1
|
Liu Q, Kong T, Ni C, Hu J. Dynamic Kinetic Resolution-Enabled Highly Stereoselective Nucleophilic Fluoroalkylation to Access Chiral β-Fluoro Amines. Org Lett 2022; 24:5982-5987. [PMID: 35939038 DOI: 10.1021/acs.orglett.2c02250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
β-Fluorinated amine is highly desirable for biological and pharmaceutical science, because replacing a C-H bond with a C-F bond can change the physical and chemical properties of the parent molecule to a large extent but not significantly alter its overall geometry. Herein, the highly stereoselective nucleophilic monofluoromethylation of imines have been developed. It is proposed that the chelated transition state enables the chiral induction by the dynamic kinetic resolution of the chiral α-fluoro carbanions.
Collapse
Affiliation(s)
- Qinghe Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Taige Kong
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| |
Collapse
|
2
|
Synthesis of [ 13C₃]-B6 Vitamers Labelled at Three Consecutive Positions Starting from [ 13C₃]-Propionic Acid. MOLECULES (BASEL, SWITZERLAND) 2018; 23:molecules23092117. [PMID: 30142892 PMCID: PMC6225105 DOI: 10.3390/molecules23092117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/16/2018] [Accepted: 08/18/2018] [Indexed: 12/31/2022]
Abstract
[13C3]-labelled vitamers (PN, PL and PM) of the B6 group were prepared starting from [13C3]-propionic acid. [13C3]-PN was synthesized in ten linear steps with an overall yield of 17%. Hereby, higher alkyl homologues of involved esters showed a positive impact on the reaction outcome of the intermediates in the chosen synthetic route. Oxidation of [13C3]-PN to [13C3]-PL was undertaken using potassium permanganate and methylamine followed by acid hydrolysis of the imine derivative. [13C3]-PM could be prepared from the oxime derivative of [13C3]-PN by hydrogenation with palladium.
Collapse
|
3
|
Ginguay A, Cynober L, Curis E, Nicolis I. Ornithine Aminotransferase, an Important Glutamate-Metabolizing Enzyme at the Crossroads of Multiple Metabolic Pathways. BIOLOGY 2017; 6:biology6010018. [PMID: 28272331 PMCID: PMC5372011 DOI: 10.3390/biology6010018] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 02/06/2023]
Abstract
Ornithine δ-aminotransferase (OAT, E.C. 2.6.1.13) catalyzes the transfer of the δ-amino group from ornithine (Orn) to α-ketoglutarate (aKG), yielding glutamate-5-semialdehyde and glutamate (Glu), and vice versa. In mammals, OAT is a mitochondrial enzyme, mainly located in the liver, intestine, brain, and kidney. In general, OAT serves to form glutamate from ornithine, with the notable exception of the intestine, where citrulline (Cit) or arginine (Arg) are end products. Its main function is to control the production of signaling molecules and mediators, such as Glu itself, Cit, GABA, and aliphatic polyamines. It is also involved in proline (Pro) synthesis. Deficiency in OAT causes gyrate atrophy, a rare but serious inherited disease, a further measure of the importance of this enzyme.
Collapse
Affiliation(s)
- Antonin Ginguay
- Clinical Chemistry, Cochin Hospital, GH HUPC, AP-HP, 75014 Paris, France.
- Laboratory of Biological Nutrition, EA 4466 PRETRAM, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| | - Luc Cynober
- Clinical Chemistry, Cochin Hospital, GH HUPC, AP-HP, 75014 Paris, France.
- Laboratory of Biological Nutrition, EA 4466 PRETRAM, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| | - Emmanuel Curis
- Laboratoire de biomathématiques, plateau iB², Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
- UMR 1144, INSERM, Université Paris Descartes, 75006 Paris, France.
- UMR 1144, Université Paris Descartes, 75006 Paris, France.
- Service de biostatistiques et d'informatique médicales, hôpital Saint-Louis, Assistance publique-hôpitaux de Paris, 75010 Paris, France.
| | - Ioannis Nicolis
- Laboratoire de biomathématiques, plateau iB², Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
- EA 4064 "Épidémiologie environnementale: Impact sanitaire des pollutions", Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| |
Collapse
|
4
|
Liu B, Li KN, Luo SW, Huang JZ, Pang H, Gong LZ. Chiral gold complex-catalyzed hetero-Diels-Alder reaction of diazenes: highly enantioselective and general for dienes. J Am Chem Soc 2013; 135:3323-6. [PMID: 23421493 DOI: 10.1021/ja3110472] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A chiral gold(I) complex-catalyzed highly regio- and enantioselective azo hetero-Diels-Alder reaction has been developed. The chiral gold(I) complex acting as a Lewis acid exhibits high efficiency in the activation of urea-based diazene dienophiles. Moreover, this chiral gold catalyst also rendered a cascade intramolecular enyne cycloisomerization/asymmetric azo-HDA reaction.
Collapse
Affiliation(s)
- Bin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | | | | | | | | | | |
Collapse
|
5
|
Busto E, Gotor-Fernández V, Gotor V. Hydrolases in the Stereoselective Synthesis of N-Heterocyclic Amines and Amino Acid Derivatives. Chem Rev 2011; 111:3998-4035. [DOI: 10.1021/cr100287w] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eduardo Busto
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, E-33006, Spain
| | - Vicente Gotor-Fernández
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, E-33006, Spain
| | - Vicente Gotor
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, E-33006, Spain
| |
Collapse
|
6
|
Rogiers J, De Borggraeve WM, Toppet SM, Compernolle F, Hoornaert GJ. Stereoselective transformation of pyrazinones into substituted analogues of cis-5-amino-6-oxo-2-piperidinemethanol and cis-5-amino-2-piperidinemethanol. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(03)00741-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Armbruster J, Grabowski S, Ruch T, Prinzbach H. Von Cycloolefinen zu linearenC2-symmetrischen 1,4-Diamino-2,3-diol-Bausteinen – Peptidmimetica, Biokatalyse und Pinakol-Kupplung von α-Aminoaldehyden. Angew Chem Int Ed Engl 1998. [DOI: 10.1002/(sici)1521-3757(19980817)110:16<2359::aid-ange2359>3.0.co;2-u] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|