydrogenase for highly regio- and stereoselective hydroxylation of alicycles with cofactor recycling. Biotechnol Bioeng 2012; 110:363-73. [PMID: 22886996 DOI: 10.1002/bit.24632] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/20/2012] [Accepted: 07/25/2012] [Indexed: 11/07/2022]
Abstract
E. coli (P450pyrTM-GDH) with dual plasmids, pETDuet containing P450pyr triple mutant I83H/M305Q/A77S (P450pyrTM) and ferredoxin reductase (FdR) genes and pRSFDuet containing glucose dehydrogenase (GDH) and ferredoxin (Fdx) genes, was engineered to show a high activity (12.7 U g⁻¹ cdw) for the biohydroxylation of N-benzylpyrrolidine 1 and a GDH activity of 106 U g⁻¹ protein. The E. coli cells were used as efficient biocatalysts for highly regio- and stereoselective hydroxylation of alicyclic substrates at non-activated carbon atom with enhanced productivity via intracellular recycling of NAD(P)H. Hydroxylation of N-benzylpyrrolidine 1 with resting cells in the presence of glucose showed excellent regio- and stereoselectivity, giving (S)-N-benzyl-3-hydroxypyrrolidine 2 in 98% ee as the sole product in 9.8 mM. The productivity is much higher than that of the same biohydroxylation using E. coli (P450pyrTM)b without expressing GDH. E. coli (P450pyrTM-GDH) was found to be highly regio- and stereoselective for the hydroxylation of N-benzylpyrrolidin-2-one 3, improving the regioselectivity from 90% of the wild-type P450pyr to 100% and giving (S)-N-benzyl-4-hydroxylpyrrolidin-2-one 4 in 99% ee as the sole product. A high activity of 15.5 U g⁻¹ cdw was achieved and (S)-4 was obtained in 19.4 mM. E. coli (P450pyrTM-GDH) was also found to be highly regio- and stereoselective for the hydroxylation of N-benzylpiperidin-2-one 5, increasing the ee of the product (S)-N-benzyl-4-hydroxy-piperidin-2-one 6 to 94% from 33% of the wild-type P450pyr. A high activity of 15.8 U g⁻¹ cdw was obtained and (S)-6 was produced in 3.3 mM as the sole product. E. coli (P450pyrTM-GDH) represents the most productive system known thus far for P450-catalyzed hydroxylations with cofactor recycling, and the hydroxylations with E. coli (P450pyrTM-GDH) provide with simple and useful syntheses of (S)-2, (S)-4, and (S)-6 that are valuable pharmaceutical intermediates and difficult to prepare.
Collapse
Affiliation(s)
- Son Q Pham
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | | | | |
Collapse
|
11
|
Pham SQ, Pompidor G, Liu J, Li XD, Li Z. Evolving P450pyr hydroxylase for highly enantioselective hydroxylation at non-activated carbon atom. Chem Commun (Camb) 2012; 48:4618-20. [DOI: 10.1039/c2cc30779k] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
García-Urdiales E, Alfonso I, Gotor V. Update 1 of: Enantioselective Enzymatic Desymmetrizations in Organic Synthesis. Chem Rev 2011; 111:PR110-80. [DOI: 10.1021/cr100330u] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eduardo García-Urdiales
- Departamento de Química
Orgánica e Inorgánica, Facultad de Química, Universidad
de Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain,
and
| | - Ignacio Alfonso
- Departamento de Química Biológica
y Modelización Molecular, Instituto de Química Avanzada
de Cataluña (IQAC, CSIC), Jordi Girona, 18-26, 08034, Barcelona,
Spain
| | - Vicente Gotor
- Departamento de Química
Orgánica e Inorgánica, Facultad de Química, Universidad
de Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain,
and
| |
Collapse
|
13
|
Zhang W, Tang WL, Wang DIC, Li Z. Concurrent oxidations with tandem biocatalysts in one pot: green, selective and clean oxidations of methylene groups to ketones. Chem Commun (Camb) 2011; 47:3284-6. [DOI: 10.1039/c0cc04706f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Zhang W, Tang WL, Wang Z, Li Z. Regio- and Stereoselective Biohydroxylations with a Recombinant Escherichia coli Expressing P450pyr Monooxygenase of Sphingomonas Sp. HXN-200. Adv Synth Catal 2010. [DOI: 10.1002/adsc.201000266] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Chen Y, Tang W, Mou J, Li Z. High-Throughput Method for Determining the Enantioselectivity of Enzyme-Catalyzed Hydroxylations Based on Mass Spectrometry. Angew Chem Int Ed Engl 2010; 49:5278-83. [DOI: 10.1002/anie.201001772] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Chen Y, Tang W, Mou J, Li Z. High-Throughput Method for Determining the Enantioselectivity of Enzyme-Catalyzed Hydroxylations Based on Mass Spectrometry. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001772] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Tang WL, Li Z, Zhao H. Inverting the enantioselectivity of P450pyr monooxygenase by directed evolution. Chem Commun (Camb) 2010; 46:5461-3. [DOI: 10.1039/c0cc00735h] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Chang D, Zhang J, Witholt B, Li Z. Chemical and Enzymatic Synthetic Methods for Asymmetric Oxidation of the C–C Double Bond. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420410001710065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Enantioselective benzylic hydroxylation of indan and tetralin with Pseudomonas monteilii TA-5. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
|
21
|
Höhne M, Robins K, Bornscheuer U. A Protection Strategy Substantially Enhances Rate and Enantioselectivity in ω-Transaminase-Catalyzed Kinetic Resolutions. Adv Synth Catal 2008. [DOI: 10.1002/adsc.200800030] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Ma DY, Zheng QY, Wang DX, Wang MX. Dramatic Enhancement of Enantioselectivity of Biotransformations of β-Hydroxy Nitriles Using a Simple O-Benzyl Protection/Docking Group. Org Lett 2006; 8:3231-4. [PMID: 16836373 DOI: 10.1021/ol0610688] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[Structure: see text] Catalyzed by the Rhodococcus erythropolis AJ270 whole cell catalyst, the O-benzylated beta-hydroxy alkanenitriles underwent remarkably high enantioselective biotransformations, whereas the biotransformations of free beta-hydroxy alkanenitriles gave very low enantioselectivity. The easy manipulations of O-protection and O-deprotection, excellent chemical and enantiomeric yields of biotransformations, along with the scalability render this enzymatic transformation attractive and practical for the synthesis of highly enantiopure beta-hydroxy alkanoic acids and their amide derivatives.
Collapse
Affiliation(s)
- Da-You Ma
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | |
Collapse
|
23
|
van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Röthlisberger M, Li Z, Witholt B. Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 2006; 72:59-65. [PMID: 16391025 PMCID: PMC1352210 DOI: 10.1128/aem.72.1.59-65.2006] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several strains that grow on medium-chain-length alkanes and catalyze interesting hydroxylation and epoxidation reactions do not possess integral membrane nonheme iron alkane hydroxylases. Using PCR, we show that most of these strains possess enzymes related to CYP153A1 and CYP153A6, cytochrome P450 enzymes that were characterized as alkane hydroxylases. A vector for the polycistronic coexpression of individual CYP153 genes with a ferredoxin gene and a ferredoxin reductase gene was constructed. Seven of the 11 CYP153 genes tested allowed Pseudomonas putida GPo12 recombinants to grow well on alkanes, providing evidence that the newly cloned P450s are indeed alkane hydroxylases.
Collapse
Affiliation(s)
- Jan B van Beilen
- Institute of Biotechnology, ETH Hönggerberg, CH-8093 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
van Beilen JB, Funhoff EG. Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 2005; 16:308-14. [PMID: 15961032 DOI: 10.1016/j.copbio.2005.04.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 04/01/2005] [Accepted: 04/14/2005] [Indexed: 11/29/2022]
Abstract
As highly reduced hydrocarbons are abundant in the environment, enzymes that catalyze the terminal or subterminal oxygenation of alkanes are relatively easy to find. A number of these enzymes have been biochemically characterized in detail, because the potential of alkane hydroxylases to catalyze high added-value reactions is widely recognized. Nevertheless, the industrial application of these enzymes is restricted owing to the complex biochemistry, challenging process requirements, and the limited number of cloned and expressed enzymes. Rational and evolutionary engineering approaches have started to yield more robust and versatile enzyme systems, broadening the alkane oxygenase portfolio. In addition, metagenomic approaches provide access to many novel alkane oxygenase sequences.
Collapse
Affiliation(s)
- Jan B van Beilen
- Swiss Federal Institute of Technology Zürich, Institute of Biotechnology, Wolfgang-Pauli Strasse 16, CH-8093, Zürich, Switzerland.
| | | |
Collapse
|
25
|
García-Urdiales E, Alfonso I, Gotor V. Enantioselective enzymatic desymmetrizations in organic synthesis. Chem Rev 2005; 105:313-54. [PMID: 15720156 DOI: 10.1021/cr040640a] [Citation(s) in RCA: 399] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eduardo García-Urdiales
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Clavería, 8, 33071 Oviedo, Spain
| | | | | |
Collapse
|
26
|
Chang D, Heringa MF, Witholt B, Li Z. Enantioselective trans dihydroxylation of nonactivated C-C double bonds of aliphatic heterocycles with Sphingomonas sp. HXN-200. J Org Chem 2004; 68:8599-606. [PMID: 14575492 DOI: 10.1021/jo034628e] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacterial strain Sphingomonas sp. HXN-200 was used to catalyze the trans dihydroxylation ofN-substituted 1,2,5,6-tetrahydropyridines 1 and 3-pyrrolines 4 giving the corresponding 3,4-dihydroxypiperidines 3 and 3,4-dihydroxypyrrolidines 6, respectively, with high enantioselectivity and high activity. The trans dihydroxylation was sequentially catalyzed by a monooxygenase and an epoxide hydrolase in the strain with epoxide as intermediate. While both epoxidation and hydrolysis steps contributed to the overall enantioselectivity in trans dihydroxylation of 1, the enantioselectivity in trans dihydroxylation of the symmetric substrate 4 was generated only in the hydrolysis of meso-epoxide 5. The absolute configuration for the bioproducts (+)-3 and (+)-6 was established as (3R,4R) by chemical correlations. Preparative trans dihydroxylation of 1a and 4b with frozen/thawed cells of Sphingomonas sp. HXN-200 afforded the corresponding (+)-(3R,4R)-3,4-dihydroxypiperidine 3a and (+)-(3R,4R)-3,4-dihydroxy pyrrolidine 6b in 96% ee both and in 60% and 80% yield, respectively. These results represent first examples of enantioselective trans dihydroxylation with nonterpene substrates and with bacterial catalyst, thus significantly extending this methodology in practical synthesis of valuable and useful trans diols. Enantioselective hydrolysis of racemic epoxide 2a with Sphingomonas sp. HXN-200 gave 34% of (-)-2a in >99% ee, which is a versatile chiral building block. Further hydrolysis of (-)-2a with the same strain afforded (-)-(3S,4S)-3a in 96% ee and 92% yield. Thus, both enantiomers of 3a can be prepared by biotransformation with Sphingomonas sp. HXN-200.
Collapse
Affiliation(s)
- Dongliang Chang
- Institute of Biotechnology, ETH-Hönggerberg, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|