1
|
Uversky VN. On the Roles of Protein Intrinsic Disorder in the Origin of Life and Evolution. Life (Basel) 2024; 14:1307. [PMID: 39459607 PMCID: PMC11509291 DOI: 10.3390/life14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Obviously, the discussion of different factors that could have contributed to the origin of life and evolution is clear speculation, since there is no way of checking the validity of most of the related hypotheses in practice, as the corresponding events not only already happened, but took place in a very distant past. However, there are a few undisputable facts that are present at the moment, such as the existence of a wide variety of living forms and the abundant presence of intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) in all living forms. Since it seems that the currently existing living forms originated from a common ancestor, their variety is a result of evolution. Therefore, one could ask a logical question of what role(s) the structureless and highly dynamic but vastly abundant and multifunctional IDPs/IDRs might have in evolution. This study represents an attempt to consider various ideas pertaining to the potential roles of protein intrinsic disorder in the origin of life and evolution.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Zhang S, Wang Z, Qiao J, Yu T, Zhang W. The effect of the loop on the thermodynamic and kinetic of single base pair in pseudoknot. J Chem Phys 2024; 161:085105. [PMID: 39212209 DOI: 10.1063/5.0216593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
RNA pseudoknots are RNA molecules with specialized three-dimensional structures that play important roles in various biological processes. To understand the functions and mechanisms of pseudoknots, it is essential to elucidate their structures and folding pathways. The most fundamental step in RNA folding is the opening and closing of a base pair. The effect of flexible loops on the base pair in pseudoknots remains unclear. In this work, we use molecular dynamics simulations and Markov state model to study the configurations, thermodynamic and kinetic of single base pair in pseudoknots. We find that the presence of the loop leads to a trap state. In addition, the rate-limiting step for the formation of base pair is the disruption of the trap state, rather than the open state to the closed state, which is quite different from the previous studies on non-pseudoknot RNA. For the thermodynamic parameters in pseudoknots, we find that the entropy difference upon opening the base pair between this simulation and the nearest-neighbor model results from the different entropy of different lengths of loop in solution. The thermodynamic parameters of the stack in pseudoknot are close to the nearest-neighbor parameters. The bases on the loop have different distribution patterns in different states, and the slow transition states of the loop are determined by the orientation of the bases.
Collapse
Affiliation(s)
- Shuhao Zhang
- Department of Physics, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhen Wang
- Department of Physics, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Jie Qiao
- Department of Physics, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Ting Yu
- Department of Physics, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Wenbing Zhang
- Department of Physics, Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
3
|
Kulkarni M, Thangappan J, Deb I, Wu S. Comparative analysis of RNA secondary structure accuracy on predicted RNA 3D models. PLoS One 2023; 18:e0290907. [PMID: 37656749 PMCID: PMC10473517 DOI: 10.1371/journal.pone.0290907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023] Open
Abstract
RNA structure is conformationally dynamic, and accurate all-atom tertiary (3D) structure modeling of RNA remains challenging with the prevailing tools. Secondary structure (2D) information is the standard prerequisite for most RNA 3D modeling. Despite several 2D and 3D structure prediction tools proposed in recent years, one of the challenges is to choose the best combination for accurate RNA 3D structure prediction. Here, we benchmarked seven small RNA PDB structures (40 to 90 nucleotides) with different topologies to understand the effects of different 2D structure predictions on the accuracy of 3D modeling. The current study explores the blind challenge of 2D to 3D conversions and highlights the performances of de novo RNA 3D modeling from their predicted 2D structure constraints. Our results show that conformational sampling-based methods such as SimRNA and IsRNA1 depend less on 2D accuracy, whereas motif-based methods account for 2D evidence. Our observations illustrate the disparities in available 3D and 2D prediction methods and may further offer insights into developing topology-specific or family-specific RNA structure prediction pipelines.
Collapse
Affiliation(s)
- Mandar Kulkarni
- R&D Center, PharmCADD Co. Ltd., Dong-gu, Busan, Republic of Korea
| | | | - Indrajit Deb
- R&D Center, PharmCADD Co. Ltd., Dong-gu, Busan, Republic of Korea
| | - Sangwook Wu
- R&D Center, PharmCADD Co. Ltd., Dong-gu, Busan, Republic of Korea
- Department of Physics, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
4
|
Maity H, Nguyen HT, Hori N, Thirumalai D. Odd-even disparity in the population of slipped hairpins in RNA repeat sequences with implications for phase separation. Proc Natl Acad Sci U S A 2023; 120:e2301409120. [PMID: 37276412 PMCID: PMC10268303 DOI: 10.1073/pnas.2301409120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Low-complexity nucleotide repeat sequences, which are implicated in several neurological disorders, undergo liquid-liquid phase separation (LLPS) provided the number of repeat units, n, exceeds a critical value. Here, we establish a link between the folding landscapes of the monomers of trinucleotide repeats and their propensity to self-associate. Simulations using a coarse-grained Self-Organized Polymer (SOP) model for (CAG)n repeats in monovalent salt solutions reproduce experimentally measured melting temperatures, which are available only for small n. By extending the simulations to large n, we show that the free-energy gap, ΔGS, between the ground state (GS) and slipped hairpin (SH) states is a predictor of aggregation propensity. The GS for even n is a perfect hairpin (PH), whereas it is a SH when n is odd. The value of ΔGS (zero for odd n) is larger for even n than for odd n. As a result, the rate of dimer formation is slower in (CAG)30 relative to (CAG)31, thus linking ΔGS to RNA-RNA association. The yield of the dimer decreases dramatically, compared to the wild type, in mutant sequences in which the population of the SH decreases substantially. Association between RNA chains is preceded by a transition to the SH even if the GS is a PH. The finding that the excitation spectrum-which depends on the exact sequence, n, and ionic conditions-is a predictor of self-association should also hold for other RNAs (mRNA for example) that undergo LLPS.
Collapse
Affiliation(s)
- Hiranmay Maity
- Department of Chemistry, The University of Texas at Austin, AustinTX78712
| | - Hung T. Nguyen
- Department of Chemistry, The University of Texas at Austin, AustinTX78712
| | - Naoto Hori
- School of Pharmacy, University of Nottingham, NG7 2rD, United Kingdom
| | - D. Thirumalai
- Department of Chemistry, The University of Texas at Austin, AustinTX78712
- Department of Physics, The University of Texas at Austin, AustinTX78712
| |
Collapse
|
5
|
Saito A, Shofa M, Ode H, Yumiya M, Hirano J, Okamoto T, Yoshimura SH. How Do Flaviviruses Hijack Host Cell Functions by Phase Separation? Viruses 2021; 13:v13081479. [PMID: 34452345 PMCID: PMC8402827 DOI: 10.3390/v13081479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Viral proteins interact with different sets of host cell components throughout the viral life cycle and are known to localize to the intracellular membraneless organelles (MLOs) of the host cell, where formation/dissolution is regulated by phase separation of intrinsically disordered proteins and regions (IDPs/IDRs). Viral proteins are rich in IDRs, implying that viruses utilize IDRs to regulate phase separation of the host cell organelles and augment replication by commandeering the functions of the organelles and/or sneaking into the organelles to evade the host immune response. This review aims to integrate current knowledge of the structural properties and intracellular localizations of viral IDPs to understand viral strategies in the host cell. First, the properties of viral IDRs are reviewed and similarities and differences with those of eukaryotes are described. The higher IDR content in viruses with smaller genomes suggests that IDRs are essential characteristics of viral proteins. Then, the interactions of the IDRs of flaviviruses with the MLOs of the host cell are investigated with emphasis on the viral proteins localized in the nucleoli and stress granules. Finally, the possible roles of viral IDRs in regulation of the phase separation of organelles and future possibilities for antiviral drug development are discussed.
Collapse
Affiliation(s)
- Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan;
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Correspondence: (A.S.); (T.O.); (S.H.Y.)
| | - Maya Shofa
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan;
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya 460-0001, Japan;
| | - Maho Yumiya
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (M.Y.); (J.H.)
| | - Junki Hirano
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (M.Y.); (J.H.)
| | - Toru Okamoto
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (M.Y.); (J.H.)
- Center for Infectious Diseases Education and Research, Osaka University, Osaka 565-0871, Japan
- Correspondence: (A.S.); (T.O.); (S.H.Y.)
| | - Shige H. Yoshimura
- Laboratory of Plasma Membrane and Nuclear Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Correspondence: (A.S.); (T.O.); (S.H.Y.)
| |
Collapse
|
6
|
St-Pierre P, Shaw E, Jacques S, Dalgarno PA, Perez-Gonzalez C, Picard-Jean F, Penedo JC, Lafontaine DA. A structural intermediate pre-organizes the add adenine riboswitch for ligand recognition. Nucleic Acids Res 2021; 49:5891-5904. [PMID: 33963862 PMCID: PMC8191784 DOI: 10.1093/nar/gkab307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/23/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
Riboswitches are RNA sequences that regulate gene expression by undergoing structural changes upon the specific binding of cellular metabolites. Crystal structures of purine-sensing riboswitches have revealed an intricate network of interactions surrounding the ligand in the bound complex. The mechanistic details about how the aptamer folding pathway is involved in the formation of the metabolite binding site have been previously shown to be highly important for the riboswitch regulatory activity. Here, a combination of single-molecule FRET and SHAPE assays have been used to characterize the folding pathway of the adenine riboswitch from Vibrio vulnificus. Experimental evidences suggest a folding process characterized by the presence of a structural intermediate involved in ligand recognition. This intermediate state acts as an open conformation to ensure ligand accessibility to the aptamer and folds into a structure nearly identical to the ligand-bound complex through a series of structural changes. This study demonstrates that the add riboswitch relies on the folding of a structural intermediate that pre-organizes the aptamer global structure and the ligand binding site to allow efficient metabolite sensing and riboswitch genetic regulation.
Collapse
Affiliation(s)
- Patrick St-Pierre
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Euan Shaw
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Samuel Jacques
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Paul A Dalgarno
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Cibran Perez-Gonzalez
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Frédéric Picard-Jean
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - J Carlos Penedo
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK.,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
7
|
Yan J, Cheng J, Kurgan L, Uversky VN. Structural and functional analysis of "non-smelly" proteins. Cell Mol Life Sci 2020; 77:2423-2440. [PMID: 31486849 PMCID: PMC11105052 DOI: 10.1007/s00018-019-03292-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023]
Abstract
Cysteine and aromatic residues are major structure-promoting residues. We assessed the abundance, structural coverage, and functional characteristics of the "non-smelly" proteins, i.e., proteins that do not contain cysteine residues (C-depleted) or cysteine and aromatic residues (CFYWH-depleted), across 817 proteomes from all domains of life. The analysis revealed that although these proteomes contained significant levels of the C-depleted proteins, with prokaryotes being significantly more enriched in such proteins than eukaryotes, the CFYWH-depleted proteins were relatively rare, accounting for about 0.05% of proteomes. Furthermore, CFYWH-depleted proteins were virtually never found in PDB. Depletion in cysteine and in aromatic residues was associated with the substantially increased intrinsic disorder levels across all domains of life. Archaeal and eukaryotic organisms with higher levels of the C-depleted proteins were shown to have higher levels of the intrinsic disorder and lower levels of structural coverage. We also showed that the "non-smelly" proteins typically did not independently fold into monomeric structures, and instead, they fold by interacting with nucleic acids as constituents of the ribosome and nucleosome complexes. They were shown to be involved in translation, transcription, nucleosome assembly, transmembrane transport, and protein folding functions, all of which are known to be associated with the intrinsic disorder. Our data suggested that, in general, structure of monomeric proteins is crucially dependent on the presence of cysteine and aromatic residues.
Collapse
Affiliation(s)
- Jing Yan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Room E4225, Richmond, VA, 23284, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, 33612, USA.
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.
| |
Collapse
|
8
|
Kulkarni P, Uversky VN. Intrinsically Disordered Proteins: The Dark Horse of the Dark Proteome. Proteomics 2018; 18:e1800061. [DOI: 10.1002/pmic.201800061] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/07/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research; City of Hope National Medical Center; Duarte CA 91010 USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa FL 33612 USA
- Laboratory of New methods in Biology; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino Moscow Region 142290 Russia
| |
Collapse
|
9
|
Wang Y, Wang Z, Liu T, Gong S, Zhang W. Effects of flanking regions on HDV cotranscriptional folding kinetics. RNA (NEW YORK, N.Y.) 2018; 24:1229-1240. [PMID: 29954950 PMCID: PMC6097654 DOI: 10.1261/rna.065961.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/25/2018] [Indexed: 05/20/2023]
Abstract
Hepatitis delta virus (HDV) ribozyme performs the self-cleavage activity through folding to a double pseudoknot structure. The folding of functional RNA structures is often coupled with the transcription process. In this work, we developed a new approach for predicting the cotranscriptional folding kinetics of RNA secondary structures with pseudoknots. We theoretically studied the cotranscriptional folding behavior of the 99-nucleotide (nt) HDV sequence, two upstream flanking sequences, and one downstream flanking sequence. During transcription, the 99-nt HDV can effectively avoid the trap intermediates and quickly fold to the cleavage-active state. It is different from its refolding kinetics, which folds into an intermediate trap state. For all the sequences, the ribozyme regions (from 1 to 73) all fold to the same structure during transcription. However, the existence of the 30-nt upstream flanking sequence can inhibit the ribozyme region folding into the active native state through forming an alternative helix Alt1 with the segments 70-90. The longer upstream flanking sequence of 54 nt itself forms a stable hairpin structure, which sequesters the formation of the Alt1 helix and leads to rapid formation of the cleavage-active structure. Although the 55-nt downstream flanking sequence could invade the already folded active structure during transcription by forming a more stable helix with the ribozyme region, the slow transition rate could keep the structure in the cleavage-active structure to perform the activity.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Zhen Wang
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Taigang Liu
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Sha Gong
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Wenbing Zhang
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
10
|
Ganser LR, Lee J, Rangadurai A, Merriman DK, Kelly ML, Kansal AD, Sathyamoorthy B, Al-Hashimi HM. High-performance virtual screening by targeting a high-resolution RNA dynamic ensemble. Nat Struct Mol Biol 2018; 25:425-434. [PMID: 29728655 PMCID: PMC5942591 DOI: 10.1038/s41594-018-0062-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
Abstract
Dynamic ensembles hold great promise in advancing RNA-targeted drug discovery. Here we subjected the transactivation response element (TAR) RNA from human immunodeficiency virus type-1 to experimental high-throughput screening against ~100,000 drug-like small molecules. Results were augmented with 170 known TAR-binding molecules and used to generate sublibraries optimized for evaluating enrichment when virtually screening a dynamic ensemble of TAR determined by combining NMR spectroscopy data and molecular dynamics simulations. Ensemble-based virtual screening scores molecules with an area under the receiver operator characteristic curve of ~0.85-0.94 and with ~40-75% of all hits falling within the top 2% of scored molecules. The enrichment decreased significantly for ensembles generated from the same molecular dynamics simulations without input NMR data and for other control ensembles. The results demonstrate that experimentally determined RNA ensembles can significantly enrich libraries with true hits and that the degree of enrichment is dependent on the accuracy of the ensemble.
Collapse
Affiliation(s)
- Laura R Ganser
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Janghyun Lee
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Atul Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | | | - Megan L Kelly
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Aman D Kansal
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | | | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
- Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
11
|
Vieweger M, Nesbitt DJ. Synergistic SHAPE/Single-Molecule Deconvolution of RNA Conformation under Physiological Conditions. Biophys J 2018; 114:1762-1775. [PMID: 29694857 PMCID: PMC5937115 DOI: 10.1016/j.bpj.2018.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/06/2018] [Accepted: 02/20/2018] [Indexed: 11/24/2022] Open
Abstract
Structural RNA domains are widely involved in the regulation of biological functions, such as gene expression, gene modification, and gene repair. Activity of these dynamic regions depends sensitively on the global fold of the RNA, in particular, on the binding affinity of individual conformations to effector molecules in solution. Consequently, both the 1) structure and 2) conformational dynamics of noncoding RNAs prove to be essential in understanding the coupling that results in biological function. Toward this end, we recently reported observation of three conformational states in the metal-induced folding pathway of the tRNA-like structure domain of Brome Mosaic Virus, via single-molecule fluorescence resonance energy transfer studies. We report herein selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE)-directed structure predictions as a function of metal ion concentrations ([Mn+]) to confirm the three-state folding model, as well as test 2° structure models from the literature. Specifically, SHAPE reactivity data mapped onto literature models agrees well with the secondary structures observed at 0-10 mM [Mg2+], with only minor discrepancies in the E hairpin domain at low [Mg2+]. SHAPE probing and SHAPE-directed structure predictions further confirm the stepwise unfolding pathway previously observed in our single-molecule studies. Of special relevance, this means that reduction in the metal-ion concentration unfolds the 3' pseudoknot interaction before unfolding the long-range stem interaction. This work highlights the synergistic power of combining 1) single-molecule Förster resonance energy transfer and 2) SHAPE-directed structure-probing studies for detailed analysis of multiple RNA conformational states. In particular, single-molecule guided deconvolution of the SHAPE reactivities permits 2° structure predictions of isolated RNA conformations, thereby substantially improving on traditional limitations associated with current structure prediction algorithms.
Collapse
Affiliation(s)
- Mario Vieweger
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - David J Nesbitt
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado; Department of Physics, University of Colorado, Boulder, Colorado.
| |
Collapse
|
12
|
Lerner E, Cordes T, Ingargiol A, Alhadid Y, Chung S, Michalet X, Weiss S. Toward dynamic structural biology: Two decades of single-molecule Förster resonance energy transfer. Science 2018; 359:eaan1133. [PMID: 29348210 PMCID: PMC6200918 DOI: 10.1126/science.aan1133] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Classical structural biology can only provide static snapshots of biomacromolecules. Single-molecule Förster resonance energy transfer (smFRET) paved the way for studying dynamics in macromolecular structures under biologically relevant conditions. Since its first implementation in 1996, smFRET experiments have confirmed previously hypothesized mechanisms and provided new insights into many fundamental biological processes, such as DNA maintenance and repair, transcription, translation, and membrane transport. We review 22 years of contributions of smFRET to our understanding of basic mechanisms in biochemistry, molecular biology, and structural biology. Additionally, building on current state-of-the-art implementations of smFRET, we highlight possible future directions for smFRET in applications such as biosensing, high-throughput screening, and molecular diagnostics.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Antonino Ingargiol
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Yazan Alhadid
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - SangYoon Chung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Xavier Michalet
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Incarnato D, Morandi E, Anselmi F, Simon LM, Basile G, Oliviero S. In vivo probing of nascent RNA structures reveals principles of cotranscriptional folding. Nucleic Acids Res 2017; 45:9716-9725. [PMID: 28934475 PMCID: PMC5766169 DOI: 10.1093/nar/gkx617] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 01/07/2023] Open
Abstract
Defining the in vivo folding pathway of cellular RNAs is essential to understand how they reach their final native conformation. We here introduce a novel method, named Structural Probing of Elongating Transcripts (SPET-seq), that permits single-base resolution analysis of transcription intermediates' secondary structures on a transcriptome-wide scale, enabling base-resolution analysis of the RNA folding events. Our results suggest that cotranscriptional RNA folding in vivo is a mixture of cooperative folding events, in which local RNA secondary structure elements are formed as they get transcribed, and non-cooperative events, in which 5'-halves of long-range helices get sequestered into transient non-native interactions until their 3' counterparts have been transcribed. Together our work provides the first transcriptome-scale overview of RNA cotranscriptional folding in a living organism.
Collapse
Affiliation(s)
- Danny Incarnato
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126 Torino, Italy
| | - Edoardo Morandi
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126 Torino, Italy
| | - Francesca Anselmi
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126 Torino, Italy
| | - Lisa M. Simon
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126 Torino, Italy
| | - Giulia Basile
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126 Torino, Italy
| | - Salvatore Oliviero
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
14
|
Liu L, Hyeon C. Contact Statistics Highlight Distinct Organizing Principles of Proteins and RNA. Biophys J 2017; 110:2320-2327. [PMID: 27276250 DOI: 10.1016/j.bpj.2016.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/15/2016] [Accepted: 04/01/2016] [Indexed: 11/18/2022] Open
Abstract
Although both RNA and proteins have densely packed native structures, chain organizations of these two biopolymers are fundamentally different. Motivated by the recent discoveries in chromatin folding that interphase chromosomes have territorial organization with signatures pointing to metastability, we analyzed the biomolecular structures deposited in the Protein Data Bank and found that the intrachain contact probabilities, P(s) as a function of the arc length s, decay in power-law ∼s(-γ) over the intermediate range of s, 10 ≲ s ≲ 110. We found that the contact probability scaling exponent is γ ≈ 1.11 for large RNA (N > 110), γ ≈ 1.41 for small-sized RNA (N < 110), and γ ≈ 1.65 for proteins. Given that Gaussian statistics is expected for a fully equilibrated chain in polymer melts, the deviation of γ-value from γ = 1.5 for the subchains of large RNA in the native state suggests that the chain configuration of RNA is not fully equilibrated. It is visually clear that folded structures of large-sized RNA (N ≳ 110) adopt crumpled structures, partitioned into modular multidomains assembled by proximal sequences along the chain, whereas the polypeptide chain of folded proteins looks better mixed with the rest of the structure. Our finding of γ ≈ 1 for large RNA might be an ineluctable consequence of the hierarchical ordering of the secondary to tertiary elements in the folding process.
Collapse
Affiliation(s)
- Lei Liu
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea
| | - Changbong Hyeon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Peng Z, Uversky VN, Kurgan L. Genes encoding intrinsic disorder in Eukaryota have high GC content. INTRINSICALLY DISORDERED PROTEINS 2016; 4:e1262225. [PMID: 28232902 DOI: 10.1080/21690707.2016.1262225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/03/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
Abstract
We analyze a correlation between the GC content in genes of 12 eukaryotic species and the level of intrinsic disorder in their corresponding proteins. Comprehensive computational analysis has revealed that the disordered regions in eukaryotes are encoded by the GC-enriched gene regions and that this enrichment is correlated with the amount of disorder and is present across proteins and species characterized by varying amounts of disorder. The GC enrichment is a result of higher rate of amino acid coded by GC-rich codons in the disordered regions. Individual amino acids have the same GC-content profile between different species. Eukaryotic proteins with the disordered regions encoded by the GC-enriched gene segments carry out important biological functions including interactions with RNAs, DNAs, nucleotides, binding of calcium and metal ions, are involved in transcription, transport, cell division and certain signaling pathways, and are localized primarily in nucleus, cytosol and cytoplasm. We also investigate a possible relationship between GC content, intrinsic disorder and protein evolution. Analysis of a devised "age" of amino acids, their disorder-promoting capacity and the GC-enrichment of their codons suggests that the early amino acids are mostly disorder-promoting and their codons are GC-rich while most of late amino acids are mostly order-promoting.
Collapse
Affiliation(s)
- Zhenling Peng
- Center for Applied Mathematics, Tianjin University , Tianjin, China
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University , Richmond, VA, USA
| |
Collapse
|
16
|
Xu X, Yu T, Chen SJ. Understanding the kinetic mechanism of RNA single base pair formation. Proc Natl Acad Sci U S A 2016; 113:116-21. [PMID: 26699466 PMCID: PMC4711849 DOI: 10.1073/pnas.1517511113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RNA functions are intrinsically tied to folding kinetics. The most elementary step in RNA folding is the closing and opening of a base pair. Understanding this elementary rate process is the basis for RNA folding kinetics studies. Previous studies mostly focused on the unfolding of base pairs. Here, based on a hybrid approach, we investigate the folding process at level of single base pairing/stacking. The study, which integrates molecular dynamics simulation, kinetic Monte Carlo simulation, and master equation methods, uncovers two alternative dominant pathways: Starting from the unfolded state, the nucleotide backbone first folds to the native conformation, followed by subsequent adjustment of the base conformation. During the base conformational rearrangement, the backbone either retains the native conformation or switches to nonnative conformations in order to lower the kinetic barrier for base rearrangement. The method enables quantification of kinetic partitioning among the different pathways. Moreover, the simulation reveals several intriguing ion binding/dissociation signatures for the conformational changes. Our approach may be useful for developing a base pair opening/closing rate model.
Collapse
Affiliation(s)
- Xiaojun Xu
- Department of Physics, University of Missouri, Columbia, MO 65211; Department of Biochemistry, University of Missouri, Columbia, MO 65211; Informatics Institute, University of Missouri, Columbia, MO 65211
| | - Tao Yu
- Department of Physics, University of Missouri, Columbia, MO 65211; Department of Biochemistry, University of Missouri, Columbia, MO 65211; Informatics Institute, University of Missouri, Columbia, MO 65211; Department of Physics, Jianghan University, Wuhan, Hubei 430056, China
| | - Shi-Jie Chen
- Department of Physics, University of Missouri, Columbia, MO 65211; Department of Biochemistry, University of Missouri, Columbia, MO 65211; Informatics Institute, University of Missouri, Columbia, MO 65211;
| |
Collapse
|
17
|
Sengupta RN, Van Schie SNS, Giambaşu G, Dai Q, Yesselman JD, York D, Piccirilli JA, Herschlag D. An active site rearrangement within the Tetrahymena group I ribozyme releases nonproductive interactions and allows formation of catalytic interactions. RNA (NEW YORK, N.Y.) 2016; 22:32-48. [PMID: 26567314 PMCID: PMC4691833 DOI: 10.1261/rna.053710.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Biological catalysis hinges on the precise structural integrity of an active site that binds and transforms its substrates and meeting this requirement presents a unique challenge for RNA enzymes. Functional RNAs, including ribozymes, fold into their active conformations within rugged energy landscapes that often contain misfolded conformers. Here we uncover and characterize one such "off-pathway" species within an active site after overall folding of the ribozyme is complete. The Tetrahymena group I ribozyme (E) catalyzes cleavage of an oligonucleotide substrate (S) by an exogenous guanosine (G) cofactor. We tested whether specific catalytic interactions with G are present in the preceding E•S•G and E•G ground-state complexes. We monitored interactions with G via the effects of 2'- and 3'-deoxy (-H) and -amino (-NH(2)) substitutions on G binding. These and prior results reveal that G is bound in an inactive configuration within E•G, with the nucleophilic 3'-OH making a nonproductive interaction with an active site metal ion termed MA and with the adjacent 2'-OH making no interaction. Upon S binding, a rearrangement occurs that allows both -OH groups to contact a different active site metal ion, termed M(C), to make what are likely to be their catalytic interactions. The reactive phosphoryl group on S promotes this change, presumably by repositioning the metal ions with respect to G. This conformational transition demonstrates local rearrangements within an otherwise folded RNA, underscoring RNA's difficulty in specifying a unique conformation and highlighting Nature's potential to use local transitions of RNA in complex function.
Collapse
Affiliation(s)
- Raghuvir N Sengupta
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Sabine N S Van Schie
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
| | - George Giambaşu
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Joseph D Yesselman
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Darrin York
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Joseph A Piccirilli
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA Department of Chemical Engineering, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California 94305, USA Department of Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California 94305, USA Department of Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California 94305, USA
| |
Collapse
|
18
|
Zhao C, Rajashankar KR, Marcia M, Pyle AM. Crystal structure of group II intron domain 1 reveals a template for RNA assembly. Nat Chem Biol 2015; 11:967-72. [PMID: 26502156 PMCID: PMC4651773 DOI: 10.1038/nchembio.1949] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022]
Abstract
Although the importance of large noncoding RNAs is increasingly appreciated, our understanding of their structures and architectural dynamics remains limited. In particular, we know little about RNA folding intermediates and how they facilitate the productive assembly of RNA tertiary structures. Here, we report the crystal structure of an obligate intermediate that is required during the earliest stages of group II intron folding. Composed of domain 1 from the Oceanobacillus iheyensis group II intron (266 nucleotides), this intermediate retains native-like features but adopts a compact conformation in which the active site cleft is closed. Transition between this closed and the open (native) conformation is achieved through discrete rotations of hinge motifs in two regions of the molecule. The open state is then stabilized by sequential docking of downstream intron domains, suggesting a 'first come, first folded' strategy that may represent a generalizable pathway for assembly of large RNA and ribonucleoprotein structures.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Kanagalaghatta R. Rajashankar
- NE-CAT and Dept. of Chemistry and Chemical Biology, Cornell University Building 436E, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439
| | - Marco Marcia
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
19
|
Incarnato D, Neri F, Anselmi F, Oliviero S. Genome-wide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome. Genome Biol 2015; 15:491. [PMID: 25323333 PMCID: PMC4220049 DOI: 10.1186/s13059-014-0491-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Indexed: 12/21/2022] Open
Abstract
Background The understanding of RNA structure is a key feature toward the comprehension of RNA functions and mechanisms of action. In particular, non-coding RNAs are thought to exert their functions by specific secondary structures, but an efficient annotation on a large scale of these structures is still missing. Results By using a novel high-throughput method, named chemical inference of RNA structures, CIRS-seq, that uses dimethyl sulfate, and N-cyclohexyl- N'-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate to modify RNA residues in single-stranded conformation within native deproteinized RNA secondary structures, we investigate the structural features of mouse embryonic stem cell transcripts. Our analysis reveals an unexpected higher structuring of the 5′ and 3′ untranslated regions compared to the coding regions, a reduced structuring at the Kozak sequence and stop codon, and a three-nucleotide periodicity across the coding region of messenger RNAs. We also observe that ncRNAs exhibit a higher degree of structuring with respect to protein coding transcripts. Moreover, we find that the Lin28a binding protein binds selectively to RNA motifs with a strong preference toward a single stranded conformation. Conclusions This work defines for the first time the complete RNA structurome of mouse embryonic stem cells, revealing an extremely distinct RNA structural landscape. These results demonstrate that CIRS-seq constitutes an important tool for the identification of native deproteinized RNA structures. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0491-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Danny Incarnato
- Human Genetics Foundation (HuGeF), via Nizza 52, Torino 10126, Italy
| | | | | | | |
Collapse
|
20
|
Dutta D, Wedekind JE. Gene Regulation Gets in Tune: How Riboswitch Tertiary-Structure Networks Adapt to Meet the Needs of Their Transcription Units. J Mol Biol 2015; 427:3469-3472. [PMID: 26255959 DOI: 10.1016/j.jmb.2015.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Debapratim Dutta
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester NY 14642, USA
| | - Joseph E Wedekind
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester NY 14642, USA.
| |
Collapse
|
21
|
RNA folding: structure prediction, folding kinetics and ion electrostatics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 827:143-83. [PMID: 25387965 DOI: 10.1007/978-94-017-9245-5_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Beyond the "traditional" functions such as gene storage, transport and protein synthesis, recent discoveries reveal that RNAs have important "new" biological functions including the RNA silence and gene regulation of riboswitch. Such functions of noncoding RNAs are strongly coupled to the RNA structures and proper structure change, which naturally leads to the RNA folding problem including structure prediction and folding kinetics. Due to the polyanionic nature of RNAs, RNA folding structure, stability and kinetics are strongly coupled to the ion condition of solution. The main focus of this chapter is to review the recent progress in the three major aspects in RNA folding problem: structure prediction, folding kinetics and ion electrostatics. This chapter will introduce both the recent experimental and theoretical progress, while emphasize the theoretical modelling on the three aspects in RNA folding.
Collapse
|
22
|
Abstract
![]()
All biological processes take place
in highly crowded cellular
environments. However, the effect that molecular crowding agents have
on the folding and catalytic properties of RNA molecules remains largely
unknown. Here, we have combined single-molecule fluorescence resonance
energy transfer (smFRET) and bulk cleavage assays to determine the
effect of a molecular crowding agents on the folding and catalysis
of a model RNA enzyme, the hairpin ribozyme. Our single-molecule data
reveal that PEG favors the formation of the docked (active) structure
by increasing the docking rate constant with increasing PEG concentrations.
Furthermore, Mg2+ ion-induced folding in the presence of
PEG occurs at concentrations ∼7-fold lower than in the absence
of PEG, near the physiological range (∼1 mM). Lastly, bulk
cleavage assays in the presence of the crowding agent show that the
ribozyme’s activity increases while the heterogeneity decreases.
Our data is consistent with the idea that molecular crowding plays
an important role in the stabilization of ribozyme active conformations in vivo.
Collapse
Affiliation(s)
- Bishnu P Paudel
- Department of Medicine, Section of Virology, and Single Molecule Imaging Group, MRC-Clinical Sciences Centre, Imperial College London , Du Cane Road, London W12 0NN, U.K
| | | |
Collapse
|
23
|
Hyeon C, Denesyuk NA, Thirumalai D. Development and Applications of Coarse-Grained Models for RNA. Isr J Chem 2014. [DOI: 10.1002/ijch.201400029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Sachsenmaier N, Handl S, Debeljak F, Waldsich C. Mapping RNA structure in vitro using nucleobase-specific probes. Methods Mol Biol 2014; 1086:79-94. [PMID: 24136599 DOI: 10.1007/978-1-62703-667-2_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
RNAs have to adopt specific three-dimensional structures to fulfill their biological functions. Therefore exploring RNA structure is of interest to understand RNA-dependent processes. Chemical probing in vitro is a very powerful tool to investigate RNA molecules under a variety of conditions. Among the most frequently used chemical reagents are the nucleobase-specific probes dimethyl sulfate (DMS), 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluenesulfonate (CMCT) and β-ethoxy-α-ketobutyraldehyde (kethoxal). These chemical reagents modify nucleotides which are not involved in hydrogen bonding or protected by a ligand, such as proteins or metabolites. Upon performing modification reactions with all three chemicals the accessibility of all four nucleobases can be determined. With this fast and inexpensive method local changes in RNA secondary and tertiary structure, as well as the formation of contacts between RNA and its ligands can be detected independent of the RNA's length.
Collapse
Affiliation(s)
- Nora Sachsenmaier
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
25
|
Paudel B, Rueda D. RNA folding dynamics using laser-assisted single-molecule refolding. Methods Mol Biol 2014; 1086:289-307. [PMID: 24136611 DOI: 10.1007/978-1-62703-667-2_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
RNA folding pathways can be complex and even include kinetic traps or misfolded intermediates that can be slow to resolve. Characterizing these pathways is critical to understanding how RNA molecules acquire their biological function. We have previously developed a novel approach to help characterize such misfolded intermediates. Laser-assisted single-molecule refolding (LASR) is a powerful technique that combines temperature-jump (T-jump) kinetics with single-molecule detection. In a typical LASR experiment, the temperature is rapidly increased and conformational dynamics are characterized, in real-time, at the single-molecule level using single-molecule fluorescence resonance energy transfer (smFRET). Here, we provide detailed protocols for performing LASR experiments including sample preparation, temperature calibration, and data analysis.
Collapse
Affiliation(s)
- Bishnu Paudel
- Department of Medicine, Section of Virology, Imperial College, London, UK
| | | |
Collapse
|
26
|
Hyeon C, Thirumalai D. Generalized iterative annealing model for the action of RNA chaperones. J Chem Phys 2014; 139:121924. [PMID: 24089736 DOI: 10.1063/1.4818594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As a consequence of the rugged landscape of RNA molecules their folding is described by the kinetic partitioning mechanism according to which only a small fraction (φF) reaches the folded state while the remaining fraction of molecules is kinetically trapped in misfolded intermediates. The transition from the misfolded states to the native state can far exceed biologically relevant time. Thus, RNA folding in vivo is often aided by protein cofactors, called RNA chaperones, that can rescue RNAs from a multitude of misfolded structures. We consider two models, based on chemical kinetics and chemical master equation, for describing assisted folding. In the passive model, applicable for class I substrates, transient interactions of misfolded structures with RNA chaperones alone are sufficient to destabilize the misfolded structures, thus entropically lowering the barrier to folding. For this mechanism to be efficient the intermediate ribonucleoprotein complex between collapsed RNA and protein cofactor should have optimal stability. We also introduce an active model (suitable for stringent substrates with small φF), which accounts for the recent experimental findings on the action of CYT-19 on the group I intron ribozyme, showing that RNA chaperones do not discriminate between the misfolded and the native states. In the active model, the RNA chaperone system utilizes chemical energy of adenosine triphosphate hydrolysis to repeatedly bind and release misfolded and folded RNAs, resulting in substantial increase of yield of the native state. The theory outlined here shows, in accord with experiments, that in the steady state the native state does not form with unit probability.
Collapse
Affiliation(s)
- Changbong Hyeon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-722, South Korea
| | | |
Collapse
|
27
|
Abstract
RNA dynamics play a fundamental role in many cellular functions. However, there is no general framework to describe these complex processes, which typically consist of many structural maneuvers that occur over timescales ranging from picoseconds to seconds. Here, we classify RNA dynamics into distinct modes representing transitions between basins on a hierarchical free-energy landscape. These transitions include large-scale secondary-structural transitions at >0.1-s timescales, base-pair/tertiary dynamics at microsecond-to-millisecond timescales, stacking dynamics at timescales ranging from nanoseconds to microseconds, and other "jittering" motions at timescales ranging from picoseconds to nanoseconds. We review various modes within these three different tiers, the different mechanisms by which they are used to regulate function, and how they can be coupled together to achieve greater functional complexity.
Collapse
|
28
|
Unraveling the Thermodynamics and Kinetics of RNA Assembly. Methods Enzymol 2014. [DOI: 10.1016/b978-0-12-801122-5.00017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
Wildauer M, Zemora G, Liebeg A, Heisig V, Waldsich C. Chemical probing of RNA in living cells. Methods Mol Biol 2014; 1086:159-76. [PMID: 24136603 DOI: 10.1007/978-1-62703-667-2_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
RNAs need to adopt a specific architecture to exert their task in cells. While significant progress has been made in describing RNA folding landscapes in vitro, understanding intracellular RNA structure formation is still in its infancy. This is in part due to the complex nature of the cellular environment but also to the limited availability of suitable methodologies. To assess the intracellular structure of large RNAs, we recently applied a chemical probing technique and a metal-induced cleavage assay in vivo. These methods are based on the fact that small molecules, like dimethyl sulfate (DMS), or metal ions, such as Pb(2+), penetrate and spread throughout the cell very fast. Hence, these chemicals are able to modify accessible RNA residues or to induce cleavage of the RNA strand in the vicinity of a metal ion in living cells. Mapping of these incidents allows inferring information on the intracellular conformation, metal ion binding sites or ligand-induced structural changes of the respective RNA molecule. Importantly, in vivo chemical probing can be easily adapted to study RNAs in different cell types.
Collapse
Affiliation(s)
- Michael Wildauer
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
30
|
Lawrence C, Vallée-Bélisle A, Pfeil SH, de Mornay D, Lipman EA, Plaxco KW. A comparison of the folding kinetics of a small, artificially selected DNA aptamer with those of equivalently simple naturally occurring proteins. Protein Sci 2013; 23:56-66. [PMID: 24285472 DOI: 10.1002/pro.2390] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/17/2013] [Accepted: 10/23/2013] [Indexed: 01/13/2023]
Abstract
The folding of larger proteins generally differs from the folding of similarly large nucleic acids in the number and stability of the intermediates involved. To date, however, no similar comparison has been made between the folding of smaller proteins, which typically fold without well-populated intermediates, and the folding of small, simple nucleic acids. In response, in this study, we compare the folding of a 38-base DNA aptamer with the folding of a set of equivalently simple proteins. We find that, as is true for the large majority of simple, single domain proteins, the aptamer folds through a concerted, millisecond-scale process lacking well-populated intermediates. Perhaps surprisingly, the observed folding rate falls within error of a previously described relationship between the folding kinetics of single-domain proteins and their native state topology. Likewise, similarly to single-domain proteins, the aptamer exhibits a relatively low urea-derived Tanford β, suggesting that its folding transition state is modestly ordered. In contrast to this, however, and in contrast to the behavior of proteins, ϕ-value analysis suggests that the aptamer's folding transition state is highly ordered, a discrepancy that presumably reflects the markedly more important role that secondary structure formation plays in the folding of nucleic acids. This difference notwithstanding, the similarities that we observe between the two-state folding of single-domain proteins and the two-state folding of this similarly simple DNA presumably reflect properties that are universal in the folding of all sufficiently cooperative heteropolymers irrespective of their chemical details.
Collapse
Affiliation(s)
- Camille Lawrence
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California, 93106
| | | | | | | | | | | |
Collapse
|
31
|
Lai D, Proctor JR, Meyer IM. On the importance of cotranscriptional RNA structure formation. RNA (NEW YORK, N.Y.) 2013; 19:1461-1473. [PMID: 24131802 PMCID: PMC3851714 DOI: 10.1261/rna.037390.112] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The expression of genes, both coding and noncoding, can be significantly influenced by RNA structural features of their corresponding transcripts. There is by now mounting experimental and some theoretical evidence that structure formation in vivo starts during transcription and that this cotranscriptional folding determines the functional RNA structural features that are being formed. Several decades of research in bioinformatics have resulted in a wide range of computational methods for predicting RNA secondary structures. Almost all state-of-the-art methods in terms of prediction accuracy, however, completely ignore the process of structure formation and focus exclusively on the final RNA structure. This review hopes to bridge this gap. We summarize the existing evidence for cotranscriptional folding and then review the different, currently used strategies for RNA secondary-structure prediction. Finally, we propose a range of ideas on how state-of-the-art methods could be potentially improved by explicitly capturing the process of cotranscriptional structure formation.
Collapse
|
32
|
Uversky VN. A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci 2013; 22:693-724. [PMID: 23553817 PMCID: PMC3690711 DOI: 10.1002/pro.2261] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 03/23/2013] [Accepted: 03/25/2013] [Indexed: 12/28/2022]
Abstract
The abundant existence of proteins and regions that possess specific functions without being uniquely folded into unique 3D structures has become accepted by a significant number of protein scientists. Sequences of these intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) are characterized by a number of specific features, such as low overall hydrophobicity and high net charge which makes these proteins predictable. IDPs/IDPRs possess large hydrodynamic volumes, low contents of ordered secondary structure, and are characterized by high structural heterogeneity. They are very flexible, but some may undergo disorder to order transitions in the presence of natural ligands. The degree of these structural rearrangements varies over a very wide range. IDPs/IDPRs are tightly controlled under the normal conditions and have numerous specific functions that complement functions of ordered proteins and domains. When lacking proper control, they have multiple roles in pathogenesis of various human diseases. Gaining structural and functional information about these proteins is a challenge, since they do not typically "freeze" while their "pictures are taken." However, despite or perhaps because of the experimental challenges, these fuzzy objects with fuzzy structures and fuzzy functions are among the most interesting targets for modern protein research. This review briefly summarizes some of the recent advances in this exciting field and considers some of the basic lessons learned from the analysis of physics, chemistry, and biology of IDPs.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA.
| |
Collapse
|
33
|
Chen C, Mitra S, Jonikas M, Martin J, Brenowitz M, Laederach A. Understanding the role of three-dimensional topology in determining the folding intermediates of group I introns. Biophys J 2013; 104:1326-37. [PMID: 23528092 DOI: 10.1016/j.bpj.2013.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 01/28/2013] [Accepted: 02/07/2013] [Indexed: 11/30/2022] Open
Abstract
Many RNA molecules exert their biological function only after folding to unique three-dimensional structures. For long, noncoding RNA molecules, the complexity of finding the native topology can be a major impediment to correct folding to the biologically active structure. An RNA molecule may fold to a near-native structure but not be able to continue to the correct structure due to a topological barrier such as crossed strands or incorrectly stacked helices. Achieving the native conformation thus requires unfolding and refolding, resulting in a long-lived intermediate. We investigate the role of topology in the folding of two phylogenetically related catalytic group I introns, the Twort and Azoarcus group I ribozymes. The kinetic models describing the Mg(2+)-mediated folding of these ribozymes were previously determined by time-resolved hydroxyl (∙OH) radical footprinting. Two intermediates formed by parallel intermediates were resolved for each RNA. These data and analytical ultracentrifugation compaction analyses are used herein to constrain coarse-grained models of these folding intermediates as we investigate the role of nonnative topology in dictating the lifetime of the intermediates. Starting from an ensemble of unfolded conformations, we folded the RNA molecules by progressively adding native constraints to subdomains of the RNA defined by the ∙OH time-progress curves to simulate folding through the different kinetic pathways. We find that nonnative topologies (arrangement of helices) occur frequently in the folding simulations despite using only native constraints to drive the reaction, and that the initial conformation, rather than the folding pathway, is the major determinant of whether the RNA adopts nonnative topology during folding. From these analyses we conclude that biases in the initial conformation likely determine the relative flux through parallel RNA folding pathways.
Collapse
Affiliation(s)
- Chunxia Chen
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
34
|
König SLB, Liyanage PS, Sigel RKO, Rueda D. Helicase-mediated changes in RNA structure at the single-molecule level. RNA Biol 2013; 10:133-48. [PMID: 23353571 DOI: 10.4161/rna.23507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA helicases are a diverse group of RNA-dependent ATPases known to play a large number of biological roles inside the cell, such as RNA unwinding, remodeling, export and degradation. Understanding how helicases mediate changes in RNA structure is therefore of fundamental interest. The advent of single-molecule spectroscopic techniques has unveiled with unprecedented detail the interplay of RNA helicases with their substrates. In this review, we describe the characterization of helicase-RNA interactions by single-molecule approaches. State-of-the-art techniques are presented, followed by a discussion of recent advancements in this exciting field.
Collapse
|
35
|
Abstract
RNA folding is an essential aspect underlying RNA-mediated cellular processes. Many RNAs, including large, multi-domain ribozymes, are capable of folding to the native, functional state without assistance of a protein cofactor in vitro. In the cell, trans-acting factors, such as proteins, are however known to modulate the structure and thus the fate of an RNA. DEAD-box proteins, including Mss116p, were recently found to assist folding of group I and group II introns in vitro and in vivo. The underlying mechanism(s) have been studied extensively to explore the contribution of ATP hydrolysis and duplex unwinding in helicase-stimulated intron splicing. Here we summarize the ongoing efforts to understand the novel role of DEAD-box proteins in RNA folding.
Collapse
Affiliation(s)
- Nora Sachsenmaier
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | |
Collapse
|
36
|
Richardson LA, Reed BJ, Charette JM, Freed EF, Fredrickson EK, Locke MN, Baserga SJ, Gardner RG. A conserved deubiquitinating enzyme controls cell growth by regulating RNA polymerase I stability. Cell Rep 2012; 2:372-85. [PMID: 22902402 DOI: 10.1016/j.celrep.2012.07.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/11/2012] [Accepted: 07/25/2012] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic ribosome biogenesis requires hundreds of trans-acting factors and dozens of RNAs. Although most factors required for ribosome biogenesis have been identified, little is known about their regulation. Here, we reveal that the yeast deubiquitinating enzyme Ubp10 is localized to the nucleolus and that ubp10Δ cells have reduced pre-rRNAs, mature rRNAs, and translating ribosomes. Through proteomic analyses, we found that Ubp10 interacts with proteins that function in rRNA production and ribosome biogenesis. In particular, we discovered that the largest subunit of RNA polymerase I (RNAPI) is stabilized via Ubp10-mediated deubiquitination and that this is required in order to achieve optimal levels of ribosomes and cell growth. USP36, the human ortholog of Ubp10, complements the ubp10Δ allele for RNAPI stability, pre-rRNA processing, and cell growth in yeast, suggesting that deubiquitination of RNAPI may be conserved in eukaryotes. Our work implicates Ubp10/USP36 as a key regulator of rRNA production through control of RNAPI stability.
Collapse
|
37
|
Zhao P, Zhang W, Chen SJ. Cotranscriptional folding kinetics of ribonucleic acid secondary structures. J Chem Phys 2012; 135:245101. [PMID: 22225186 DOI: 10.1063/1.3671644] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We develop a systematic helix-based computational method to predict RNA folding kinetics during transcription. In our method, the transcription is modeled as stepwise process, where each step is the transcription of a nucleotide. For each step, the kinetics algorithm predicts the population kinetics, transition pathways, folding intermediates, and the transcriptional folding products. The folding pathways, rate constants, and the conformational populations for cotranscription folding show contrastingly different features than the refolding kinetics for a fully transcribed chain. The competition between the transcription speed and rate constants for the transitions between the different nascent structures determines the RNA folding pathway and the end product of folding. For example, fast transcription favors the formation of branch-like structures than rod-like structures and chain elongation in the folding process may reduce the probability of the formation of misfolded structures. Furthermore, good theory-experiment agreements suggest that our method may provide a reliable tool for quantitative prediction for cotranscriptional RNA folding, including the kinetics for the population distribution for the whole conformational ensemble.
Collapse
Affiliation(s)
- Peinan Zhao
- Department of Physics, Wuhan University, Wuhan, People's Republic of China
| | | | | |
Collapse
|
38
|
Chen B, Zuo X, Wang YX, Dayie TK. Multiple conformations of SAM-II riboswitch detected with SAXS and NMR spectroscopy. Nucleic Acids Res 2012; 40:3117-30. [PMID: 22139931 PMCID: PMC3326309 DOI: 10.1093/nar/gkr1154] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 11/30/2022] Open
Abstract
Riboswitches are a newly discovered large family of structured functional RNA elements that specifically bind small molecule targets out of a myriad of cellular metabolites to modulate gene expression. Structural studies of ligand-bound riboswitches by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy have provided insights into detailed RNA-ligand recognition and interactions. However, the structures of ligand-free riboswitches remain poorly characterized. In this study, we have used a variety of biochemical, biophysical and computational techniques including small-angle X-ray scattering and NMR spectroscopy to characterize the ligand-free and ligand-bound forms of SAM-II riboswitch. Our data demonstrate that the RNA adopts multiple conformations along its folding pathway and suggest that the RNA undergoes marked conformational changes upon Mg(2+) compaction and S-adenosylmethionine (SAM) metabolite binding. Further studies indicated that Mg(2+) ion is not essential for the ligand binding but can stabilize the complex by facilitating loop/stem interactions. In the presence of millimolar concentration of Mg(2+) ion, the RNA samples a more compact conformation. This conformation is near to, but distinct from, the native fold and competent to bind the metabolite. We conclude that the formation of various secondary and tertiary structural elements, including a pseudoknot, occur to sequester the putative Shine-Dalgarno sequence of the RNA only after metabolite binding.
Collapse
Affiliation(s)
- Bin Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Xiaobing Zuo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
39
|
Abstract
Changes to the conformation of coding and non-coding RNAs form the basis of elements of genetic regulation and provide an important source of complexity, which drives many of the fundamental processes of life. Although the structure of RNA is highly flexible, the underlying dynamics of RNA are robust and are limited to transitions between the few conformations that preserve favourable base-pairing and stacking interactions. The mechanisms by which cellular processes harness the intrinsic dynamic behaviour of RNA and use it within functionally productive pathways are complex. The versatile functions and ease by which it is integrated into a wide variety of genetic circuits and biochemical pathways suggests there is a general and fundamental role for RNA dynamics in cellular processes.
Collapse
|
40
|
Disorder to Order, Nonlife to Life: In the Beginning There Was a Mistake. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2012. [DOI: 10.1007/978-94-007-2941-4_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Mitra S, Laederach A, Golden BL, Altman RB, Brenowitz M. RNA molecules with conserved catalytic cores but variable peripheries fold along unique energetically optimized pathways. RNA (NEW YORK, N.Y.) 2011; 17:1589-1603. [PMID: 21712400 PMCID: PMC3153981 DOI: 10.1261/rna.2694811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/19/2011] [Indexed: 05/31/2023]
Abstract
Functional and kinetic constraints must be efficiently balanced during the folding process of all biopolymers. To understand how homologous RNA molecules with different global architectures fold into a common core structure we determined, under identical conditions, the folding mechanisms of three phylogenetically divergent group I intron ribozymes. These ribozymes share a conserved functional core defined by topologically equivalent tertiary motifs but differ in their primary sequence, size, and structural complexity. Time-resolved hydroxyl radical probing of the backbone solvent accessible surface and catalytic activity measurements integrated with structural-kinetic modeling reveal that each ribozyme adopts a unique strategy to attain the conserved functional fold. The folding rates are not dictated by the size or the overall structural complexity, but rather by the strength of the constituent tertiary motifs which, in turn, govern the structure, stability, and lifetime of the folding intermediates. A fundamental general principle of RNA folding emerges from this study: The dominant folding flux always proceeds through an optimally structured kinetic intermediate that has sufficient stability to act as a nucleating scaffold while retaining enough conformational freedom to avoid kinetic trapping. Our results also suggest a potential role of naturally selected peripheral A-minor interactions in balancing RNA structural stability with folding efficiency.
Collapse
Affiliation(s)
- Somdeb Mitra
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Barbara L. Golden
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Russ B. Altman
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
42
|
Kazantsev AV, Rambo RP, Karimpour S, Santalucia J, Tainer JA, Pace NR. Solution structure of RNase P RNA. RNA (NEW YORK, N.Y.) 2011; 17:1159-71. [PMID: 21531920 PMCID: PMC3096047 DOI: 10.1261/rna.2563511] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/30/2011] [Indexed: 05/25/2023]
Abstract
The ribonucleoprotein enzyme ribonuclease P (RNase P) processes tRNAs by cleavage of precursor-tRNAs. RNase P is a ribozyme: The RNA component catalyzes tRNA maturation in vitro without proteins. Remarkable features of RNase P include multiple turnovers in vivo and ability to process diverse substrates. Structures of the bacterial RNase P, including full-length RNAs and a ternary complex with substrate, have been determined by X-ray crystallography. However, crystal structures of free RNA are significantly different from the ternary complex, and the solution structure of the RNA is unknown. Here, we report solution structures of three phylogenetically distinct bacterial RNase P RNAs from Escherichia coli, Agrobacterium tumefaciens, and Bacillus stearothermophilus, determined using small angle X-ray scattering (SAXS) and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) analysis. A combination of homology modeling, normal mode analysis, and molecular dynamics was used to refine the structural models against the empirical data of these RNAs in solution under the high ionic strength required for catalytic activity.
Collapse
Affiliation(s)
- Alexei V Kazantsev
- Department of MCD Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | | | |
Collapse
|
43
|
Pollack L. Time resolved SAXS and RNA folding. Biopolymers 2011; 95:543-9. [PMID: 21328311 DOI: 10.1002/bip.21604] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/19/2011] [Accepted: 01/19/2011] [Indexed: 01/04/2023]
Abstract
Small angle X-ray scattering provides low resolution structural information about macromolecules in solution. When coupled with rapid mixing methods, SAXS reports time-dependent conformational changes of RNA induced by the addition of Mg(2+) to trigger folding. Thus time-resolved SAXS provides unique information about the global or overall structures of transient intermediates populated during folding. Notably, SAXS provides information about the earliest folding events, which can evade detection by other methods.
Collapse
Affiliation(s)
- Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
44
|
Zhao R, Marshall M, Alemán EA, Lamichhane R, Feig A, Rueda D. Laser-assisted single-molecule refolding (LASR). Biophys J 2011; 99:1925-31. [PMID: 20858438 DOI: 10.1016/j.bpj.2010.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/11/2010] [Accepted: 07/16/2010] [Indexed: 02/05/2023] Open
Abstract
To assemble into functional structures, biopolymers search for global minima through their folding potential energy surfaces to find the native conformation. However, this process can be hindered by the presence of kinetic traps. Here, we present a new single-molecule technique, termed laser-assisted single-molecule refolding (LASR), to characterize kinetic traps at the single-molecule level. LASR combines temperature-jump kinetics and single-molecule spectroscopy. We demonstrate the use of LASR to measure single-molecule DNA melting curves with ∼1°C accuracy and to determine the activation barrier of a model kinetic trap. We also show how LASR, in combination with mutagenesis, can be used to estimate the yields of competing pathways, as well as to generate and characterize transient, unstable complexes.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
RNA folding is the most essential process underlying RNA function. While significant progress has been made in understanding the forces driving RNA folding in vitro, exploring the rules governing intracellular RNA structure formation is still in its infancy. The cellular environment hosts a great diversity of factors that potentially influence RNA folding in vivo. For example, the nature of transcription and translation is known to shape the folding landscape of RNA molecules. Trans-acting factors such as proteins, RNAs and metabolites, among others, are also able to modulate the structure and thus the fate of an RNA. Here we summarize the ongoing efforts to uncover how RNA folds in living cells.
Collapse
Affiliation(s)
- Georgeta Zemora
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | |
Collapse
|
46
|
Baird NJ, Ludtke SJ, Khant H, Chiu W, Pan T, Sosnick TR. Discrete structure of an RNA folding intermediate revealed by cryo-electron microscopy. J Am Chem Soc 2010; 132:16352-3. [PMID: 21038867 DOI: 10.1021/ja107492b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA folding occurs via a series of transitions between metastable intermediate states. It is unknown whether folding intermediates are discrete structures folding along defined pathways or heterogeneous ensembles folding along broad landscapes. We use cryo-electron microscopy and single-particle image reconstruction to determine the structure of the major folding intermediate of the specificity domain of a ribonuclease P ribozyme. Our results support the existence of a discrete conformation for this folding intermediate.
Collapse
Affiliation(s)
- Nathan J Baird
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
In yeast mitochondria the DEAD-box helicase Mss116p is essential for respiratory growth by acting as group I and group II intron splicing factor. Here we provide the first structure-based insights into how Mss116p assists RNA folding in vivo. Employing an in vivo chemical probing technique, we mapped the structure of the ai5γ group II intron in different genetic backgrounds to characterize its intracellular fold. While the intron adopts the native conformation in the wt yeast strain, we found that the intron is able to form most of its secondary structure, but lacks its tertiary fold in the absence of Mss116p. This suggests that ai5γ is largely unfolded in the mss116-knockout strain and requires the protein at an early step of folding. Notably, in this unfolded state misfolded substructures have not been observed. As most of the protein-induced conformational changes are located within domain D1, Mss116p appears to facilitate the formation of this largest domain, which is the scaffold for docking of other intron domains. These findings suggest that Mss116p assists the ordered assembly of the ai5γ intron in vivo.
Collapse
Affiliation(s)
- Andreas Liebeg
- Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
48
|
Nikolova EN, Al-Hashimi HM. Thermodynamics of RNA melting, one base pair at a time. RNA (NEW YORK, N.Y.) 2010; 16:1687-1691. [PMID: 20660079 PMCID: PMC2924531 DOI: 10.1261/rna.2235010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The melting of base pairs is a ubiquitous feature of RNA structural transitions, which are widely used to sense and respond to cellular stimuli. A recent study employing solution nuclear magnetic resonance (NMR) imino proton exchange spectroscopy provides a rare base-pair-specific view of duplex melting in the Salmonella FourU RNA thermosensor, which regulates gene expression in response to changes in temperature at the translational level by undergoing a melting transition. The authors observe "microscopic" enthalpy-entropy compensation--often seen "macroscopically" across a series of related molecular species--across base pairs within the same RNA. This yields variations in base-pair stabilities that are an order of magnitude smaller than corresponding variations in enthalpy and entropy. A surprising yet convincing link is established between the slopes of enthalpy-entropy correlations and RNA melting points determined by circular dichroism (CD), which argues that unfolding occurs when base-pair stabilities are equalized. A single AG-to-CG mutation, which enhances the macroscopic hairpin thermostability and folding cooperativity and renders the RNA thermometer inactive in vivo, spreads its effect microscopically throughout all base pairs in the RNA, including ones far removed from the site of mutation. The authors suggest that an extended network of hydration underlies this long-range communication. This study suggests that the deconstruction of macroscopic RNA unfolding in terms of microscopic unfolding events will require careful consideration of water interactions.
Collapse
Affiliation(s)
- Evgenia N Nikolova
- Chemical Biology Doctoral Program, Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
49
|
Chadalavada DM, Gratton EA, Bevilacqua PC. The human HDV-like CPEB3 ribozyme is intrinsically fast-reacting. Biochemistry 2010; 49:5321-30. [PMID: 20524672 DOI: 10.1021/bi100434c] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Self-cleaving RNAs have recently been identified in mammalian genomes. A small ribozyme related in structure to the hepatitis delta virus (HDV) ribozyme occurs in a number of mammals, including chimpanzees and humans, within an intron of the CPEB3 gene. The catalytic mechanisms for the CPEB3 and HDV ribozymes appear to be similar, generating cleavage products with 5'-hydroxyl and 2',3'-cyclic phosphate termini; nonetheless, the cleavage rate reported for the CPEB3 ribozyme is more than 6000-fold slower than for the fastest HDV ribozyme. Herein, we use full-length RNA and cotranscriptional self-cleavage assays to compare reaction rates among human CPEB3, chimp CPEB3, and HDV ribozymes. Our data reveal that a single base change of the upstream flanking sequence, which sequesters an intrinsically weak P1.1 pairing in a misfold, increases the rate of the wild-type human CPEB3 ribozyme by approximately 250-fold; thus, the human ribozyme is intrinsically fast-reacting. Secondary structure determination and native gel analyses reveal that the cleaved population of the CPEB3 ribozyme has a single, secondary structure that closely resembles the HDV ribozyme. In contrast, the precleavage population of the CPEB3 ribozyme appears to have a more diverse secondary structure, possibly reflecting misfolding with the upstream sequence and dynamics intrinsic to the ribozyme. Prior identification of expressed sequence tags (ESTs) in human cells indicated that cleavage activity of the human ribozyme is tissue-specific. It is therefore possible that cellular factors interact with regions upstream of the CPEB3 ribozyme to unmask its high intrinsic reactivity.
Collapse
Affiliation(s)
- Durga M Chadalavada
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
50
|
Frank J, Gonzalez RL. Structure and dynamics of a processive Brownian motor: the translating ribosome. Annu Rev Biochem 2010; 79:381-412. [PMID: 20235828 DOI: 10.1146/annurev-biochem-060408-173330] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is mounting evidence indicating that protein synthesis is driven and regulated by mechanisms that direct stochastic, large-scale conformational fluctuations of the translational apparatus. This mechanistic paradigm implies that a free-energy landscape governs the conformational states that are accessible to and sampled by the translating ribosome. This scenario presents interdependent opportunities and challenges for structural and dynamic studies of protein synthesis. Indeed, the synergism between cryogenic electron microscopic and X-ray crystallographic structural studies, on the one hand, and single-molecule fluorescence resonance energy transfer (smFRET) dynamic studies, on the other, is emerging as a powerful means for investigating the complex free-energy landscape of the translating ribosome and uncovering the mechanisms that direct the stochastic conformational fluctuations of the translational machinery. In this review, we highlight the principal insights obtained from cryogenic electron microscopic, X-ray crystallographic, and smFRET studies of the elongation stage of protein synthesis and outline the emerging themes, questions, and challenges that lie ahead in mechanistic studies of translation.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, New York 10032, USA.
| | | |
Collapse
|