1
|
Xiao Y, Konermann L. Protein structural dynamics at the gas/water interface examined by hydrogen exchange mass spectrometry. Protein Sci 2015; 24:1247-56. [PMID: 25761782 DOI: 10.1002/pro.2680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/07/2015] [Accepted: 03/09/2015] [Indexed: 11/09/2022]
Abstract
Gas/water interfaces (such as air bubbles or foam) are detrimental to the stability of proteins, often causing aggregation. This represents a potential problem for industrial processes, for example, the production and handling of protein drugs. Proteins possess surfactant-like properties, resulting in a high affinity for gas/water interfaces. The tendency of previously buried nonpolar residues to maximize contact with the gas phase can cause significant structural distortion. Most earlier studies in this area employed spectroscopic tools that could only provide limited information. Here we use hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for probing the conformational dynamics of the model protein myoglobin (Mb) in the presence of N(2) bubbles. HDX/MS relies on the principle that unfolded and/or highly dynamic regions undergo faster deuteration than tightly folded segments. In bubble-free solution Mb displays EX2 behavior, reflecting the occurrence of short-lived excursions to partially unfolded conformers. A dramatically different behavior is seen in the presence of N(2) bubbles; EX2 dynamics still take place, but in addition the protein shows EX1 behavior. The latter results from interconversion of the native state with conformers that are globally unfolded and long-lived. These unfolded species likely correspond to Mb that is adsorbed to the surface of gas bubbles. N(2) sparging also induces aggregation. To explain the observed behavior we propose a simple model, that is, "semi-unfolded" ↔ "native" ↔ "globally unfolded" → "aggregated". This model quantitatively reproduces the experimentally observed kinetics. To the best of our knowledge, the current study marks the first exploration of surface denaturation phenomena by HDX/MS.
Collapse
Affiliation(s)
- Yiming Xiao
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
2
|
Paul M, Ma JKC. Plant-made pharmaceuticals: Leading products and production platforms. Biotechnol Appl Biochem 2011; 58:58-67. [DOI: 10.1002/bab.6] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
|
4
|
Basaran P, Rodríguez-Cerezo E. Plant Molecular Farming: Opportunities and Challenges. Crit Rev Biotechnol 2008; 28:153-72. [PMID: 18937106 DOI: 10.1080/07388550802046624] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Parekh S, Srinivasan V, Horn M. Bioprocessing Using Novel Cell Culture Systems. ADVANCES IN APPLIED MICROBIOLOGY 2008; 63:105-43. [DOI: 10.1016/s0065-2164(07)00003-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Engineering Formation of Medicinal Compounds in Cell Cultures. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1755-0408(07)01011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
7
|
Sajc L, Vunjak-Novakovic G. Extractive bioconversion in a four-phase external-loop airlift bioreactor. AIChE J 2006. [DOI: 10.1002/aic.690460710] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Hellwig S, Drossard J, Twyman RM, Fischer R. Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 2004; 22:1415-22. [PMID: 15529167 DOI: 10.1038/nbt1027] [Citation(s) in RCA: 304] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The use of whole plants for the synthesis of recombinant proteins has received a great deal of attention recently because of advantages in economy, scalability and safety compared with traditional microbial and mammalian production systems. However, production systems that use whole plants lack several of the intrinsic benefits of cultured cells, including the precise control over growth conditions, batch-to-batch product consistency, a high level of containment and the ability to produce recombinant proteins in compliance with good manufacturing practice. Plant cell cultures combine the merits of whole-plant systems with those of microbial and animal cell cultures, and already have an established track record for the production of valuable therapeutic secondary metabolites. Although no recombinant proteins have yet been produced commercially using plant cell cultures, there have been many proof-of-principle studies and several companies are investigating the commercial feasibility of such production systems.
Collapse
Affiliation(s)
- Stephan Hellwig
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Worringerweg 1, D-52074 Aachen, Germany
| | | | | | | |
Collapse
|
9
|
Dirnberger D, Steinkellner H, Abdennebi L, Remy JJ, van de Wiel D. Secretion of biologically active glycoforms of bovine follicle stimulating hormone in plants. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4570-9. [PMID: 11502219 DOI: 10.1046/j.1432-1327.2001.02384.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We chose the follicle stimulating hormone (FSH), a pituitary heterodimeric glycoprotein hormone, as a model to assess the ability of the plant cell to express a recombinant protein that requires extensive N-glycosylation for subunit folding and assembly, intracellular trafficking, signal transduction and circulatory stability. A tobacco mosaic virus (TMV) based transient expression system was used to express a single-chain (sc) version of bovine FSH in the tobacco related species Nicotiana benthamiana. Preparations of periplasmic proteins from plants infected with recombinant viral RNA contained high levels of sc-bFSH, up to 3% of total soluble proteins. Consistently, in situ indirect immunofluorescence revealed that the plant cell secreted the mammalian secretory protein to the extracellular compartment (EC). By mass spectrometric analysis of immunoaffinity purified sc-bFSH derived from EC fractions, we found two species of the plant paucimannosidic glycan type, truncated forms of complex-type N-glycans. Stimulation of cAMP production in a CHO cell line expressing the porcine FSH receptor acknowledged the native-like structure of sc-bFSH and a sufficient extent of N-glycosylation required for signal transduction. Furthermore, in superovulatory treatments of mice, sc-bFSH displayed significant in vivo bioactivity, although much lower than that of pregnant mare serum gonadotropin. We conclude that plants may have a broad utility as hosts for the recombinant expression of proteins even where glycosylation is essential for function.
Collapse
Affiliation(s)
- D Dirnberger
- Zentrum für Angewandte Genetik, Universität für Bodenkultur-Wien, Wien, Austria
| | | | | | | | | |
Collapse
|
10
|
Abstract
Molecular farming is the production of pharmaceutically important and commercially valuable proteins in plants. Its purpose is to provide a safe and inexpensive means for the mass production of recombinant pharmaceutical proteins. Complex mammalian proteins can be produced in transformed plants or transformed plant suspension cells. Plants are suitable for the production of pharmaceutical proteins on a field scale because the expressed proteins are functional and almost indistinguishable from their mammalian counterparts. The breadth of therapeutic proteins produced by plants range from interleukins to recombinant antibodies. Molecular farming in plants has the potential to provide virtually unlimited quantities of recombinant proteins for use as diagnostic and therapeutic tools in health care and the life sciences. Plants produce a large amount of biomass and protein production can be increased using plant suspension cell culture in fermenters, or by the propagation of stably transformed plant lines in the field. Transgenic plants can also produce organs rich in a recombinant protein for its long-term storage. This demonstrates the promise of using transgenic plants as bioreactors for the molecular farming of recombinant therapeutics, including vaccines, diagnostics, such as recombinant antibodies, plasma proteins, cytokines and growth factors.
Collapse
Affiliation(s)
- R Fischer
- Institut für Biologie I (Botanik/Molekulargenetik), RWTH Aachen, Germany.
| | | |
Collapse
|
11
|
|
12
|
Vaquero C, Sack M, Chandler J, Drossard J, Schuster F, Monecke M, Schillberg S, Fischer R. Transient expression of a tumor-specific single-chain fragment and a chimeric antibody in tobacco leaves. Proc Natl Acad Sci U S A 1999; 96:11128-33. [PMID: 10500141 PMCID: PMC17998 DOI: 10.1073/pnas.96.20.11128] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/1999] [Indexed: 12/13/2022] Open
Abstract
To evaluate the expression of different forms of a tumor-specific antibody in plants, we adapted a recently described Agrobacterium-mediated transient expression system. A recombinant single-chain Fv antibody (scFvT84.66) and a full-size mouse/human chimeric antibody (cT84.66) derived from the parental murine mAb T84. 66 specific for the human carcinoembryonic antigen were engineered into a plant expression vector. Chimeric T84.66 heavy and light chain genes were constructed by exchanging the mouse light and heavy chain constant domain sequences with their human counterparts and cloned into two independent plant expression vectors. In vivo assembly of full-size cT84.66 was achieved by simultaneous expression of the light and heavy chains after vacuum infiltration of tobacco leaves with two populations of recombinant Agrobacterium. Upscaling the transient system permitted purification of functional recombinant antibodies from tobacco leaf extracts within a week. His6-tagged scFvT84.66 was purified by immobilized metal affinity chromatography and cT84.66 by protein A affinity chromatography. Sufficient amounts of recombinant antibodies were recovered for detailed characterization by SDS/PAGE, Western blotting, and ELISA.
Collapse
Affiliation(s)
- C Vaquero
- Institut für Biologie I (Botanik/Molekulargenetik), Rheinisch-Westfälische Technische Hochschule Aachen, Worringerweg 1, D-52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Fischer R, Liao YC, Hoffmann K, Schillberg S, Emans N. Molecular farming of recombinant antibodies in plants. Biol Chem 1999; 380:825-39. [PMID: 10494831 DOI: 10.1515/bc.1999.102] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
'Molecular farming' is the production of recombinant proteins in plants. It is intended to harness the power of agriculture to cultivate and harvest transgenic plants producing recombinant therapeutics. Molecular farming has the potential to provide virtually unlimited quantities of recombinant antibodies for use as diagnostic and therapeutic tools in both health care and the life sciences. Importantly, recombinant antibody expression can be used to modify the inherent properties of plants, for example by using expressed antipathogen antibodies to increase disease resistance. Plant transformation is technically straightforward for model plant species and some cereals, and the functional expression of recombinant proteins can be rapidly analyzed using transient expression systems in intact or virally infected plants. Protein production can then be increased using plant suspension cell production in fermenters, or by the propagation of stably transformed plant lines in the field. Transgenic plants can be exploited to produce organs rich in a recombinant protein for its long-term storage. This demonstrates the promise of using transgenic plants as bioreactors for the 'molecular farming' of recombinant therapeutics, blood substitutes and diagnostics, such as recombinant antibodies.
Collapse
Affiliation(s)
- R Fischer
- Institut für Biologie I (Botanik/Molekulargenetik), RWTH Aachen, Germany
| | | | | | | | | |
Collapse
|
14
|
Fischer R, Liao YC, Drossard J. Affinity-purification of a TMV-specific recombinant full-size antibody from a transgenic tobacco suspension culture. J Immunol Methods 1999; 226:1-10. [PMID: 10410966 DOI: 10.1016/s0022-1759(99)00058-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A TMV-specific full-size murine IgG-2b/K antibody (mAb24) was expressed in a Nicotiana tabacum cv. Petite Havana SR1 suspension culture (P9s), which was derived from a stably transformed transgenic plant (P9). The integration of an N-terminal murine leader peptide directed the assembled immunoglobulin for secretion. However, in suspension culture, the full-size recombinant antibody, rAb24, was retained by the plant cell wall and was not present in the culture medium. rAb24 expression reached a basal level of 15 microg per gram wet cell weight, corresponding to 0.3% of the total soluble plant cell protein. The level of rAb24 could be increased three-fold by amino acid supplementation of the culture medium. For purification of the recombinant antibody from batch-cultured tobacco suspension cells, the primary plant cell wall was partially digested by enzymatic treatment. This resulted in a total release of recombinant full-size rAb24 into the extraction buffer. A three-step procedure was used to purify the immunoglobulins, starting with cross-flow filtration (step 1) followed by protein A affinity chromatography (step 2) and gel filtration as a final purification step (step 3). This procedure gave a recovery of more than 80% of the expressed rAb24 from plant cell extracts. SDS-PAGE, IEF and immunoblot analyses demonstrated a high degree of homogeneity for the affinity-purified rAb24. An ELISA procedure demonstrated that the specificity and affinity of the protein A affinity purified antibody was indistinguishable from its murine counterpart, indicating the potential of plant cell suspension cultures as bio-reactors for the production of recombinant antibodies.
Collapse
Affiliation(s)
- R Fischer
- Institut für Biologie I (Botanik)/Molekulargenetik), RWTH Aachen, Germany.
| | | | | |
Collapse
|
15
|
The use of glucose to regulate pH values of culture media and increase the production of baculovirus (BmNPV) and foreign protein (HBsAg). Process Biochem 1999. [DOI: 10.1016/s0032-9592(98)00096-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Altmann F, Staudacher E, Wilson IB, März L. Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconj J 1999; 16:109-23. [PMID: 10612411 DOI: 10.1023/a:1026488408951] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Baculovirus-mediated expression in insect cells has become well-established for the production of recombinant glycoproteins. Its frequent use arises from the relative ease and speed with which a heterologous protein can be expressed on the laboratory scale and the high chance of obtaining a biologically active protein. In addition to Spodoptera frugiperda Sf9 cells, which are probably the most widely used insect cell line, other mainly lepidopteran cell lines are exploited for protein expression. Recombinant baculovirus is the usual vector for the expression of foreign genes but stable transfection of - especially dipteran - insect cells presents an interesting alternative. Insect cells can be grown on serum free media which is an advantage in terms of costs as well as of biosafety. For large scale culture, conditions have been developed which meet the special requirements of insect cells. With regard to protein folding and post-translational processing, insect cells are second only to mammalian cell lines. Evidence is presented that many processing events known in mammalian systems do also occur in insects. In this review, emphasis is laid, however, on protein glycosylation, particularly N-glycosylation, which in insects differs in many respects from that in mammals. For instance, truncated oligosaccharides containing just three or even only two mannose residues and sometimes fucose have been found on expressed proteins. These small structures can be explained by post-synthetic trimming reactions. Indeed, cell lines having a low level of N-acetyl-beta-glucosaminidase, e.g. Estigmene acrea cells, produce N- glycans with non-reducing terminal N-acetylglucosamine residues. The Trichoplusia ni cell line TN-5B1-4 was even found to produce small amounts of galactose terminated N-glycans. However, there appears to be no significant sialylation of N-glycans in insect cells. Insect cells expressed glycoproteins may, though, be alpha1,3-fucosylated on the reducing-terminal GlcNAc residue. This type of fucosylation renders the N-glycans on one hand resistant to hydrolysis with PNGase F and on the other immunogenic. Even in the absence of alpha1,3-fucosylation, the truncated N-glycans of glycoproteins produced in insect cells constitute a barrier to their use as therapeutics. Attempts and strategies to "mammalianise" the N-glycosylation capacity of insect cells are discussed.
Collapse
Affiliation(s)
- F Altmann
- Institut für Chemie der Universität für Bodenkultur Wien.
| | | | | | | |
Collapse
|
17
|
|
18
|
Abstract
Progress towards the commercial-scale use of plant cell cultures over the past three years has been significant. Elicitation, particularly with methyl jasmonate, has been effective at increasing the product yields of a wide variety of secondary metabolites, particularly when it is applied synergistically with enhancement strategies such as immobilization and in situ extraction. Rapid advances in understanding the regulation of the biosynthetic pathways of secondary metabolites are allowing the application of enhancement strategies to move from empirical to semirational. Much of this progress is exemplified by work on paclitaxel (Taxol), where yields have improved more than 100-fold in the past two years.
Collapse
|
19
|
Palomares LA, Ramirez OT. The effect of dissolved oxygen tension and the utility of oxygen uptake rate in insect cell culture. Cytotechnology 1996; 22:225-37. [DOI: 10.1007/bf00353943] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
20
|
|
21
|
Bédard C, Kamen A, Tom R, Massie B. Maximization of recombinant protein yield in the insect cell/baculovirus system by one-time addition of nutrients to high-density batch cultures. Cytotechnology 1994; 15:129-38. [PMID: 7765925 DOI: 10.1007/bf00762387] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Suspension cultures of Sf-9 cells at different stages of growth were infected with a recombinant baculovirus expressing beta-galactosidase, using a range of multiplicities of infection (MOI) of 0.05 to 50. Following infection, the cells were resuspended either in the medium in which they had been grown or in fresh medium. Specific beta-galactosidase yields were not markedly affected by either MOI or medium change in cultures infected in early exponential phase (< or = 3 x 10(6) cells mL-1). In cultures infected at later growth stages, beta-galactosidase yields could only be maintained by medium replacement. The possibility that this requirement for medium replacement is due either to the accumulation of an inhibitory byproduct or nutrient limitation was examined. Alanine, a major byproduct of cultured insect cell metabolism, did not significantly reduce recombinant protein yield when added to infected cultures in concentrations of up to 40 mM. Following a factorial design, various nutrient concentrates were added alone or in combination to cultures infected in late exponential phase. Additions that included both yeastolate ultrafiltrate and an amino acid mixture restored specific beta-galactosidase yields to levels observed at earlier growth stages or in late stages with medium replacement; the addition of these concentrates, by permitting production at higher cell density, led to increases in the volumetric yield of recombinant protein. Together or separately, the concentrates when added to uninfected late exponential phase cultures, lead to a doubling of the maximum total cell protein level normally supported by unamended medium.
Collapse
Affiliation(s)
- C Bédard
- Biotechnology Research Institute, National Research Council Canada, Montréal, Québec
| | | | | | | |
Collapse
|