1
|
Kong XF, Bousfiha A, Rouissi A, Itan Y, Abhyankar A, Bryant V, Okada S, Ailal F, Bustamante J, Casanova JL, Hirst J, Boisson-Dupuis S. A novel homozygous p.R1105X mutation of the AP4E1 gene in twins with hereditary spastic paraplegia and mycobacterial disease. PLoS One 2013; 8:e58286. [PMID: 23472171 PMCID: PMC3589270 DOI: 10.1371/journal.pone.0058286] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/01/2013] [Indexed: 12/22/2022] Open
Abstract
We report identical twins with intellectual disability, progressive spastic paraplegia and short stature, born to a consanguineous family. Intriguingly, both children presented with lymphadenitis caused by the live Bacillus Calmette-Guérin (BCG) vaccine. Two syndromes – hereditary spastic paraplegia (HSP) and mycobacterial disease – thus occurred simultaneously. Whole-exome sequencing (WES) revealed a homozygous nonsense mutation (p.R1105X) of the AP4E1 gene, which was confirmed by Sanger sequencing. The p.R1105X mutation has no effect on AP4E1 mRNA levels, but results in lower levels of AP-4ε protein and of the other components of the AP-4 complex, as shown by western blotting, immunoprecipitation and immunofluorescence. Thus, the C-terminal part of the AP-4ε subunit plays an important role in maintaining the integrity of the AP-4 complex. No abnormalities of the IL-12/IFN-γ axis or oxidative burst pathways were identified. In conclusion, we identified twins with autosomal recessive AP-4 deficiency associated with HSP and mycobacterial disease, suggesting that AP-4 may play important role in the neurological and immunological systems.
Collapse
Affiliation(s)
- Xiao-Fei Kong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Gineau L, Cognet C, Kara N, Lach FP, Dunne J, Veturi U, Picard C, Trouillet C, Eidenschenk C, Aoufouchi S, Alcaïs A, Smith O, Geissmann F, Feighery C, Abel L, Smogorzewska A, Stillman B, Vivier E, Casanova JL, Jouanguy E. Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest 2012; 122:821-32. [PMID: 22354167 DOI: 10.1172/jci61014] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/21/2011] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells are circulating cytotoxic lymphocytes that exert potent and nonredundant antiviral activity and antitumoral activity in the mouse; however, their function in host defense in humans remains unclear. Here, we investigated 6 related patients with autosomal recessive growth retardation, adrenal insufficiency, and a selective NK cell deficiency characterized by a lack of the CD56(dim) NK subset. Using linkage analysis and fine mapping, we identified the disease-causing gene, MCM4, which encodes a component of the MCM2-7 helicase complex required for DNA replication. A splice-site mutation in the patients produced a frameshift, but the mutation was hypomorphic due to the creation of two new translation initiation methionine codons downstream of the premature termination codon. The patients' fibroblasts exhibited genomic instability, which was rescued by expression of WT MCM4. These data indicate that the patients' growth retardation and adrenal insufficiency likely reflect the ubiquitous but heterogeneous impact of the MCM4 mutation in various tissues. In addition, the specific loss of the NK CD56(dim) subset in patients was associated with a lower rate of NK CD56(bright) cell proliferation, and the maturation of NK CD56(bright) cells toward an NK CD56(dim) phenotype was tightly dependent on MCM4-dependent cell division. Thus, partial MCM4 deficiency results in a genetic syndrome of growth retardation with adrenal insufficiency and selective NK deficiency.
Collapse
Affiliation(s)
- Laure Gineau
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U980, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Li M, Wang IX, Li Y, Bruzel A, Richards AL, Toung JM, Cheung VG. Widespread RNA and DNA sequence differences in the human transcriptome. Science 2011; 333:53-8. [PMID: 21596952 PMCID: PMC3204392 DOI: 10.1126/science.1207018] [Citation(s) in RCA: 315] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The transmission of information from DNA to RNA is a critical process. We compared RNA sequences from human B cells of 27 individuals to the corresponding DNA sequences from the same individuals and uncovered more than 10,000 exonic sites where the RNA sequences do not match that of the DNA. All 12 possible categories of discordances were observed. These differences were nonrandom as many sites were found in multiple individuals and in different cell types, including primary skin cells and brain tissues. Using mass spectrometry, we detected peptides that are translated from the discordant RNA sequences and thus do not correspond exactly to the DNA sequences. These widespread RNA-DNA differences in the human transcriptome provide a yet unexplored aspect of genome variation.
Collapse
Affiliation(s)
- Mingyao Li
- Departments of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Isabel X. Wang
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Yun Li
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Alan Bruzel
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Allison L. Richards
- Cell and Molecular Biology Graduate Program, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan M. Toung
- Genomics and Computational Biology Graduate Program, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Vivian G. Cheung
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Abstract
In order to estimate the effective population size (Ne) of the current human population, two new approaches, which were derived from previous methods, were used in this study. One is based on the deviation from linkage equilibrium (LE) between completely unlinked loci in different chromosomes and another is based on the deviation from the Hardy-Weinberg Equilibrium (HWE). When random mating in a population is assumed, genetic drifts in population naturally induce linkage disequilibrium (LD) between chromosomes and the deviation from HWE. The latter provides information on the Ne of the current population, and the former provides the same when the Ne is constant. If Ne fluctuates, recent Ne changes are reflected in the estimates based on LE, and the comparison between two estimates can provide information regarding recent changes of Ne. Using HapMap Phase III data, the estimates were varied from 622 to 10 437, depending on populations and estimates. The Ne appeared to fluctuate as it provided different estimates for each of the two methods. These Ne estimates were found to agree approximately with the overall increment observed in recent human populations.
Collapse
|
5
|
Welsh M, Mangravite L, Medina MW, Tantisira K, Zhang W, Huang RS, McLeod H, Dolan ME. Pharmacogenomic discovery using cell-based models. Pharmacol Rev 2010; 61:413-29. [PMID: 20038569 DOI: 10.1124/pr.109.001461] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Quantitative variation in response to drugs in human populations is multifactorial; genetic factors probably contribute to a significant extent. Identification of the genetic contribution to drug response typically comes from clinical observations and use of classic genetic tools. These clinical studies are limited by our inability to control environmental factors in vivo and the difficulty of manipulating the in vivo system to evaluate biological changes. Recent progress in dissecting genetic contribution to natural variation in drug response through the use of cell lines has been made and is the focus of this review. A general overview of current cell-based models used in pharmacogenomic discovery and validation is included. Discussion includes the current approach to translate findings generated from these cell-based models into the clinical arena and the use of cell lines for functional studies. Specific emphasis is given to recent advances emerging from cell line panels, including the International HapMap Project and the NCI60 cell panel. These panels provide a key resource of publicly available genotypic, expression, and phenotypic data while allowing researchers to generate their own data related to drug treatment to identify genetic variation of interest. Interindividual and interpopulation differences can be evaluated because human lymphoblastoid cell lines are available from major world populations of European, African, Chinese, and Japanese ancestry. The primary focus is recent progress in the pharmacogenomic discovery area through ex vivo models.
Collapse
Affiliation(s)
- Marleen Welsh
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Smith HF. Which cranial regions reflect molecular distances reliably in humans? Evidence from three-dimensional morphology. Am J Hum Biol 2009; 21:36-47. [DOI: 10.1002/ajhb.20805] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
7
|
Rybicki BA, Iyengar SK, Harris T, Liptak R, Elston RC, Maliarik MJ, Iannuzzi MC. Prospects of admixture linkage disequilibrium mapping in the African-American genome. CYTOMETRY 2002; 47:63-5. [PMID: 11774354 DOI: 10.1002/cyto.10036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Benjamin A Rybicki
- Department of Biostatistics, Henry Ford Health System, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Sefton L, Goodfellow PN. The human genetic map. Curr Opin Biotechnol 1992; 3:607-11. [PMID: 1369116 DOI: 10.1016/0958-1669(92)90004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The introduction of new technology and increased effort from around the world is driving the completion of the human gene map. In parallel with the creation of the map, we are beginning to see the bio-medical benefits that are a direct consequence of learning more about our own genome.
Collapse
Affiliation(s)
- L Sefton
- Laboratory of Human Molecular Genetics, Imperial Cancer Research Fund, Lincoln's Inn Fields, London, UK
| | | |
Collapse
|