1
|
Fan S, Lü X, Wei X, Lü R, Feng C, Jin Y, Yan M, Yang Z. Computational design of α-amylase from Bacillus licheniformis to increase its activity and stability at high temperatures. Comput Struct Biotechnol J 2024; 23:982-989. [PMID: 38404709 PMCID: PMC10883975 DOI: 10.1016/j.csbj.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
The thermostable α-amylase derived from Bacillus licheniformis (BLA) has multiple advantages, including enhancing the mass transfer rate and by reducing microbial contamination in starch hydrolysis. Nonetheless, the application of BLA is constrained by the accessibility and stability of enzymes capable of achieving high conversion rates at elevated temperatures. Moreover, the thermotolerance of BLA requires further enhancement. Here, we developed a computational strategy for constructing small and smart mutant libraries to identify variants with enhanced thermostability. Initially, molecular dynamics (MD) simulations were employed to identify the regions with high flexibility. Subsequently, FoldX, a computational design predictor, was used to design mutants by rigidifying highly flexible residues, whereas the simultaneous decrease in folding free energy assisted in improving thermostability. Through the utilization of MD and FoldX, residues K251, T277, N278, K319, and E336, situated at a distance of 5 Å from the catalytic triad, were chosen for mutation. Seventeen mutants were identified and characterized by evaluating enzymatic characteristics and kinetic parameters. The catalytic efficiency of the E271L/N278K mutant reached 184.1 g L-1 s-1, which is 1.88-fold larger than the corresponding value determined for the WT. Furthermore, the most thermostable mutant, E336S, exhibited a 1.43-fold improvement in half-life at 95 ℃, compared with that of the WT. This study, by combining computational simulation with experimental verification, establishes that potential sites can be computationally predicted to increase the activity and stability of BLA and thus provide a possible strategy by which to guide protein design.
Collapse
Affiliation(s)
- Shuai Fan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xudong Lü
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiyu Wei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ruijie Lü
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Cuiyue Feng
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yuanyuan Jin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
2
|
Pucciarelli S, Mozzicafreddo M, Vassallo A, Piersanti A, Miceli C. Molecular Evolution and Adaptation Strategies in Marine Ciliates: An Inspiration for Cold-Adapted Enzyme Engineering and Drug Binding Analysis. Mar Drugs 2024; 22:497. [PMID: 39590777 PMCID: PMC11595582 DOI: 10.3390/md22110497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
In the present review, we summarize genome mining of genomic data obtained from the psychrophilic Antarctic marine ciliate Euplotes focardii and its evolutionary-close mesophilic cosmopolitan counterpart E. crassus. This analysis highlights adaptation strategies that are unique to the Antarctic ciliate, including antioxidant gene duplication and distinctive substitutions that may play roles in increased drug binding affinity and enzyme reaction rate in cold environments. Enzymes from psychrophiles are usually characterized by high activities and reaction rates at low temperatures compared with their counterparts from mesophiles and thermophiles. As a rule, catalyst cold activity derives from an increased structural flexibility that may lead to protein denaturation in response to temperature fluctuation. Molecular thermolability has been a major drawback of using macromolecules from psychrophiles in industrial applications. Here, we report a case study in which the role of peculiar amino acid substitution in cold adaptation is demonstrated by site-directed mutagenesis. Combined with a rational design approach, these substitutions can be used for site-directed mutagenesis to obtain cold-active catalysts that are structurally stable. Furthermore, molecular docking analysis of β-tubulin isotypes extrapolated from E. focardii and E. crassus genomes allowed us to obtain additional insight on the taxol binding site and drug affinity. E. focardii genome mining and the comparison with the mesophilic sibling counterpart can be used as an inspiration for molecular engineering for medical and industrial applications.
Collapse
Affiliation(s)
- Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.V.); (A.P.); (C.M.)
| | - Matteo Mozzicafreddo
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy;
| | - Alberto Vassallo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.V.); (A.P.); (C.M.)
| | - Angela Piersanti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.V.); (A.P.); (C.M.)
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Cristina Miceli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.V.); (A.P.); (C.M.)
| |
Collapse
|
3
|
Jamal SB, Hockman D. FGF1. Differentiation 2024; 139:100802. [PMID: 39074995 DOI: 10.1016/j.diff.2024.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 06/25/2024] [Accepted: 07/20/2024] [Indexed: 07/31/2024]
Abstract
Fibroblast Growth Factor 1 (Fgf1), also known as acidic FGF (aFGF), is involved in the regulation of various biological processes, ranging from development to disease pathogenesis. It is a single chain polypeptide and is highly expressed in adult brain and kidney tissues. Its expression has been shown to be directed by multiple tissue-specific promoters, which generate transcripts of varying lengths. During development the Fgf1 gene is widely expressed, including in the neural tube, heart and lung. Mouse mutants for this gene are normal under standard laboratory conditions. However, when Fgf1 mutants are exposed to a high fat diet, an aggressive diabetic phenotype has been reported, along with aberrant adipose tissue expansion. Ongoing research on FGF1 and its signalling pathways holds promise for greater understanding of developmental processes as well as the development of novel therapeutic interventions for diseases including diabetes.
Collapse
Affiliation(s)
- Sahar B Jamal
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
4
|
Martins M, Dos Santos AM, da Costa CHS, Canner SW, Chungyoun M, Gray JJ, Skaf MS, Ostermeier M, Goldbeck R. Thermostability Enhancement of GH 62 α-l-Arabinofuranosidase by Directed Evolution and Rational Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4225-4236. [PMID: 38354215 DOI: 10.1021/acs.jafc.3c08019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
GH 62 arabinofuranosidases are known for their excellent specificity for arabinoxylan of agroindustrial residues and their synergism with endoxylanases and other hemicellulases. However, the low thermostability of some GH enzymes hampers potential industrial applications. Protein engineering research highly desires mutations that can enhance thermostability. Therefore, we employed directed evolution using one round of error-prone PCR and site-saturation mutagenesis for thermostability enhancement of GH 62 arabinofuranosidase from Aspergillus fumigatus. Single mutants with enhanced thermostability showed significant ΔΔG changes (<-2.5 kcal/mol) and improvements in perplexity scores from evolutionary scale modeling inverse folding. The best mutant, G205K, increased the melting temperature by 5 °C and the energy of denaturation by 41.3%. We discussed the functional mechanisms for improved stability. Analyzing the adjustments in α-helices, β-sheets, and loops resulting from point mutations, we have obtained significant knowledge regarding the potential impacts on protein stability, folding, and overall structural integrity.
Collapse
Affiliation(s)
- Manoela Martins
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
- Department of Food Engineering, State University of Campinas, Monteiro Lobato, 80, Cidade Universitária, Campinas, São Paulo 13083-862, Brazil
| | - Alberto M Dos Santos
- Department of Chemistry, State University of Campinas, 336, R. Josué de Castro, 126-Cidade Universitária, Campinas, São Paulo 13083-861, Brazil
| | - Clauber H S da Costa
- Department of Chemistry, State University of Campinas, 336, R. Josué de Castro, 126-Cidade Universitária, Campinas, São Paulo 13083-861, Brazil
| | - Samuel W Canner
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - Michael Chungyoun
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - Jeffrey J Gray
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - Munir S Skaf
- Department of Chemistry, State University of Campinas, 336, R. Josué de Castro, 126-Cidade Universitária, Campinas, São Paulo 13083-861, Brazil
| | - Marc Ostermeier
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - Rosana Goldbeck
- Department of Food Engineering, State University of Campinas, Monteiro Lobato, 80, Cidade Universitária, Campinas, São Paulo 13083-862, Brazil
| |
Collapse
|
5
|
Li L, Sun S, Wang M, Xiang J, Shao Y, Wu G, Zhou J, khan U, Xin Z. Improving the hydrolysis and acyltransferase activity of bifunctional feruloyl esterases DLFae4 by multiple rational predictions and directed evolution. FOOD BIOSCI 2023; 56:103140. [DOI: 10.1016/j.fbio.2023.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
|
6
|
Sardiña-Peña AJ, Mesa-Ramos L, Iglesias-Figueroa BF, Ballinas-Casarrubias L, Siqueiros-Cendón TS, Espinoza-Sánchez EA, Flores-Holguín NR, Arévalo-Gallegos S, Rascón-Cruz Q. Analyzing Current Trends and Possible Strategies to Improve Sucrose Isomerases' Thermostability. Int J Mol Sci 2023; 24:14513. [PMID: 37833959 PMCID: PMC10572972 DOI: 10.3390/ijms241914513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 10/15/2023] Open
Abstract
Due to their ability to produce isomaltulose, sucrose isomerases are enzymes that have caught the attention of researchers and entrepreneurs since the 1950s. However, their low activity and stability at temperatures above 40 °C have been a bottleneck for their industrial application. Specifically, the instability of these enzymes has been a challenge when it comes to their use for the synthesis and manufacturing of chemicals on a practical scale. This is because industrial processes often require biocatalysts that can withstand harsh reaction conditions, like high temperatures. Since the 1980s, there have been significant advancements in the thermal stabilization engineering of enzymes. Based on the literature from the past few decades and the latest achievements in protein engineering, this article systematically describes the strategies used to enhance the thermal stability of sucrose isomerases. Additionally, from a theoretical perspective, we discuss other potential mechanisms that could be used for this purpose.
Collapse
Affiliation(s)
- Amado Javier Sardiña-Peña
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Liber Mesa-Ramos
- Laboratorio de Microbiología III, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico;
| | - Blanca Flor Iglesias-Figueroa
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Lourdes Ballinas-Casarrubias
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Tania Samanta Siqueiros-Cendón
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Edward Alexander Espinoza-Sánchez
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Norma Rosario Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua 31136, Mexico;
| | - Sigifredo Arévalo-Gallegos
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Quintín Rascón-Cruz
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| |
Collapse
|
7
|
Chen Q, Xiao H, Li ZP, Pei XQ, Yang W, Liu Y, Wu ZL. Stereo-complementary epoxidation of 4-vinyl-2,3-dihydrobenzofuran using mutants of SeStyA with enhanced stability and enantioselectivity. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
8
|
Zan Q, Long M, Zheng N, Zhang Z, Zhou H, Xu X, Osire T, Xia X. Improving ethanol tolerance of ethyl carbamate hydrolase by diphasic high pressure molecular dynamic simulations. AMB Express 2023; 13:32. [PMID: 36920541 PMCID: PMC10017909 DOI: 10.1186/s13568-023-01538-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/16/2023] Open
Abstract
Ethyl carbamate (EC) is mainly found in fermented foods and fermented alcoholic beverages, which could cause carcinogenic potential to humans. Reducing EC is one of the key research priorities to address security of fermented foods. Enzymatic degradation of EC with EC hydrolase in food is the most reliable and efficient method. However, poor tolerance to ethanol severely hinders application of EC hydrolase. In this study, the mutants of EC hydrolase were screened by diphasic high pressure molecular dynamic simulations (dHP-MD). The best variant with remarkable improvement in specific activity and was H68A/K70R/S325N, whose specific activity was approximately 3.42-fold higher than WT, and relative enzyme activity under 20% (v/v) was 5.02-fold higher than WT. Moreover, the triple mutant increased its stability by acquiring more hydration shell and forming extra hydrogen bonds. Furthermore, the ability of degrading EC of the immobilized triple mutant was both detected in mock wine and under certain reaction conditions. The stability of immobilized triple mutant and WT were both improved, and immobilized triple mutant degraded nearly twice as much EC as that of immobilized WT. Overall, dHP-MD was proved to effectively improve enzyme activity and ethanol tolerance for extent application at industrial scale.
Collapse
Affiliation(s)
- Qijia Zan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Mengfei Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Nan Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zehua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Huimin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xinjie Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Tolbert Osire
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, Guangdong, China
| | - Xiaole Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
9
|
Zhu W, Qin L, Xu Y, Lu H, Wu Q, Li W, Zhang C, Li X. Three Molecular Modification Strategies to Improve the Thermostability of Xylanase XynA from Streptomyces rameus L2001. Foods 2023; 12:foods12040879. [PMID: 36832954 PMCID: PMC9957083 DOI: 10.3390/foods12040879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Glycoside hydrolase family 11 (GH11) xylanases are the preferred candidates for the production of functional oligosaccharides. However, the low thermostability of natural GH11 xylanases limits their industrial applications. In this study, we investigated the following three strategies to modify the thermostability of xylanase XynA from Streptomyces rameus L2001 mutation to reduce surface entropy, intramolecular disulfide bond construction, and molecular cyclization. Changes in the thermostability of XynA mutants were analyzed using molecular simulations. All mutants showed improved thermostability and catalytic efficiency compared with XynA, except for molecular cyclization. The residual activities of high-entropy amino acid-replacement mutants Q24A and K104A increased from 18.70% to more than 41.23% when kept at 65 °C for 30 min. The catalytic efficiencies of Q24A and K143A increased to 129.99 and 92.26 mL/s/mg, respectively, compared with XynA (62.97 mL/s/mg) when using beechwood xylan as the substrate. The mutant enzyme with disulfide bonds formed between Val3 and Thr30 increased the t1/260 °C by 13.33-fold and the catalytic efficiency by 1.80-fold compared with the wild-type XynA. The high thermostabilities and hydrolytic activities of XynA mutants will be useful for enzymatic production of functional xylo-oligosaccharides.
Collapse
Affiliation(s)
- Weijia Zhu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Liqin Qin
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Youqiang Xu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongyun Lu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qiuhua Wu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Weiwei Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Chengnan Zhang
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xiuting Li
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Correspondence:
| |
Collapse
|
10
|
Kumar S, Duggineni VK, Singhania V, Misra SP, Deshpande PA. Unravelling and Quantifying the Biophysical– Biochemical Descriptors Governing Protein Thermostability by Machine Learning. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shashi Kumar
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Vinay Kumar Duggineni
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Vibhuti Singhania
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Swayam Prabha Misra
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Parag A. Deshpande
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
11
|
Seo K, Hagino K, Ichihashi N. Progresses in Cell-Free In Vitro Evolution. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:121-140. [PMID: 37306699 DOI: 10.1007/10_2023_219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biopolymers, such as proteins and RNA, are integral components of living organisms and have evolved through a process of repeated mutation and selection. The technique of "cell-free in vitro evolution" is a powerful experimental approach for developing biopolymers with desired functions and structural properties. Since Spiegelman's pioneering work over 50 years ago, biopolymers with a wide range of functions have been developed using in vitro evolution in cell-free systems. The use of cell-free systems offers several advantages, including the ability to synthesize a wider range of proteins without the limitations imposed by cytotoxicity, and the capacity for higher throughput and larger library sizes than cell-based evolutionary experiments. In this chapter, we provide a comprehensive overview of the progress made in the field of cell-free in vitro evolution by categorizing evolution into directed and undirected. The biopolymers produced by these methods are valuable assets in medicine and industry, and as a means of exploring the potential of biopolymers.
Collapse
Affiliation(s)
- Kaito Seo
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Tokyo, Japan
| | - Katsumi Hagino
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Tokyo, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Tokyo, Japan.
- Komaba Institute for Science, The University of Tokyo, Tokyo, Japan.
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
12
|
Solis-Andrade KI, Gonzalez-Ortega O, Govea-Alonso DO, Comas-Garcia M, Rosales-Mendoza S. Production and Purification of LTB-RBD: A Potential Antigen for Mucosal Vaccine Development against SARS-CoV-2. Vaccines (Basel) 2022; 10:vaccines10101759. [PMID: 36298624 PMCID: PMC9609574 DOI: 10.3390/vaccines10101759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Most of the current SARS-CoV-2 vaccines are based on parenteral immunization targeting the S protein. Although protective, such vaccines could be optimized by inducing effective immune responses (neutralizing IgA responses) at the mucosal surfaces, allowing them to block the virus at the earliest stage of the infectious cycle. Herein a recombinant chimeric antigen called LTB-RBD is described, which comprises the B subunit of the heat-labile enterotoxin from E. coli and a segment of the RBD from SARS-CoV-2 (aa 439-504, carrying B and T cell epitopes) from the Wuhan sequence and the variant of concern (VOC)—delta. Since LTB is a mucosal adjuvant, targeting the GM1 receptor at the surface and facilitating antigen translocation to the submucosa, this candidate will help in designing mucosal vaccines (i.e., oral or intranasal formulations). LTB-RBD was produced in E. coli and purified to homogeneity by IMAC and IMAC-anionic exchange chromatography. The yields in terms of pure LTB-RBD were 1.2 mg per liter of culture for the Wuhan sequence and 3.5 mg per liter for the delta variant. The E. coli-made LTB-RBD induced seric IgG responses and IgA responses in the mouth and feces of mice when subcutaneously administered and intestinal and mouth IgA responses when administered nasally. The expression and purification protocols developed for LTB-RBD constitute a robust system to produce vaccine candidates against SARS-CoV-2 and its variants, offering a low-cost production system with no tags and with ease of adaptation to new variants. The E. coli-made LTB-RBD will be the basis for developing mucosal vaccine candidates capable of inducing sterilizing immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Karla I. Solis-Andrade
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico
| | - Omar Gonzalez-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico
| | - Dania O. Govea-Alonso
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico
| | - Mauricio Comas-Garcia
- Sección de Microscopía de Alta Resolución, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico
- Sección de Genómica Médica, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, San Luis Potosí 78210, Mexico
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico
- Correspondence: ; Tel./Fax: +52-444-826-2440
| |
Collapse
|
13
|
Iannuzzelli J, Bacik JP, Moore EJ, Shen Z, Irving EM, Vargas DA, Khare SD, Ando N, Fasan R. Tuning Enzyme Thermostability via Computationally Guided Covalent Stapling and Structural Basis of Enhanced Stabilization. Biochemistry 2022; 61:1041-1054. [PMID: 35612958 PMCID: PMC9178789 DOI: 10.1021/acs.biochem.2c00033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/04/2022] [Indexed: 11/30/2022]
Abstract
Enhancing the thermostability of enzymes without impacting their catalytic function represents an important yet challenging goal in protein engineering and biocatalysis. We recently introduced a novel method for enzyme thermostabilization that relies on the computationally guided installation of genetically encoded thioether "staples" into a protein via cysteine alkylation with the noncanonical amino acid O-2-bromoethyl tyrosine (O2beY). Here, we demonstrate the functionality of an expanded set of electrophilic amino acids featuring chloroacetamido, acrylamido, and vinylsulfonamido side-chain groups for protein stapling using this strategy. Using a myoglobin-based cyclopropanase as a model enzyme, our studies show that covalent stapling with p-chloroacetamido-phenylalanine (pCaaF) provides higher stapling efficiency and enhanced stability (thermodynamic and kinetic) compared to the other stapled variants and the parent protein. Interestingly, molecular simulations of conformational flexibility of the cross-links show that the pCaaF staple allows fewer energetically feasible conformers than the other staples, and this property may be a broader indicator of stability enhancement. Using this strategy, pCaaF-stapled variants with significantly enhanced stability against thermal denaturation (ΔTm' = +27 °C) and temperature-induced heme loss (ΔT50 = +30 °C) were obtained while maintaining high levels of catalytic activity and stereoselectivity. Crystallographic analyses of singly and doubly stapled variants provide key insights into the structural basis for stabilization, which includes both direct interactions of the staples with protein residues and indirect interactions through adjacent residues involved in heme binding. This work expands the toolbox of protein stapling strategies available for protein stabilization.
Collapse
Affiliation(s)
- Jacob
A. Iannuzzelli
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - John-Paul Bacik
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Eric J. Moore
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Zhuofan Shen
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Ellen M. Irving
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - David A. Vargas
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Sagar D. Khare
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Nozomi Ando
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Rudi Fasan
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
14
|
Su C, Gong JS, Qin A, Li H, Li H, Qin J, Qian JY, Xu ZH, Shi JS. A combination of bioinformatics analysis and rational design strategies to enhance keratinase thermostability for efficient biodegradation of feathers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151824. [PMID: 34808176 DOI: 10.1016/j.scitotenv.2021.151824] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Keratinase has shown great significance and application potentials in the biodegradation and recycle of keratin waste due to its unique and efficient hydrolysis ability. However, the inherent instability of the enzyme limits its practical utilization. Herein, we obtained a thermostability-enhanced keratinase based on a combination of bioinformatics analysis and rational design strategies for the efficient biodegradation of feathers. A systematical in silico analysis combined with filtering of virtual libraries derived a smart library for experimental validation. Synergistic mutations around the highly flexible loop, the calcium binding site and the non-consensus amino acids generated a dominant mutant which increased the optimal temperature of keratinase from 40 °C to 60 °C, and the half-life at 60 °C was increased from 17.3 min to 66.1 min. The mutant could achieve more than 66% biodegradation of 50 g/L feathers to high-valued keratin product with a major molecular weight of 36 kDa. Collectively, this work provided a promising keratinase variant with enhanced thermostability for efficient conversion of keratin wastes to valuable products. It also generated a general strategy to facilitate enzyme thermostability design which is more targeted and predictable.
Collapse
Affiliation(s)
- Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| | - Anqi Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jiufu Qin
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Jian-Ying Qian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
15
|
Liu Y, Tsang K, Mays M, Hansen G, Chiecko J, Crames M, Wei Y, Zhou W, Fredrick C, Hu J, Liu D, Gebhard D, Huang ZF, Datar A, Kronkaitis A, Gueneva-Boucheva K, Seeliger D, Han F, Sen S, Kasturirangan S, Scheer JM, Nixon AE, Panavas T, Marlow MS, Kumar S. An adapted consensus protein design strategy for identifying globally optimal biotherapeutics. MAbs 2022; 14:2073632. [PMID: 35613320 PMCID: PMC9135432 DOI: 10.1080/19420862.2022.2073632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Biotherapeutic optimization, whether to improve general properties or to engineer specific attributes, is a time-consuming process with uncertain outcomes. Conversely, Consensus Protein Design has been shown to be a viable approach to enhance protein stability while retaining function. In adapting this method for a more limited number of protein sequences, we studied 21 consensus single-point variants from eight publicly available CD3 binding sequences with high similarity but diverse biophysical and pharmacological properties. All single-point consensus variants retained CD3 binding and performed similarly in cell-based functional assays. Using Ridge regression analysis, we identified the variants and sequence positions with overall beneficial effects on developability attributes of the CD3 binders. A second round of sequence generation that combined these substitutions into a single molecule yielded a unique CD3 binder with globally optimized developability attributes. In this first application to therapeutic antibodies, adapted Consensus Protein Design was found to be highly beneficial within lead optimization, conserving resources and minimizing iterations. Future implementations of this general strategy may help accelerate drug discovery and improve success rates in bringing novel biotherapeutics to market.
Collapse
Affiliation(s)
- Yanyun Liu
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Kenny Tsang
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Michelle Mays
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Gale Hansen
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Jeffrey Chiecko
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Maureen Crames
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Yangjie Wei
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Weijie Zhou
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Chase Fredrick
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - James Hu
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Dongmei Liu
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Douglas Gebhard
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Zhong-Fu Huang
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Akshita Datar
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Anthony Kronkaitis
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | | | - Daniel Seeliger
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Fei Han
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Saurabh Sen
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Srinath Kasturirangan
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Justin M Scheer
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Andrew E Nixon
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Tadas Panavas
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Michael S Marlow
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| | - Sandeep Kumar
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT, USA
| |
Collapse
|
16
|
Gu S, Dai X, Jiang J, Liu Y. Enhancing the catalytic activity of cyanobacterial chlorophyllase from Oscillatoria acuminata PCC 6304 through rational site-directed mutagenesis. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Mutation of Key Residues in β-Glycosidase LXYL-P1-2 for Improved Activity. Catalysts 2021. [DOI: 10.3390/catal11091042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The β-glycosidase LXYL-P1-2 identified from Lentinula edodes can be used to hydrolyze 7-β-xylosyl-10-deacetyltaxol (XDT) into 10-deacetyltaxol (DT) for the semi-synthesis of Taxol. Recent success in obtaining the high-resolution X-ray crystal of LXYL-P1-2 and resolving its three-dimensional structure has enabled us to perform molecular docking of LXYL-P1-2 with substrate XDT and investigate the roles of the three noncatalytic amino acid residues located around the active cavity in LXYL-P1-2. Site-directed mutagenesis results demonstrated that Tyr268 and Ser466 were essential for maintaining the β-glycosidase activity, and the L220G mutation exhibited a positive effect on increasing activity by enlarging the channel that facilitates the entrance of the substrate XDT into the active cavity. Moreover, introducing L220G mutation into the other LXYL-P1-2 mutant further increased the enzyme activity, and the β-d-xylosidase activity of the mutant EP2-L220G was nearly two times higher than that of LXYL-P1-2. Thus, the recombinant yeast GS115-EP2-L220G can be used for efficiently biocatalyzing XDT to DT for the semi-synthesis of Taxol. Our study provides not only the prospective candidate strain for industrial production, but also a theoretical basis for exploring the key amino acid residues in LXYL-P1-2.
Collapse
|
18
|
Boucher L, Somani S, Negron C, Ma W, Jacobs S, Chan W, Malia T, Obmolova G, Teplyakov A, Gilliland GL, Luo J. Surface salt bridges contribute to the extreme thermal stability of an FN3-like domain from a thermophilic bacterium. Proteins 2021; 90:270-281. [PMID: 34405904 DOI: 10.1002/prot.26218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 03/08/2021] [Accepted: 08/02/2021] [Indexed: 12/27/2022]
Abstract
This study uses differential scanning calorimetry, X-ray crystallography, and molecular dynamics simulations to investigate the structural basis for the high thermal stability (melting temperature 97.5°C) of a FN3-like protein domain from thermophilic bacteria Thermoanaerobacter tengcongensis (FN3tt). FN3tt adopts a typical FN3 fold with a three-stranded beta sheet packing against a four-stranded beta sheet. We identified three solvent exposed arginine residues (R23, R25, and R72), which stabilize the protein through salt bridge interactions with glutamic acid residues on adjacent strands. Alanine mutation of the three arginine residues reduced melting temperature by up to 22°C. Crystal structures of the wild type (WT) and a thermally destabilized (∆Tm -19.7°C) triple mutant (R23L/R25T/R72I) were found to be nearly identical, suggesting that the destabilization is due to interactions of the arginine residues. Molecular dynamics simulations showed that the salt bridge interactions in the WT were stable and provided a dynamical explanation for the cooperativity observed between R23 and R25 based on calorimetry measurements. In addition, folding free energy changes computed using free energy perturbation molecular dynamics simulations showed high correlation with melting temperature changes. This work is another example of surface salt bridges contributing to the enhanced thermal stability of thermophilic proteins. The molecular dynamics simulation methods employed in this study may be broadly useful for in silico surface charge engineering of proteins.
Collapse
Affiliation(s)
- Lauren Boucher
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Sandeep Somani
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | | - Wenting Ma
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Steven Jacobs
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Winnie Chan
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Thomas Malia
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Galina Obmolova
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Alexey Teplyakov
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Gary L Gilliland
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Jinquan Luo
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| |
Collapse
|
19
|
Zhou L, Wang Y, Han L, Wang Q, Liu H, Cheng P, Li R, Guo X, Zhou Z. Enhancement of Patchoulol Production in Escherichia coli via Multiple Engineering Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7572-7580. [PMID: 34196182 DOI: 10.1021/acs.jafc.1c02399] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a natural sesquiterpene compound with numerous biological activities, patchoulol has extensive applications in the cosmetic industry and potential usage in pharmaceuticals. Although several patchoulol-producing microbial strains have been constructed, the low productivity still hampers large-scale fermentation. Escherichia coli possesses the ease of genetic manipulation and simple nutritional requirements and does not comprise competing pathways for the farnesyl diphosphate (FPP) precursor, showing its potential for patchoulol biosynthesis. Here, combinatorial strategies were applied to produce patchoulol in E. coli. The initial strain was constructed, and it produced 14 mg/L patchoulol after fermentation optimization. Patchoulol synthase (PTS) was engineered by semirational design, resulting in improved substrate binding affinity and a patchoulol titer of 40.3 mg/L; the patchoulol titer reached 66.2 mg/L after fusing of PTS with FPP synthase. To further improve the patchoulol production, the genome of an efficient chassis strain was engineered by deleting the competitive routes for acetate, lactate, ethanol, and succinate synthesis and cumulatively enhancing the expression of efflux transporters, which improved patchoulol production to 338.6 mg/L. When tested in a bioreactor, the patchoulol titer and productivity were further improved to 970.1 mg/L and 199 mg/L/d, respectively, and were among the highest levels reported using mineral salt medium.
Collapse
Affiliation(s)
- Li Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Yuxi Wang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Laichuang Han
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Qin Wang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Haili Liu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Ping Cheng
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Ruoxuan Li
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Xuecong Guo
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao 226500, Jiangsu, China
| |
Collapse
|
20
|
Irumagawa S, Kobayashi K, Saito Y, Miyata T, Umetsu M, Kameda T, Arai R. Rational thermostabilisation of four-helix bundle dimeric de novo proteins. Sci Rep 2021; 11:7526. [PMID: 33824364 PMCID: PMC8024369 DOI: 10.1038/s41598-021-86952-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
The stability of proteins is an important factor for industrial and medical applications. Improving protein stability is one of the main subjects in protein engineering. In a previous study, we improved the stability of a four-helix bundle dimeric de novo protein (WA20) by five mutations. The stabilised mutant (H26L/G28S/N34L/V71L/E78L, SUWA) showed an extremely high denaturation midpoint temperature (Tm). Although SUWA is a remarkably hyperstable protein, in protein design and engineering, it is an attractive challenge to rationally explore more stable mutants. In this study, we predicted stabilising mutations of WA20 by in silico saturation mutagenesis and molecular dynamics simulation, and experimentally confirmed three stabilising mutations of WA20 (N22A, N22E, and H86K). The stability of a double mutant (N22A/H86K, rationally optimised WA20, ROWA) was greatly improved compared with WA20 (ΔTm = 10.6 °C). The model structures suggested that N22A enhances the stability of the α-helices and N22E and H86K contribute to salt-bridge formation for protein stabilisation. These mutations were also added to SUWA and improved its Tm. Remarkably, the most stable mutant of SUWA (N22E/H86K, rationally optimised SUWA, ROSA) showed the highest Tm (129.0 °C). These new thermostable mutants will be useful as a component of protein nanobuilding blocks to construct supramolecular protein complexes.
Collapse
Affiliation(s)
- Shin Irumagawa
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan
| | - Kaito Kobayashi
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan
| | - Yutaka Saito
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo, 169-8555, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Takeshi Miyata
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan
| | - Ryoichi Arai
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan.
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano, 390-8621, Japan.
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan.
| |
Collapse
|
21
|
Wang H, Zhang L, Wang Y, Li J, Du G, Kang Z. Engineering a thermostable chondroitinase for production of specifically distributed low-molecular-weight chondroitin sulfate. Biotechnol J 2021; 16:e2000321. [PMID: 33350041 DOI: 10.1002/biot.202000321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022]
Abstract
Chondroitinase ABC I (csABC I) has attracted intensive attention because of its great potential in heparin refining and the enzymatic preparation of low-molecular-weight chondroitin sulfate (LMW-CS). However, low thermal resistance (<30℃) restricts its applications. Herein, structure-guided and sequence-assisted combinatorial engineering approaches were applied to improve the thermal resistance of Proteus vulgaris csABC I. By integrating the deletion of the flexible fragment R166-L170 at the N-terminal domain and the mutation of E694P at the C-terminal domain, variant NΔ5/E694P exhibited 247-fold improvement of its half-life at 37℃ and a 2.3-fold increase in the specific activity. Through batch fermentation in a 3-L fermenter, the expression of variant NΔ5/E694P in an Escherichia coli host reached 1.7 g L-1 with the activity of 1.0 × 105 U L-1 . Finally, the enzymatic approach for the preparation of LMW-CS was established. By modulating enzyme concentration and controlling depolymerization time, specifically distributed LMW-CS (7000, 3400, and 1900 Da) with low polydispersity was produced, demonstrating the applicability of these processes for the industrial production of LMW-CS in a more environmentally friendly way.
Collapse
Affiliation(s)
- Hao Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Lin Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Yang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jianghua Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| |
Collapse
|
22
|
Rawal R, Kharangarh PR, Dawra S, Bhardwaj P. Synthesis, characterization and immobilization of bilirubin oxidase nanoparticles (BOxNPs) with enhanced activity: Application for serum bilirubin determination in jaundice patients. Enzyme Microb Technol 2020; 143:109716. [PMID: 33375976 DOI: 10.1016/j.enzmictec.2020.109716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
A high- power ultrasonic method was used to prepare bilirubin oxidase nanoparticles (BOxNPs) which were immobilized on polyethylene (PE) film. The characterization of PE film bound to BOxNPs and BOxNPs was carried out using "Dynamic Light Scattering (DLS)," "Transmission Electron Microscopy (TEM)," and "Scanning Electron Microscopy (SEM)." The PE film was treated with nitric acid (HNO3) for its activation. BOxNPs bound to PE film exhibited optimal activity (pH-8), incubation time (11 s) with temperature 35 °C. A linear relationship was observed between the bilirubin concentrations (0.02-250 μM), with an apparent Km value and Vmax for PE- bound BOxNPs, at 0.015 μM and 2.56 μmol/mL/min. The mean recoveries of added serum bilirubin were 94.5 % at a level of 5 mM whereas 98.5 % were observed at 10 mM which showed the satisfactory reliability of BOxNPs immobilized on PE film. The coefficient of variation for serum bilirubin ranged between 4.52%-5.25%, measured on the first day (within batch) and after seven days of storage (between batch).This current method has showed a good correlation for bilirubin values when compared to the standard enzymatic colorimetric method using free enzyme. BOxNPs bound to PE film were reutilized 150 times with storage at 4 °C for 120 days.
Collapse
Affiliation(s)
- Rachna Rawal
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India.
| | - Poonam R Kharangarh
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - Sudhir Dawra
- Department of Computer Science and Engineering, Mewat Engineering College, Mewat, Haryana, 122103, India
| | - Preetam Bhardwaj
- Centre for Nanotechnology Research, School of Electronics Engineering, Vellore Institute of Technology University, Vellore, 632 014, Tamil Nadu, India
| |
Collapse
|
23
|
Güler R, Svedmark SF, Abouzayed A, Orlova A, Löfblom J. Increasing thermal stability and improving biodistribution of VEGFR2-binding affibody molecules by a combination of in silico and directed evolution approaches. Sci Rep 2020; 10:18148. [PMID: 33097752 PMCID: PMC7585445 DOI: 10.1038/s41598-020-74560-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/23/2020] [Indexed: 11/09/2022] Open
Abstract
The family of vascular endothelial growth factor (VEGF) ligands and their interactions with VEGF receptors (VEGFRs) play important roles in both pathological and physiological angiogenesis. Hence, agonistic and antagonistic ligands targeting this signaling pathway have potential for both studies on fundamental biology and for development of therapies and diagnostics. Here, we engineer VEGFR2-binding affibody molecules for increased thermostability, refolding and improved biodistribution. We designed libraries based on the original monomeric binders with the intention of reducing hydrophobicity, while retaining high affinity for VEGFR2. Libraries were displayed on bacteria and binders were isolated by fluorescence-activated cell sorting (FACS). In parallel, we used an automated sequence- and structure-based in silico algorithm to identify potentially stabilizing mutations. Monomeric variants isolated from the screening and the in silico approach, respectively, were characterized by circular dichroism spectroscopy and biosensor assays. The most promising mutations were combined into new monomeric constructs which were finally fused into a dimeric construct, resulting in a 15 °C increase in melting temperature, complete refolding capability after heat-induced denaturation, retained low picomolar affinity and improved biodistribution profile in an in vivo mouse model. These VEGFR2-binding affibody molecules show promise as candidates for further in vivo studies to assess their suitability as molecular imaging and therapeutic agents.
Collapse
Affiliation(s)
- Rezan Güler
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Siri Flemming Svedmark
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
24
|
Wójcik M, Vázquez Torres S, Quax WJ, Boersma YL. Sortase mutants with improved protein thermostability and enzymatic activity obtained by consensus design. Protein Eng Des Sel 2020; 32:555-564. [PMID: 32725168 DOI: 10.1093/protein/gzaa018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/16/2020] [Accepted: 07/03/2020] [Indexed: 11/14/2022] Open
Abstract
Staphylococcus aureus sortase A (SaSrtA) is an enzyme that anchors proteins to the cell surface of Gram-positive bacteria. During the transpeptidation reaction performed by SaSrtA, proteins containing an N-terminal glycine can be covalently linked to another protein with a C-terminal LPXTG motif (X being any amino acid). Since the sortase reaction can be performed in vitro as well, it has found many applications in biotechnology. Although sortase-mediated ligation has many advantages, SaSrtA is limited by its low enzymatic activity and dependence on Ca2+. In our study, we evaluated the thermodynamic stability of the SaSrtA wild type and found the enzyme to be stable. We applied consensus analysis to further improve the enzyme's stability while at the same time enhancing the enzyme's activity. As a result, we found thermodynamically improved, more active and Ca2+-independent mutants. We envision that these new variants can be applied in conjugation reactions in low Ca2+ environments.
Collapse
Affiliation(s)
- Magdalena Wójcik
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 Groningen, The Netherlands
| | - Susana Vázquez Torres
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 Groningen, The Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 Groningen, The Netherlands
| | - Ykelien L Boersma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 Groningen, The Netherlands
| |
Collapse
|
25
|
Efficient xylan-to-sugar biotransformation using an engineered xylanase in hyperthermic environment. Int J Biol Macromol 2020; 157:17-23. [DOI: 10.1016/j.ijbiomac.2020.04.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Accepted: 04/18/2020] [Indexed: 11/30/2022]
|
26
|
Single Residue Substitution at N-Terminal Affects Temperature Stability and Activity of L2 Lipase. Molecules 2020; 25:molecules25153433. [PMID: 32731608 PMCID: PMC7435863 DOI: 10.3390/molecules25153433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 11/24/2022] Open
Abstract
Rational design is widely employed in protein engineering to tailor wild-type enzymes for industrial applications. The typical target region for mutation is a functional region like the catalytic site to improve stability and activity. However, few have explored the role of other regions which, in principle, have no evident functionality such as the N-terminal region. In this study, stability prediction software was used to identify the critical point in the non-functional N-terminal region of L2 lipase and the effects of the substitution towards temperature stability and activity were determined. The results showed 3 mutant lipases: A8V, A8P and A8E with 29% better thermostability, 4 h increase in half-life and 6.6 °C higher thermal denaturation point, respectively. A8V showed 1.6-fold enhancement in activity compared to wild-type. To conclude, the improvement in temperature stability upon substitution showed that the N-terminal region plays a role in temperature stability and activity of L2 lipase.
Collapse
|
27
|
Small design from big alignment: engineering proteins with multiple sequence alignment as the starting point. Biotechnol Lett 2020; 42:1305-1315. [PMID: 32430802 DOI: 10.1007/s10529-020-02914-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023]
Abstract
Multiple sequence alignment (MSA) is a fundamental way to gain information that cannot be obtained from the analysis of any individual sequence included in the alignment. It provides ways to investigate the relationship between sequence and function from a perspective of evolution. Thus, the MSA of proteins can be employed as a reference for protein engineering. In this paper, we reviewed the recent advances to highlight how protein engineering was benefited from the MSA of proteins. These methods include (1) engineering the thermostability or solubility of proteins by making it closer to the consensus sequence of the alignment through introducing site mutations; (2) structure-based engineering proteins with comparative modeling; (3) creating paleoenzymes featured with high thermostability and promiscuity by constructing the ancestral sequences derived from multiple sequence alignment; and (4) incorporating site-mutations targeting the evolutionarily coupled sites identified from multiple sequence alignment.
Collapse
|
28
|
Gomez-Fernandez BJ, Risso VA, Sanchez-Ruiz JM, Alcalde M. Consensus Design of an Evolved High-Redox Potential Laccase. Front Bioeng Biotechnol 2020; 8:354. [PMID: 32435637 PMCID: PMC7218104 DOI: 10.3389/fbioe.2020.00354] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 03/30/2020] [Indexed: 12/23/2022] Open
Abstract
Among the broad repertory of protein engineering methods that set out to improve stability, consensus design has proved to be a powerful strategy to stabilize enzymes without compromising their catalytic activity. Here, we have applied an in-house consensus method to stabilize a laboratory evolved high-redox potential laccase. Multiple sequence alignments were carried out and computationally refined by applying relative entropy and mutual information thresholds. Through this approach, an ensemble of 20 consensus mutations were identified, 18 of which were consensus/ancestral mutations. The set of consensus variants was produced in Saccharomyces cerevisiae and analyzed individually, while site directed recombination of the best mutations did not produce positive epistasis. The best single variant carried the consensus-ancestral A240G mutation in the neighborhood of the T2/T3 copper cluster, which dramatically improved thermostability, kinetic parameters and secretion.
Collapse
Affiliation(s)
| | - Valeria A Risso
- Facultad de Ciencias, Departamento de Química Física, Universidad de Granada, Granada, Spain
| | - Jose M Sanchez-Ruiz
- Facultad de Ciencias, Departamento de Química Física, Universidad de Granada, Granada, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Madrid, Spain
| |
Collapse
|
29
|
Li S, Yang Q, Tang B. Improving the thermostability and acid resistance of Rhizopus oryzae α-amylase by using multiple sequence alignment based site-directed mutagenesis. Biotechnol Appl Biochem 2020; 67:677-684. [PMID: 32133700 DOI: 10.1002/bab.1907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
Higher thermostability or acid resistance for fungal α-amylase will help to improve the sugar-making process and cut down the production costs. Here, the thermostability or acid resistance of Rhizopus oryzae α-amylase (ROAmy) was significantly enhanced by site-directed evolution based on multiple sequence alignment (MSA) method. For instance, compared with the wild-type ROAmy, the optimum temperature of mutants G136D and A144Y was increased from 50 to 55 °C, whereas for mutants V174R and I276P, the optimum temperature was increased from 50 to 60 °C. The optimum pH of mutants G136D and A144Y shifted from 5.5 to 5.0, whereas for mutants V174R and T253E, the optimum pH changed from 5.5 to 4.5. The results showed that mutant V174R had a 2.52-fold increase in half-life at 55 °C, a 2.55-fold increase in half-life at pH 4.5, and a 1.61-fold increase in catalytic efficiency (kcat /Km ) on soluble starch. The three-dimensional model simulation revealed that changes of hydrophilicity, hydrogen bond, salt bridge, or rigidity observed in mutants might mainly account for the improvement of thermostability and acid resistance. The mutants with improved catalytic properties attained in this work may render an accessible and operable approach for directed evolution of fungal α-amylase aimed at interesting functions.
Collapse
Affiliation(s)
- Song Li
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Central Beijing Road, Wuhu, China
| | - Qian Yang
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Central Beijing Road, Wuhu, China
| | - Bin Tang
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Central Beijing Road, Wuhu, China
| |
Collapse
|
30
|
Alemasov NA, Ivanisenko NV, Ivanisenko VA. Learning the changes of barnase mutants thermostability from structural fluctuations obtained using anisotropic network modeling. J Mol Graph Model 2020; 97:107572. [PMID: 32114079 DOI: 10.1016/j.jmgm.2020.107572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/29/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022]
Abstract
In biotechnology applications, rational design of new proteins with improved physico-chemical properties includes a number of important tasks. One of the greatest practical and fundamental challenges is the design of highly thermostable protein enzymes that maintain catalytic activity at high temperatures. This problem may be solved by introducing mutations into the wild-type enzyme protein. In this work, to predict the impact of such mutations in barnase protein we applied the anisotropic network modeling approach, revealing atomic fluctuations in structural regions that are changed in mutants compared to the wild-type protein. A regression model was constructed based on these structural features that can allow one to predict the thermal stability of new barnase mutants. Moreover, the analysis of regression model provides a mechanistic explanation of how the structural features can contribute to the thermal stability of barnase mutants.
Collapse
Affiliation(s)
- Nikolay A Alemasov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Prospekt Lavrentyeva 10, Novosibirsk, Russia; The Kurchatov's Genomics Center of the Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Prospekt Lavrentyeva 10, Novosibirsk, Russia.
| | - Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Prospekt Lavrentyeva 10, Novosibirsk, Russia; The Kurchatov's Genomics Center of the Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Prospekt Lavrentyeva 10, Novosibirsk, Russia
| | - Vladimir A Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Prospekt Lavrentyeva 10, Novosibirsk, Russia; The Kurchatov's Genomics Center of the Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Prospekt Lavrentyeva 10, Novosibirsk, Russia
| |
Collapse
|
31
|
Kimura N, Mochizuki K, Umezawa K, Hecht MH, Arai R. Hyperstable De Novo Protein with a Dimeric Bisecting Topology. ACS Synth Biol 2020; 9:254-259. [PMID: 31951376 DOI: 10.1021/acssynbio.9b00501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, we designed and assembled protein nanobuilding blocks (PN-Blocks) from an intermolecularly folded dimeric de novo protein called WA20. Using this dimeric 4-helix bundle, we constructed a series of self-assembling supramolecular nanostructures including polyhedra and chain-type complexes. Here we describe the stabilization of WA20 by designing mutations that stabilize the helices and hydrophobic core. The redesigned proteins denature with substantially higher midpoints, with the most stable variant, called Super WA20 (SUWA), displaying an extremely high midpoint (Tm = 122 °C), much higher than the Tm of WA20 (75 °C). The crystal structure of SUWA reveals an intermolecularly folded dimer with bisecting U topology, similar to the parental WA20 structure, with two long α-helices of a protomer intertwined with the helices of another protomer. Molecular dynamics simulations demonstrate that the redesigned hydrophobic core in the center of SUWA significantly suppresses the deformation of helices observed in the same region of WA20, suggesting this is a critical factor stabilizing the SUWA structure. This hyperstable de novo protein is expected to be useful as nanoscale pillars of PN-Block components in new types of self-assembling nanoarchitectures.
Collapse
Affiliation(s)
- Naoya Kimura
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Kenji Mochizuki
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
- Institute for Fiber Engineering, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Koji Umezawa
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano 390-8621, Japan
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Michael H. Hecht
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano 390-8621, Japan
- Department of Supramolecular Complexes, Research Center for Fungal and Microbial Dynamism, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
32
|
Maenpuen S, Pongsupasa V, Pensook W, Anuwan P, Kraivisitkul N, Pinthong C, Phonbuppha J, Luanloet T, Wijma HJ, Fraaije MW, Lawan N, Chaiyen P, Wongnate T. Creating Flavin Reductase Variants with Thermostable and Solvent-Tolerant Properties by Rational-Design Engineering. Chembiochem 2020; 21:1481-1491. [PMID: 31886941 DOI: 10.1002/cbic.201900737] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 02/06/2023]
Abstract
We have employed computational approaches-FireProt and FRESCO-to predict thermostable variants of the reductase component (C1 ) of (4-hydroxyphenyl)acetate 3-hydroxylase. With the additional aid of experimental results, two C1 variants, A166L and A58P, were identified as thermotolerant enzymes, with thermostability improvements of 2.6-5.6 °C and increased catalytic efficiency of 2- to 3.5-fold. After heat treatment at 45 °C, both of the thermostable C1 variants remain active and generate reduced flavin mononucleotide (FMNH- ) for reactions catalyzed by bacterial luciferase and by the monooxygenase C2 more efficiently than the wild type (WT). In addition to thermotolerance, the A166L and A58P variants also exhibited solvent tolerance. Molecular dynamics (MD) simulations (6 ns) at 300-500 K indicated that mutation of A166 to L and of A58 to P resulted in structural changes with increased stabilization of hydrophobic interactions, and thus in improved thermostability. Our findings demonstrated that improvements in the thermostability of C1 enzyme can lead to broad-spectrum uses of C1 as a redox biocatalyst for future industrial applications.
Collapse
Affiliation(s)
- Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, 169 Long-Hard Bangsaen Road, Chonburi, 20131, Thailand
| | - Vinutsada Pongsupasa
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand
| | - Wiranee Pensook
- Department of Biochemistry, Faculty of Science, Burapha University, 169 Long-Hard Bangsaen Road, Chonburi, 20131, Thailand
| | - Piyanuch Anuwan
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand
| | | | - Chatchadaporn Pinthong
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23 Road, Bangkok, 10110, Thailand
| | - Jittima Phonbuppha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand
| | - Thikumporn Luanloet
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Hein J Wijma
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Narin Lawan
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huaykaew Road, Suthep, Chiang Mai, 50200, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand
| |
Collapse
|
33
|
Georgoulis A, Louka M, Mylonas S, Stavros P, Nounesis G, Vorgias CE. Consensus protein engineering on the thermostable histone-like bacterial protein HUs significantly improves stability and DNA binding affinity. Extremophiles 2020; 24:293-306. [PMID: 31980943 DOI: 10.1007/s00792-020-01154-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/06/2020] [Indexed: 11/28/2022]
Abstract
Consensus-based protein engineering strategy has been applied to various proteins and it can lead to the design of proteins with enhanced biological performance. Histone-like HUs comprise a protein family with sequence variety within a highly conserved 3D-fold. HU function includes compacting and regulating bacterial DNA in a wide range of biological conditions in bacteria. To explore the possible impact of consensus-based design in the thermodynamic stability of HU proteins, the approach was applied using a dataset of sequences derived from a group of 40 mesostable, thermostable, and hyperthermostable HUs. The consensus-derived HU protein was named HUBest, since it is expected to perform best. The synthetic HU gene was overexpressed in E. coli and the recombinant protein was purified. Subsequently, HUBest was characterized concerning its correct folding and thermodynamic stability, as well as its ability to interact with plasmid DNA. A substantial increase in HUBest stability at high temperatures is observed. HUBest has significantly improved biological performance at ambience temperature, presenting very low Kd values for binding plasmid DNA as indicated from the Gibbs energy profile of HUBest. This Kd may be associated to conformational changes leading to decreased thermodynamic stability and, therefore, higher flexibility at ambient temperature.
Collapse
Affiliation(s)
- Anastasios Georgoulis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Maria Louka
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Stratos Mylonas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Philemon Stavros
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research "Demokritos", 153 10, Agia Paraskevi, Greece
| | - George Nounesis
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research "Demokritos", 153 10, Agia Paraskevi, Greece
| | - Constantinos E Vorgias
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece.
| |
Collapse
|
34
|
Nutschel C, Fulton A, Zimmermann O, Schwaneberg U, Jaeger KE, Gohlke H. Systematically Scrutinizing the Impact of Substitution Sites on Thermostability and Detergent Tolerance for Bacillus subtilis Lipase A. J Chem Inf Model 2020; 60:1568-1584. [PMID: 31905288 DOI: 10.1021/acs.jcim.9b00954] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Improving an enzyme's (thermo-)stability or tolerance against solvents and detergents is highly relevant in protein engineering and biotechnology. Recent developments have tended toward data-driven approaches, where available knowledge about the protein is used to identify substitution sites with high potential to yield protein variants with improved stability, and subsequently, substitutions are engineered by site-directed or site-saturation (SSM) mutagenesis. However, the development and validation of algorithms for data-driven approaches have been hampered by the lack of availability of large-scale data measured in a uniform way and being unbiased with respect to substitution types and locations. Here, we extend our knowledge on guidelines for protein engineering following a data-driven approach by scrutinizing the impact of substitution sites on thermostability or/and detergent tolerance for Bacillus subtilis lipase A (BsLipA) at very large scale. We systematically analyze a complete experimental SSM library of BsLipA containing all 3439 possible single variants, which was evaluated as to thermostability and tolerances against four detergents under respectively uniform conditions. Our results provide systematic and unbiased reference data at unprecedented scale for a biotechnologically important protein, identify consistently defined hot spot types for evaluating the performance of data-driven protein-engineering approaches, and show that the rigidity theory and ensemble-based approach Constraint Network Analysis yields hot spot predictions with an up to ninefold gain in precision over random classification.
Collapse
Affiliation(s)
- Christina Nutschel
- John von Neumann Institute for Computing (NIC) and Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Alexander Fulton
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52425 Jülich, Germany
| | - Olav Zimmermann
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials, 52056 Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52425 Jülich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC) and Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
35
|
Chandler PG, Broendum SS, Riley BT, Spence MA, Jackson CJ, McGowan S, Buckle AM. Strategies for Increasing Protein Stability. Methods Mol Biol 2020; 2073:163-181. [PMID: 31612442 DOI: 10.1007/978-1-4939-9869-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The stability of wild-type proteins is often a hurdle to their practical use in research, industry, and medicine. The route to engineering stability of a protein of interest lies largely with the available data. Where high-resolution structural data is available, rational design, based on fundamental principles of protein chemistry, can improve protein stability. Recent advances in computational biology and the use of nonnatural amino acids have also provided novel rational methods for improving protein stability. Likewise, the explosion of sequence and structural data available in public databases, in combination with improvements in freely available computational tools, has produced accessible phylogenetic approaches. Trawling modern sequence databases can identify the thermostable homologs of a target protein, and evolutionary data can be quickly generated using available phylogenetic tools. Grafting features from those thermostable homologs or ancestors provides stability improvement through a semi-rational approach. Further, molecular techniques such as directed evolution have shown great promise in delivering designer proteins. These strategies are well documented and newly accessible to the molecular biologist, allowing for rapid enhancements of protein stability.
Collapse
Affiliation(s)
- Peter G Chandler
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sebastian S Broendum
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Blake T Riley
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Matthew A Spence
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Sheena McGowan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
36
|
Peng M, Mittmann E, Wenger L, Hubbuch J, Engqvist MKM, Niemeyer CM, Rabe KS. 3D-Printed Phenacrylate Decarboxylase Flow Reactors for the Chemoenzymatic Synthesis of 4-Hydroxystilbene. Chemistry 2019; 25:15998-16001. [PMID: 31618489 PMCID: PMC6972603 DOI: 10.1002/chem.201904206] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/14/2019] [Indexed: 01/24/2023]
Abstract
Continuous flow systems for chemical synthesis are becoming a major focus in organic chemistry and there is a growing interest in the integration of biocatalysts due to their high regio- and stereoselectivity. Methods established for 3D bioprinting enable the fast and simple production of agarose-based modules for biocatalytic reactors if thermally stable enzymes are available. We report here on the characterization of four different cofactor-free phenacrylate decarboxylase enzymes suitable for the production of 4-vinylphenol and test their applicability for the encapsulation and direct 3D printing of disk-shaped agarose-based modules that can be used for compartmentalized flow microreactors. Using the most active and stable phenacrylate decarboxylase from Enterobacter spec. in a setup with four parallel reactors and a subsequent palladium(II) acetate-catalysed Heck reaction, 4-hydroxystilbene was synthesized from p-coumaric acid with a total yield of 14.7 % on a milligram scale. We believe that, due to the convenient direct immobilization of any thermostable enzyme and straightforward tuning of the reaction sequence by stacking of modules with different catalytic activities, this simple process will facilitate the establishment and use of cascade reactions and will therefore be of great advantage for many research approaches.
Collapse
Affiliation(s)
- Martin Peng
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Esther Mittmann
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Lukas Wenger
- Institute of Functional InterfacesKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation EngineeringKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Jürgen Hubbuch
- Institute of Functional InterfacesKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation EngineeringKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Martin K. M. Engqvist
- Department of Biology and Biological EngineeringDivision of Systems and Synthetic BiologyChalmers University of TechnologyKemivägen 1041296GothenburgSweden
| | - Christof M. Niemeyer
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Kersten S. Rabe
- Institute for Biological Interfaces (IBG 1)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
37
|
Lu X, Chen J, Jiao L, Zhong L, Lu Z, Zhang C, Lu F. Improvement of the activity of l-asparaginase I improvement of the catalytic activity of l-asparaginase I from Bacillus megaterium H-1 by in vitro directed evolution. J Biosci Bioeng 2019; 128:683-689. [DOI: 10.1016/j.jbiosc.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
|
38
|
Tang H, Shi K, Shi C, Aihara H, Zhang J, Du G. Enhancing subtilisin thermostability through a modified normalized B-factor analysis and loop-grafting strategy. J Biol Chem 2019; 294:18398-18407. [PMID: 31615894 PMCID: PMC6885650 DOI: 10.1074/jbc.ra119.010658] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/09/2019] [Indexed: 01/07/2023] Open
Abstract
Rational design-guided improvement of protein thermostability typically requires identification of residues or regions contributing to instability and introduction of mutations into these residues or regions. One popular method, B-FIT, utilizes B-factors to identify unstable residues or regions and combines them with other strategies, such as directed evolution. Here, we performed structure-based engineering to improve the thermostability of the subtilisin E-S7 (SES7) peptidase. The B-value of each residue was redefined in a normalized B-factor calculation, which was implemented with a refined bioinformatics analysis strategy to identify the critical area (loop 158-162) related to flexibility and to screen for suitable thermostable motif sequences in the Protein Data Bank that can act as transplant loops. In total, we analyzed 445 structures and identified 29 thermostable motifs as candidates. Using these motifs as a starting point, we performed iterative homologous modeling to obtain a desirable chimera loop and introduced five different mutations into this loop to construct thermostable SES7 proteins. Differential scanning fluorimetry revealed increases of 7.3 °C in the melting temperature of an SES7 variant designated M5 compared with the WT. The X-ray crystallographic structure of this variant was resolved at 1.96 Å resolution. The crystal structure disclosed that M5 forms more hydrogen bonds than the WT protein, consistent with design and molecular dynamics simulation results. In summary, the modified B-FIT strategy reported here has yielded a subtilisin variant with improved thermostability and promising industrial applications, supporting the notion that this modified method is a powerful tool for protein engineering.
Collapse
Affiliation(s)
- Heng Tang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455
| | - Cheng Shi
- School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455.
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Guocheng Du
- School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
39
|
J B, M M B, Chanda K. Evolutionary approaches in protein engineering towards biomaterial construction. RSC Adv 2019; 9:34720-34734. [PMID: 35530663 PMCID: PMC9074691 DOI: 10.1039/c9ra06807d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/01/2019] [Indexed: 11/29/2022] Open
Abstract
The tailoring of proteins for specific applications by evolutionary methods is a highly active area of research. Rational design and directed evolution are the two main strategies to reengineer proteins or create chimeric structures. Rational engineering is often limited by insufficient knowledge about proteins' structure-function relationships; directed evolution overcomes this restriction but poses challenges in the screening of candidates. A combination of these protein engineering approaches will allow us to create protein variants with a wide range of desired properties. Herein, we focus on the application of these approaches towards the generation of protein biomaterials that are known for biodegradability, biocompatibility and biofunctionality, from combinations of natural, synthetic, or engineered proteins and protein domains. Potential applications depend on the enhancement of biofunctional, mechanical, or other desired properties. Examples include scaffolds for tissue engineering, thermostable enzymes for industrial biocatalysis, and other therapeutic applications.
Collapse
Affiliation(s)
- Brindha J
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Chennai Campus Vandalur-Kelambakkam Road Chennai-600 127 Tamil Nadu India
| | - Balamurali M M
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Chennai Campus Vandalur-Kelambakkam Road Chennai-600 127 Tamil Nadu India
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology Vellore-632014 Tamil Nadu India
| |
Collapse
|
40
|
Adhikari S, Leissa JA, Karlsson AJ. Beyond function: Engineering improved peptides for therapeutic applications. AIChE J 2019. [DOI: 10.1002/aic.16776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sayanee Adhikari
- Department of Chemical and Biomolecular Engineering University of Maryland College Park Maryland
| | - Jesse A. Leissa
- Department of Chemical and Biomolecular Engineering University of Maryland College Park Maryland
| | - Amy J. Karlsson
- Department of Chemical and Biomolecular Engineering University of Maryland College Park Maryland
- Fischell Department of Bioengineering University of Maryland College Park Maryland
| |
Collapse
|
41
|
Klesmith JR, Su L, Wu L, Schrack IA, Dufort FJ, Birt A, Ambrose C, Hackel BJ, Lobb RR, Rennert PD. Retargeting CD19 Chimeric Antigen Receptor T Cells via Engineered CD19-Fusion Proteins. Mol Pharm 2019; 16:3544-3558. [PMID: 31242389 DOI: 10.1021/acs.molpharmaceut.9b00418] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CD19-targeted chimeric antigen receptor (CAR) T-cells (CAR19s) show remarkable efficacy in the treatment of relapsed/refractory acute lymphocytic leukemia and Non-Hodgkin's lymphoma. However, the use of CAR T-cell therapy against CD19-negative hematological cancers and solid tumors has been challenging. We propose CD19-fusion proteins (CD19-FPs) to leverage the benefits of CAR19s while retargeting this validated cellular therapy to alternative tumor antigens. We demonstrate the ability of a fusion of CD19 extracellular domain (ECD) and a human epidermal growth factor receptor 2 (HER2) single-chain antibody fragment to retarget CAR19s to kill HER2+ CD19- tumor cells. To enhance the modularity of this technology, we engineered a more robust CD19 ECD via deep mutational scanning with yeast display and flow cytometric selections for improved protease resistance and anti-CD19 antibody binding. These enhanced CD19 ECDs significantly increase, and in some cases recover, fusion protein expression while maintaining target antigen affinity. Importantly, CD19-FPs retarget CAR19s to kill tumor cells expressing multiple distinct antigens, including HER2, CD20, EGFR, BCMA, and Clec12A as N- or C-terminal fusions and linked to both antibody fragments and fibronectin ligands. This study provides fundamental insights into CD19 sequence-function relationships and defines a flexible and modular platform to retarget CAR19s to any tumor antigen.
Collapse
Affiliation(s)
- Justin R Klesmith
- Department of Chemical Engineering and Materials Science , University of Minnesota Twin Cities , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Lihe Su
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Lan Wu
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Ian A Schrack
- Department of Chemical Engineering and Materials Science , University of Minnesota Twin Cities , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Fay J Dufort
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Alyssa Birt
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Christine Ambrose
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science , University of Minnesota Twin Cities , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Roy R Lobb
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| | - Paul D Rennert
- Aleta Biotherapeutics , 27 Strathmore Road , Natick , Massachusetts 01760 , United States
| |
Collapse
|
42
|
Hot CoFi Blot: A High-Throughput Colony-Based Screen for Identifying More Thermally Stable Protein Variants. Methods Mol Biol 2019. [PMID: 31267459 DOI: 10.1007/978-1-4939-9624-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Highly soluble and stable proteins are desirable for many different applications, from basic science to reaching a cancer patient in the form of a biological drug. For X-ray crystallography-where production of a protein crystal might take weeks and even months-a stable protein sample of high purity and concentration can greatly increase the chances of producing a well-diffracting crystal. For a patient receiving a specific protein drug, its safety, efficacy, and even cost are factors affected by its solubility and stability. Increased protein expression and protein stability can be achieved by randomly altering the coding sequence. As the number of mutants generated might be overwhelming, a powerful protein expression and stability screen is required. In this chapter, we describe a colony filtration technology, which allows us to screen random mutagenesis libraries for increased thermal stability-the Hot CoFi blot. We share how to create the random mutagenesis library, how to perform the Hot CoFi blot, and how to identify more thermally stable clones. We use the Tobacco Etch Virus protease as a target to exemplify the procedure.
Collapse
|
43
|
Lin Y. Rational design of heme enzymes for biodegradation of pollutants toward a green future. Biotechnol Appl Biochem 2019; 67:484-494. [DOI: 10.1002/bab.1788] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/06/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Ying‐Wu Lin
- School of Chemistry and Chemical Engineering University of South China Hengyang People's Republic of China
- Laboratory of Protein Structure and Function University of South China Hengyang People's Republic of China
- Hunan Key Laboratory for the Design and Application of Actinide Complexes University of South China Hengyang People's Republic of China
| |
Collapse
|
44
|
Substrate inhibition imposes fitness penalty at high protein stability. Proc Natl Acad Sci U S A 2019; 116:11265-11274. [PMID: 31097595 DOI: 10.1073/pnas.1821447116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins are only moderately stable. It has long been debated whether this narrow range of stabilities is solely a result of neutral drift toward lower stability or purifying selection against excess stability-for which no experimental evidence was found so far-is also at work. Here, we show that mutations outside the active site in the essential Escherichia coli enzyme adenylate kinase (Adk) result in a stability-dependent increase in substrate inhibition by AMP, thereby impairing overall enzyme activity at high stability. Such inhibition caused substantial fitness defects not only in the presence of excess substrate but also under physiological conditions. In the latter case, substrate inhibition caused differential accumulation of AMP in the stationary phase for the inhibition-prone mutants. Furthermore, we show that changes in flux through Adk could accurately describe the variation in fitness effects. Taken together, these data suggest that selection against substrate inhibition and hence excess stability may be an important factor determining stability observed for modern-day Adk.
Collapse
|
45
|
Change of the Product Specificity of a Cyclodextrin Glucanotransferase by Semi-Rational Mutagenesis to Synthesize Large-Ring Cyclodextrins. Catalysts 2019. [DOI: 10.3390/catal9030242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cyclodextrin glucanotransferases (CGTases) convert starch to cyclodextrins (CD) of various sizes. To engineer a CGTase for the synthesis of large-ring CD composed of 9 to 12 glucose units, a loop structure of the protein involved in substrate binding was targeted for semi-rational mutagenesis. Based on multiple protein alignments and protein structure information, a mutagenic megaprimer was designed to encode a partial randomization of eight amino acid residues within the loop region. The library obtained encoding amino acid sequences occurring in wild type CGTases in combination with a screening procedure yielded sequences displaying a changed CD product specificity. As a result, variants of the CGTase from the alkaliphilic Bacillus sp. G825-6 synthesizing mainly CD9 to CD12 could be obtained. When the mutagenesis experiment was performed with the CGTase G825-6 variant Y183R, the same loop alterations that increased the total CD synthesis activity resulted in lower activities of the variant enzymes created. In the presence of the amino acid residue R183, the synthesis of CD8 was suppressed and larger CD were obtained as the main products. The alterations not only affected the product specificity, but also influenced the thermal stability of some of the CGTase variants indicating the importance of the loop structure for the stability of the CGTase.
Collapse
|
46
|
Kondratyev MS, Kabanov AV, Samchenko AA, Komarov VM, Khechinashvili NN. Parallel Computations in the Development of Thermostable Lipase Mutants. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476618080292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Liu HX, Li L, Yang XZ, Wei CW, Cheng HM, Gao SQ, Wen GB, Lin YW. Enhancement of protein stability by an additional disulfide bond designed in human neuroglobin. RSC Adv 2019; 9:4172-4179. [PMID: 35520156 PMCID: PMC9062612 DOI: 10.1039/c8ra10390a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Human neuroglobin (Ngb) forms an intramolecular disulfide bond between Cys46 and Cys55, with a third Cys120 near the protein surface, which is a promising protein model for heme protein design. In order to protect the free Cys120 and to enhance the protein stability, we herein developed a strategy by designing an additional disulfide bond between Cys120 and Cys15 via A15C mutation. The design was supported by molecular modeling, and the formation of Cys15–Cys120 disulfide bond was confirmed experimentally by ESI-MS analysis. Molecular modeling, UV-Vis and CD spectroscopy showed that the additional disulfide bond caused minimal structural alterations of Ngb. Meanwhile, the disulfide bond of Cys15–Cys120 was found to enhance both Gdn·HCl-induced unfolding stability (increased by ∼0.64 M) and pH-induced unfolding stability (decreased by ∼0.69 pH unit), as compared to those of WT Ngb with a single native disulfide bond of Cys46–Cys55. Moreover, the half denaturation temperature (Tm) of A15C Ngb was determined to be higher than 100 °C. In addition, the disulfide bond of Cys15–Cys120 has slight effects on protein function, such as an increase in the rate of O2 release by ∼1.4-fold. This study not only suggests a crucial role of the artificial disulfide in protein stabilization, but also lays the groundwork for further investigation of the structure and function of Ngb, as well as for the design of other functional heme proteins, based on the scaffold of A15C Ngb with an enhanced stability. A disulfide bond of Cys120 and Cys15 was rationally designed in human neuroglobin (Ngb) by A15C mutation, which caused minimal structural alterations, whereas enhanced both chemical and pH stability, with a thermal stability higher than 100 °C.![]()
Collapse
Affiliation(s)
- Hai-Xiao Liu
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Xin-Zhi Yang
- Laboratory of Protein Structure and Function
- University of South China
- Hengyang 421001
- China
| | - Chuan-Wan Wei
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- China
| | - Hui-Min Cheng
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function
- University of South China
- Hengyang 421001
- China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function
- University of South China
- Hengyang 421001
- China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- China
- Laboratory of Protein Structure and Function
| |
Collapse
|
48
|
Gong XM, Qin Z, Li FL, Zeng BB, Zheng GW, Xu JH. Development of an Engineered Ketoreductase with Simultaneously Improved Thermostability and Activity for Making a Bulky Atorvastatin Precursor. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03382] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xu-Min Gong
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Qin
- State Key Laboratory of Bioreactor Engineering and R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Fu-Long Li
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Bu-Bing Zeng
- Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
49
|
Cirri E, Brier S, Assal R, Canul-Tec JC, Chamot-Rooke J, Reyes N. Consensus designs and thermal stability determinants of a human glutamate transporter. eLife 2018; 7:40110. [PMID: 30334738 PMCID: PMC6209432 DOI: 10.7554/elife.40110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/17/2018] [Indexed: 11/25/2022] Open
Abstract
Human excitatory amino acid transporters (EAATs) take up the neurotransmitter glutamate in the brain and are essential to maintain excitatory neurotransmission. Our understanding of the EAATs’ molecular mechanisms has been hampered by the lack of stability of purified protein samples for biophysical analyses. Here, we present approaches based on consensus mutagenesis to obtain thermostable EAAT1 variants that share up to ~95% amino acid identity with the wild type transporters, and remain natively folded and functional. Structural analyses of EAAT1 and the consensus designs using hydrogen-deuterium exchange linked to mass spectrometry show that small and highly cooperative unfolding events at the inter-subunit interface rate-limit their thermal denaturation, while the transport domain unfolds at a later stage in the unfolding pathway. Our findings provide structural insights into the kinetic stability of human glutamate transporters, and introduce general approaches to extend the lifetime of human membrane proteins for biophysical analyses.
Collapse
Affiliation(s)
- Erica Cirri
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, Paris, France.,UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Sébastien Brier
- Mass Spectrometry for Biology Unit, Institut Pasteur, Paris, France.,USR 2000, CNRS, Institut Pasteur, Paris, France
| | - Reda Assal
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, Paris, France.,UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Juan Carlos Canul-Tec
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, Paris, France.,UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Julia Chamot-Rooke
- Mass Spectrometry for Biology Unit, Institut Pasteur, Paris, France.,USR 2000, CNRS, Institut Pasteur, Paris, France
| | - Nicolas Reyes
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, Paris, France.,UMR 3528, CNRS, Institut Pasteur, Paris, France
| |
Collapse
|
50
|
Rational design-based engineering of a thermostable phytase by site-directed mutagenesis. Mol Biol Rep 2018; 45:2053-2061. [DOI: 10.1007/s11033-018-4362-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/05/2018] [Indexed: 12/19/2022]
|