1
|
Jabbari A, Sameiyan E, Yaghoobi E, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Aptamer-based targeted delivery systems for cancer treatment using DNA origami and DNA nanostructures. Int J Pharm 2023; 646:123448. [PMID: 37757957 DOI: 10.1016/j.ijpharm.2023.123448] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
Due to the limitations of conventional cancer treatment methods, nanomedicine has appeared as a promising alternative, allowing improved drug targeting and decreased drug toxicity. In the development of cancer nanomedicines, among various nanoparticles (NPs), DNA nanostructures are more attractive because of their precisely controllable size, shape, excellent biocompatibility, programmability, biodegradability, and facile functionalization. Aptamers are introduced as single-stranded RNA or DNA molecules with recognize their corresponding targets. So, incorporating aptamers into DNA nanostructures led to influential vehicles for bioimaging and biosensing as well as targeted cancer therapy. In this review, the recent developments in the application of aptamer-based DNA origami and DNA nanostructures in advanced cancer treatment have been highlighted. Some of the main methods of cancer treatment are classified as chemo-, gene-, photodynamic- and combined therapy. Finally, the opportunities and problems for targeted DNA aptamer-based nanocarriers for medicinal applications have also been discussed.
Collapse
Affiliation(s)
- Atena Jabbari
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Sameiyan
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Yaghoobi
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Gerasimova YV, Nedorezova DD, Kolpashchikov DM. Split light up aptamers as a probing tool for nucleic acids. Methods 2021; 197:82-88. [PMID: 33992774 DOI: 10.1016/j.ymeth.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022] Open
Abstract
Aptamers that bind non-fluorescent dyes and increase their fluorescence can be converted to fluorescent sensors. Here, we discuss and provide guidance for the design of split (binary) light up aptameric sensors (SLAS) for nucleic acid analysis. SLAS consist of two RNA or DNA strands and a fluorogenic organic dye added as a buffer component. The two strands hybridize to the analyzed DNA or RNA sequence and form a dye-binding pocket, followed by dye binding, and increase in its fluorescence. SLAS can detect nucleic acids in a cost-efficient label-free format since it does not require conjugation of organic dyes with nucleic acids. SLAS design is preferable over monolith fluorescent sensors due to simpler assay optimization and improved selectivity. RNA-based SLAS can be expressed in cells and used for intracellular monitoring and imaging biological molecules.
Collapse
Affiliation(s)
- Yulia V Gerasimova
- University of Central Florida, Chemistry Department, 4111 Libra Drive, Physical Sciences 255, Orlando, FL 32816-2366, United States.
| | - Daria D Nedorezova
- Laboratory of Molecular Robotics and Biosensor Materials, ChemBio Cluster, SCAMT Institute, ITMO University, 9 Lomonosova Str., Saint Petersburg 191002, Russian Federation
| | - Dmitry M Kolpashchikov
- University of Central Florida, Chemistry Department, 4111 Libra Drive, Physical Sciences 255, Orlando, FL 32816-2366, United States; Laboratory of Molecular Robotics and Biosensor Materials, ChemBio Cluster, SCAMT Institute, ITMO University, 9 Lomonosova Str., Saint Petersburg 191002, Russian Federation.
| |
Collapse
|
3
|
Kolpashchikov DM, Spelkov AA. Binary (Split) Light‐up Aptameric Sensors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201914919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dmitry M. Kolpashchikov
- Chemistry Department University of Central Florida Orlando FL 32816-2366 USA
- Burnett School of Biomedical Sciences University of Central Florida Orlando FL 32816 USA
| | - Alexander A. Spelkov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| |
Collapse
|
4
|
Kolpashchikov DM, Spelkov AA. Binary (Split) Light-up Aptameric Sensors. Angew Chem Int Ed Engl 2020; 60:4988-4999. [PMID: 32208549 DOI: 10.1002/anie.201914919] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Indexed: 12/12/2022]
Abstract
This Minireview discusses the design and applications of binary (also known as split) light-up aptameric sensors (BLAS). BLAS consist of two RNA or DNA strands and a fluorogenic organic dye added as a buffer component. When associated, the two strands form a dye-binding site, followed by an increase in fluorescence of the aptamer-bound dye. The design is cost-efficient because it uses short oligonucleotides and does not require conjugation of organic dyes with nucleic acids. In some applications, BLAS design is preferable over monolithic sensors because of simpler assay optimization and improved selectivity. RNA-based BLAS can be expressed in cells and used for the intracellular monitoring of biological molecules. BLAS have been used as reporters of nucleic acid association events in RNA nanotechnology and nucleic-acid-based molecular computation. Other applications of BLAS include the detection of nucleic acids, proteins, and cancer cells, and potentially they can be tailored to report a broad range of biological analytes.
Collapse
Affiliation(s)
- Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, FL, 32816-2366, USA.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA
| | - Alexander A Spelkov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| |
Collapse
|
5
|
Kashida H, Azuma H, Maruyama R, Araki Y, Wada T, Asanuma H. Efficient Light‐Harvesting Antennae Resulting from the Dense Organization of Dyes into DNA Junctions through
d
‐Threoninol. Angew Chem Int Ed Engl 2020; 59:11360-11363. [DOI: 10.1002/anie.202004221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Hiromu Kashida
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hidenori Azuma
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Ryoko Maruyama
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Yasuyuki Araki
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Takehiko Wada
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
6
|
Kashida H, Azuma H, Maruyama R, Araki Y, Wada T, Asanuma H. Efficient Light‐Harvesting Antennae Resulting from the Dense Organization of Dyes into DNA Junctions through
d
‐Threoninol. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hiromu Kashida
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hidenori Azuma
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Ryoko Maruyama
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Yasuyuki Araki
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Takehiko Wada
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
7
|
Xia Y, Zheng KW, He YD, Liu HH, Wen CJ, Hao YH, Tan Z. Transmission of dynamic supercoiling in linear and multi-way branched DNAs and its regulation revealed by a fluorescent G-quadruplex torsion sensor. Nucleic Acids Res 2019; 46:7418-7424. [PMID: 29982790 PMCID: PMC6101514 DOI: 10.1093/nar/gky534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/31/2018] [Indexed: 01/20/2023] Open
Abstract
DNA supercoiling is an important regulator of gene activity. The transmission of transcription-generated supercoiling wave along a DNA helix provides a way for a gene being transcribed to communicate with and regulate its neighboring genes. Currently, the dynamic behavior of supercoiling transmission remains unclear owing to the lack of a suitable tool for detecting the dynamics of supercoiling transmission. In this work, we established a torsion sensor that quantitatively monitors supercoiling transmission in real time in DNA. Using this sensor, we studied the transmission of transcriptionally generated negative supercoiling in linear and multi-way DNA duplexes. We found that transcription-generated dynamic supercoiling not only transmits along linear DNA duplex but also equally diverges at and proceeds through multi-way DNA junctions. We also show that such a process is regulated by DNA–protein interactions and non-canonical DNA structures in the path of supercoiling transmission. These results imply a transcription-coupled mechanism of dynamic supercoiling-mediated intra- and inter-chromosomal signal transduction pathway and their regulation in DNA.
Collapse
Affiliation(s)
- Ye Xia
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Ke-Wei Zheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yi-de He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Hong-He Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Cui-Jiao Wen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yu-Hua Hao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Zheng Tan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| |
Collapse
|
8
|
Brady RA, Kaufhold WT, Brooks NJ, Foderà V, Di Michele L. Flexibility defines structure in crystals of amphiphilic DNA nanostars. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:074003. [PMID: 30523829 DOI: 10.1088/1361-648x/aaf4a1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
DNA nanostructures with programmable shape and interactions can be used as building blocks for the self-assembly of crystalline materials with prescribed nanoscale features, holding a vast technological potential. Structural rigidity and bond directionality have been recognised as key design features for DNA motifs to sustain long-range order in 3D, but the practical challenges associated with prescribing building-block geometry with sufficient accuracy have limited the variety of available designs. We have recently introduced a novel platform for the one-pot preparation of crystalline DNA frameworks supported by a combination of Watson-Crick base pairing and hydrophobic forces (Brady et al 2017 Nano Lett. 17 3276-81). Here we use small angle x-ray scattering and coarse-grained molecular simulations to demonstrate that, as opposed to available all-DNA approaches, amphiphilic motifs do not rely on structural rigidity to support long-range order. Instead, the flexibility of amphiphilic DNA building-blocks is a crucial feature for successful crystallisation.
Collapse
Affiliation(s)
- Ryan A Brady
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | | | | | | | | |
Collapse
|
9
|
Zuffo M, Xie X, Granzhan A. Strength in Numbers: Development of a Fluorescence Sensor Array for Secondary Structures of DNA. Chemistry 2019; 25:1812-1818. [DOI: 10.1002/chem.201805422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Michela Zuffo
- CNRS UMR9187; INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187; INSERM U1196; Université Paris Sud; Université Paris Saclay; 91405 Orsay France
| | - Xiao Xie
- CNRS UMR9187; INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187; INSERM U1196; Université Paris Sud; Université Paris Saclay; 91405 Orsay France
| | - Anton Granzhan
- CNRS UMR9187; INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187; INSERM U1196; Université Paris Sud; Université Paris Saclay; 91405 Orsay France
| |
Collapse
|
10
|
van Buuren BN, Schleucher J, Wijmenga SS. NMR Structural Studies on a DNA Four-Way Junction: Stacking Preference and Localization of the Metal-ion Binding Site. J Biomol Struct Dyn 2016; 17 Suppl 1:237-43. [PMID: 22607430 DOI: 10.1080/07391102.2000.10506627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Abstract The stacking preference of a DNA Four-Way junction (4H), with a novel junction sequence, has been determined in the presence of magnesium ions as well as in the presence of cobalt(III)hexammine ions by means of NMR spectroscopy. In both cases this 4H has a strong preference (>80%) to fold in an A/D-stacked conformer. NOESY spectra showed intermolecular NOE contacts between 4H protons and the ammine protons of the cobalt(III)hexammine complex. These contacts define the metal-ion binding site, located in the vicinity of the junction. The position is similar to the observed site in a recent X-ray structure of a RNA/DNA hybrid 4H and consistent with the position deduced from an uranyl ion photoprobing study on 4Hs with different sequences.
Collapse
Affiliation(s)
- B N van Buuren
- a Department of Medical Biochemistry and Biophysics , Umeå University , S-90187 , Umeå , Sweden
| | | | | |
Collapse
|
11
|
Mohri K, Nishikawa M, Takahashi N, Shiomi T, Matsuoka N, Ogawa K, Endo M, Hidaka K, Sugiyama H, Takahashi Y, Takakura Y. Design and development of nanosized DNA assemblies in polypod-like structures as efficient vehicles for immunostimulatory CpG motifs to immune cells. ACS NANO 2012; 6:5931-40. [PMID: 22721419 DOI: 10.1021/nn300727j] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The immunostimulatory activity of phosphodiester DNA containing unmethylated cytosine-phosphate-guanine (CpG) dinucleotides, or CpG motifs, was significantly increased by the formation of Y-, X-, or dendrimer-like multibranched shape. These results suggest the possibility that the activity of CpG DNA is a function of the structural properties of branched DNA assemblies. To elucidate the relationship between them, we have designed and developed nanosized DNA assemblies in polypod-like structures (polypod-like structured DNA, or polypodna for short) using oligodeoxynucleotides (ODNs) containing CpG motifs and investigated their structural and immunological properties. Those assemblies consisting of three (tripodna) to eight (octapodna) ODNs were successfully obtained, but one consisting of 12 ODNs was not when 36-mer ODNs were annealed under physiological sodium chloride concentration. High-speed atomic force microscopy revealed that these assemblies were in polypod-like structures. The apparent size of the products was about 10 nm in diameter, and there was an increasing trend with an increase in ODN length or with the pod number. Circular dichroism spectral data showed that DNA in polypodna preparations were in the B-form. The melting temperature of polypodna decreased with increasing pod number. Each polypodna induced the secretion of tumor necrosis factor-α and interleukin-6 from macrophage-like RAW264.7 cells, with the greatest induction by those with hexa- and octapodna. Increasing the pod number increased the uptake by RAW264.7 cells but reduced the stability in serum. These results indicate that CpG DNA-containing polypodna preparations with six or more pods are a promising nanosized device with biodegradability and high immunostimulatory activity.
Collapse
Affiliation(s)
- Kohta Mohri
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Evstigneev MP, Parkinson JA, Lantushenko AO, Kostjukov VV, Pahomov VI. Hexamer oligonucleotide topology and assembly under solution phase NMR and theoretical modeling scrutiny. Biopolymers 2010; 93:1023-38. [PMID: 20623667 DOI: 10.1002/bip.21515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The entire family of noncomplementary hexamer oligodeoxyribonucleotides d(GCXYGC) (X and Y = A, G, C, or T) were assessed for topological indicators and equilibrium thermodynamics using a priori molecular modeling and solution phase NMR spectroscopy. Feasible modeled hairpin structures formed a basis from which solution structure and equilibria for each oligonucleotide were considered. ¹H and ³¹P variable temperature-dependent (VT) and concentration-dependent NMR data, NMR signal assignments, and diffusion parameters led to d(GCGAGC) and d(GCGGGC) being understood as exceptions within the family in terms of self-association and topological character. A mean diffusion coefficient D(298 K) = (2.0 ± 0.07) × 10⁻¹⁰ m² s⁻¹ was evaluated across all hexamers except for d(GCGAGC) (D(298 K) = 1.7 × 10⁻¹⁰ m² s⁻¹) and d(GCGGGC) (D(298 K) = 1.2 × 10⁻¹⁰ m² s⁻¹). Melting under VT analysis (T(m) = 323 K) combined with supporting NMR evidence confirmed d(GCGAGC) as the shortest tandem sheared GA mismatched duplex. Diffusion measurements were used to conclude that d(GCGGGC) preferentially exists as the shortest stable quadruplex structure. Thermodynamic analysis of all data led to the assertion that, with the exception of XY = GA and GG, the remaining noncomplementary oligonucleotides adopt equilibria between monomer and duplex, contributed largely by monomer random-coil forms. Contrastingly, d(GCGAGC) showed preference for tandem sheared GA mismatch duplex formation with an association constant K = 3.9 × 10⁵M⁻¹. No direct evidence was acquired for hairpin formation in any instance although its potential existence is considered possible for d(GCGAGC) on the basis of molecular modeling studies.
Collapse
Affiliation(s)
- Maxim P Evstigneev
- Sevastopol National Technical University, Department of Physics, Sevastopol 99053, Ukraine.
| | | | | | | | | |
Collapse
|
13
|
Song G, Ren J. Recognition and regulation of unique nucleic acid structures by small molecules. Chem Commun (Camb) 2010; 46:7283-94. [DOI: 10.1039/c0cc01312a] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Wu B, Girard F, van Buuren B, Schleucher J, Tessari M, Wijmenga S. Global structure of a DNA three-way junction by solution NMR: towards prediction of 3H fold. Nucleic Acids Res 2004; 32:3228-39. [PMID: 15199171 PMCID: PMC434450 DOI: 10.1093/nar/gkh645] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Three-way junctions (3H) are the simplest and most commonly occurring branched nucleic acids. They consist of three double helical arms (A to C), connected at the junction point, with or without a number of unpaired bases in one or more of the three different strands. Three-way junctions with two unpaired bases in one strand (3HS2) have a high tendency to adopt either of two alternative stacked conformations in which two of the three arms A, B and C are coaxially stacked, i.e. A/B-stacked or A/C-stacked. Empirical stacking rules, which successfully predict for DNA 3HS2 A/B-stacking preference from sequence, have been extended to A/C-stacked conformations. Three novel DNA 3HS2 sequences were designed to test the validity of these extended stacking rules and their conformational behavior was studied by solution NMR. All three show the predicted A/C-stacking preference even in the absence of multivalent cations. The stacking preference for both classes of DNA 3HS2 can thus be predicted from sequence. The high-resolution NMR solution structure for one of the stacked 3HS2 is also reported. It shows a well-defined local and global structure defined by an extensive set of classical NMR restraints and residual dipolar couplings. Analysis of its global conformation and that of other representatives of the 3H family, shows that the relative orientations of the stacked and non-stacked arms, are restricted to narrow regions of conformational space, which can be understood from geometric considerations. Together, these findings open up the possibility of full prediction of 3HS2 conformation (stacking and global fold) directly from sequence.
Collapse
Affiliation(s)
- Bin Wu
- Department of Physical Chemistry/Biophysical Chemistry, University of Nijmegen, Toernooiveld 1 6225 ED Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Hickman AB, Ronning DR, Perez ZN, Kotin RM, Dyda F. The nuclease domain of adeno-associated virus rep coordinates replication initiation using two distinct DNA recognition interfaces. Mol Cell 2004; 13:403-14. [PMID: 14967147 DOI: 10.1016/s1097-2765(04)00023-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Revised: 12/08/2003] [Accepted: 12/09/2003] [Indexed: 12/13/2022]
Abstract
Integration into a particular location in human chromosomes is a unique property of the adeno-associated virus (AAV). This reaction requires the viral Rep protein and AAV origin sequences. To understand how Rep recognizes DNA, we have determined the structures of the Rep endonuclease domain separately complexed with two DNA substrates: the Rep binding site within the viral inverted terminal repeat and one of the terminal hairpin arms. At the Rep binding site, five Rep monomers bind five tetranucleotide direct repeats; each repeat is recognized by two Rep monomers from opposing faces of the DNA. Stem-loop binding involves a protein interface on the opposite side of the molecule from the active site where ssDNA is cleaved. Rep therefore has three distinct binding sites within its endonuclease domain for its different DNA substrates. Use of these different interfaces generates the structural asymmetry necessary to regulate later events in viral replication and integration.
Collapse
Affiliation(s)
- Alison Burgess Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | | | | | | | | |
Collapse
|
16
|
Li G, Tolstonog GV, Sabasch M, Traub P. Type III intermediate filament proteins interact with four-way junction DNA and facilitate its cleavage by the junction-resolving enzyme T7 endonuclease I. DNA Cell Biol 2003; 22:261-91. [PMID: 12823903 DOI: 10.1089/104454903321908656] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The isolation from proliferating mouse and human embryo fibroblasts of SDS-stable crosslinkage products of vimentin with DNA fragments containing inverted repeats capable of cruciform formation under superhelical stress and the competitive effect of a synthetic Holliday junction on the binding of cytoplasmic intermediate filament (cIF) proteins to supercoiled DNA prompted a detailed investigation of the proteins' capacity to associate with four-way junction DNA and to influence its processing by junction-resolving endonucleases. Electrophoretic mobility shift analysis of reaction products obtained from vimentin and Holliday junctions under varying ionic conditions revealed efficient complex formation of the filament protein not only with the unstacked, square-planar configuration of the junctions but also with their coaxially stacked X-conformation. Glial fibrillary acidic protein (GFAP) was less efficient and desmin virtually inactive in complex formation. Electron microscopy showed binding of vimentin tetramers or octamers almost exclusively to the branchpoint of the Holliday junctions under physiological ionic conditions. Even at several hundredfold molar excess, sequence-related single- and double-stranded DNAs were unable to chase Holliday junctions from their complexes with vimentin. Vimentin also stimulated bacteriophage T7 endonuclease I in introducing single-strand cuts diametrically across the branchpoint and thus in the resolution of the Holliday junctions. This effect is very likely due to vimentin-induced structural distortion of the branchpoint, as suggested by the results of hydroxyl radical footprinting of Holliday junctions in the absence and the presence of vimentin. Moreover, vimentin, and to a lesser extent GFAP and desmin, interacted with the cruciform structures of inverted repeats inserted into a supercoiled vector plasmid, thereby changing their configuration via branch migration and sensibilizing them to processing by T7 endonuclease I. This refers to both plasmid relaxation caused by unilateral scission and, particularly, linearization via bilateral scission at primary and cIF protein-induced secondary cruciform branchpoints that were identified by T7 endonuclease I footprinting. cIF proteins share these activities with a variety of other architectural proteins interacting with and structurally modulating four-way DNA junctions. In view of the known and hypothetical functions of four-way DNA junctions and associated protein factors in DNA metabolism, cIF proteins as complementary nuclear matrix proteins may play important roles in such nuclear matrix-associated processes as DNA replication, recombination, repair, and transcription, with special emphasis on both the preservation and evolution of the genome.
Collapse
Affiliation(s)
- Guohong Li
- Max-Planck-Institut für Zellbiologie, Rosenhof, 68526 Ladenburg, Germany
| | | | | | | |
Collapse
|
17
|
Assenberg R, Weston A, Cardy DLN, Fox KR. Sequence-dependent folding of DNA three-way junctions. Nucleic Acids Res 2002; 30:5142-50. [PMID: 12466538 PMCID: PMC137952 DOI: 10.1093/nar/gkf637] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Three-way DNA junctions can adopt several different conformers, which differ in the coaxial stacking of the arms. These structural variants are often dominated by one conformer, which is determined by the DNA sequence. In this study we have compared several three-way DNA junctions in order to assess how the arrangement of bases around the branch point affects the conformer distribution. The results show that rearranging the different arms, while retaining their base sequences, can affect the conformer distribution. In some instances this generates a structure that appears to contain parallel coaxially stacked helices rather than the usual anti-parallel arrangement. Although the conformer equilibrium can be affected by the order of purines and pyrimidines around the branch point, this is not sufficient to predict the conformer distribution. We find that the folding of three-way junctions can be separated into two groups of dinucleotide steps. These two groups show distinctive stacking properties in B-DNA, suggesting there is a correlation between B-DNA stacking and coaxial stacking in DNA junctions.
Collapse
Affiliation(s)
- René Assenberg
- Cytocell Limited, Banbury Business Park, Adderbury, Banbury OX17 3SN, UK
| | | | | | | |
Collapse
|
18
|
Cromsigt J, van Buuren B, Schleucher J, Wijmenga S. Resonance assignment and structure determination for RNA. Methods Enzymol 2002; 338:371-99. [PMID: 11460559 DOI: 10.1016/s0076-6879(02)38229-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- J Cromsigt
- Department of Medical Biosciences-Medical Biophysics, Umea University, S-901 87 Umea, Sweden
| | | | | | | |
Collapse
|
19
|
van Buuren BNM, Hermann T, Wijmenga SS, Westhof E. Brownian-dynamics simulations of metal-ion binding to four-way junctions. Nucleic Acids Res 2002; 30:507-14. [PMID: 11788713 PMCID: PMC99837 DOI: 10.1093/nar/30.2.507] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Four-way junctions (4Hs) are important intermediates in DNA rearrangements such as genetic recombination. Under the influence of multivalent cations these molecules undergo a conformational change, from an extended planar form to a quasi-continuous stacked X-structure. Recently, a number of X-ray structures and a nuclear magnetic resonance (NMR) structure of 4Hs have been reported and in three of these the position of multivalent cations is revealed. These structures belong to two main families, characterized by the angle between the two co-axial stacked helices, which is either around +40 to +55 degrees or around -70 to -80 degrees. To investigate the role of metal-ion binding on the conformation of folded 4Hs we performed Brownian-dynamics simulations on the set of available structures. The simulations confirm the proposed metal-ion binding sites in the NMR structure and in one of the X-ray structures. Furthermore, the calculations suggest positions for metal-ion binding in the other X-ray structures. The results show a striking dependence of the ion density on the helical environment (B-helix or A-helix) and the structural family.
Collapse
Affiliation(s)
- Bernd N M van Buuren
- Department of Medical Biosciences, Medical Biophysics, Umeå University, S-90187 Umeå, Sweden.
| | | | | | | |
Collapse
|
20
|
Woods KC, Martin SS, Chu VC, Baldwin EP. Quasi-equivalence in site-specific recombinase structure and function: crystal structure and activity of trimeric Cre recombinase bound to a three-way Lox DNA junction. J Mol Biol 2001; 313:49-69. [PMID: 11601846 DOI: 10.1006/jmbi.2001.5012] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of a novel Cre-Lox synapse was solved using phases from multiple isomorphous replacement and anomalous scattering, and refined to 2.05 A resolution. In this complex, a symmetric protein trimer is bound to a Y-shaped three-way DNA junction, a marked departure from the pseudo-4-fold symmetrical tetramer associated with Cre-mediated LoxP recombination. The three-way DNA junction was accommodated by a simple kink without significant distortion of the adjoining DNA duplexes. Although the mean angle between DNA arms in the Y and X structures was similar, adjacent Cre trimer subunits rotated 29 degrees relative to those in the tetramers. This rotation was accommodated at the protein-protein and DNA-DNA interfaces by interactions that are "quasi-equivalent" to those in the tetramer, analogous to packing differences of chemically identical viral subunits at non-equivalent positions in icosahedral capsids. This structural quasi-equivalence extends to function as Cre can bind to, cleave and perform strand transfer with a three-way Lox substrate. The structure explains the dual recognition of three and four-way junctions by site-specific recombinases as being due to shared structural features between the differently branched substrates and plasticity of the protein-protein interfaces. To our knowledge, this is the first direct demonstration of quasi-equivalence in both the assembly and function of an oligomeric enzyme.
Collapse
Affiliation(s)
- K C Woods
- Section of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
21
|
Wang DY, Sen D. A novel mode of regulation of an RNA-cleaving DNAzyme by effectors that bind to both enzyme and substrate. J Mol Biol 2001; 310:723-34. [PMID: 11453683 DOI: 10.1006/jmbi.2001.4811] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe a novel and general strategy for controlling the activity of RNA-cleaving nucleic acid enzymes (ribozymes and DNAzymes) via the use of RNA and DNA effectors. Whereas in conventional heteroallosteric enzymes (including ribozymes) control of catalysis is achieved by the binding of effector molecules to the enzyme, in our strategy DNA and RNA regulators bind to both the enzyme and the substrate. The design of this system permits the control of catalysis even in the absence of a detailed knowledge of the secondary and tertiary structure of the relevant ribozyme or DNAzyme. Here, we utilize the ability of RNA and DNA to form branched three-way junctions to regulate the RNA-cleaving activity of the in vitro selected "10-23" DNAzyme by three orders of magnitude. Control is exercised by the ability of a DNA or RNA "regulator" to induce formation of stable and catalytically competent "three-way" enzyme-substrate-regulator complexes, relative to otherwise unstable and catalytically poor enzyme-substrate complexes. Such expansively regulated "three-way" ribozyme/DNAzyme systems might find utility in vivo to bring about the catalyzed destruction of one RNA transcript contingent on the presence in its immediate environment of another gene transcript.
Collapse
Affiliation(s)
- D Y Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | | |
Collapse
|
22
|
van Buuren BN, Overmars FJ, Ippel JH, Altona C, Wijmenga SS. Solution structure of a DNA three-way junction containing two unpaired thymidine bases. Identification of sequence features that decide conformer selection. J Mol Biol 2000; 304:371-83. [PMID: 11090280 DOI: 10.1006/jmbi.2000.4224] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The solution structure of a DNA three-way junction (3H) containing two unpaired thymidine bases at the branch site (3HT2), was determined by NMR. Arms A and B of the 3HT2 form a quasi-continuous stacked helix, which is underwound at the junction and has an increased helical rise. The unstacked arm C forms an acute angle of approximately 55 degrees with the unique arm A. The stacking of the unpaired thymidine bases on arm C resembles the folding of hairpin loops. From this data, combined with the reported stacking behavior of 23 other 3HS2 s, two rules are derived that together correctly reproduce their stacking preference. These rules predict, from the sequence of any 3HS2, its stacking preference. The structure also suggests a plausible mechanism for structure-specific recognition of branched nucleic acids by proteins.
Collapse
Affiliation(s)
- B N van Buuren
- Department of Medical Biosciences, Medical Biophysics, Umeâ, S-90187, Sweden
| | | | | | | | | |
Collapse
|
23
|
Makube N, Klump H, Pikkemaat J, Altona C. Thermodynamic properties of an intramolecular DNA four-way junction. Arch Biochem Biophys 1999; 364:53-60. [PMID: 10087164 DOI: 10.1006/abbi.1998.1061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the thermodynamic properties of two homologous DNA four-way junctions, J4 and J4M, based on 46-mer linear DNA molecules. J4 and J4M have the same base sequence with the only difference that the latter contains an uncharged methylene-acetal linkage, -O3'-CH2-O5', instead of the phosphodiester linkage, -O3'-PO2-O5'-, between the residues T18 and C19. The comparison of the thermal unfolding of the J4 junction and J4M junction serves to investigate the effect of the uncharged methylene-acetal linkage on the stability of the junction. Our analysis is based on CD, UV absorbance spectroscopy, DSC, and chemical footprinting. The aim is to characterize in detail the structure and stability of the junctions. As demonstrated before by NMR, in the presence of 5 mM MgCl2 +/- 50 mM NaCl, both J4 and J4M form a complete four-way junction. This is now evidenced by protection from OsO4 cleavage (chemical footprinting). We can assume that full base pairing occurs throughout the arms even at the center of the junction. CD spectra suggest that the helices within the junctions adopt the regular B-DNA conformation. Almost identical melting temperatures and unfolding enthalpies are obtained for J4 and J4M both by UV and DSC. Furthermore, the Van't Hoff enthalpy (DeltaHVH) derived from UV melting equals the calorimetric enthalpy (DeltaHcal), which means that the melting process of the structures proceeds in a two-state manner. All results taken together support the conclusion that there are no major conformational and energetic differences between J4 and J4M. The inclusion of the uncharged methylene-acetal group into the junction has no effect on its stability.
Collapse
Affiliation(s)
- N Makube
- Department of Biochemistry, University of Cape Town, Private Bag Rondebosch, 7700, Republic of South Africa
| | | | | | | |
Collapse
|
24
|
Kettani A, Bouaziz S, Gorin A, Zhao H, Jones RA, Patel DJ. Solution structure of a Na cation stabilized DNA quadruplex containing G.G.G.G and G.C.G.C tetrads formed by G-G-G-C repeats observed in adeno-associated viral DNA. J Mol Biol 1998; 282:619-36. [PMID: 9737926 DOI: 10.1006/jmbi.1998.2030] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have applied NMR and molecular dynamics computations including intensity based refinement to define the structure of the d(G-G-G-C-T4-G-G-G-C) dodecanucleotide in 100 mM NaCl solution. The G-G-G-C sequence is of interest since it has been found as tandem repeats in the DNA sequence of human chromosome 19. The same G-G-G-C sequence is also seen as islands in adeno-associated virus, a human parvovirus, which is unique amongst eukaryotic DNA viruses in its ability to integrate site-specifically into a defined region of human chromosome 19. The d(G-G-G-C-T4-G-G-G-C) sequence forms a quadruplex in Na cation containing solution through head-to-tail dimerization of two symmetry-related stem-hairpin loops with adjacent strands antiparallel to each other around the quadruplex. The connecting T4 loops are of the lateral type, resulting in a quadruplex structure containing two internal G.G.G.G tetrads flanked by G.C.G.C tetrads. The G(anti).G(syn).G(anti).G(syn) tetrads are formed through dimerization associated hydrogen bonding alignments of a pair of Hoogsteen G(anti).G(syn) mismatch pairs, while the G(anti).C(anti).G(anti).C(anti) tetrads are formed through dimerization associated bifurcated hydrogen bonding alignments involving the major groove edges of a pair of Watson-Crick G.C base-pairs. The quadruplex contains two distinct narrow and two symmetric wide grooves with extensive stacking between adjacent tetrad planes. The structure of the quadruplex contains internal cavities that can potentially accommodate Na cations positioned between adjacent tetrad planes. Three such Na cations have been modeled into the structure of the d(G-G-G-C-T4-G-G-G-C) quadruplex. Finally, we speculate on the potential role of quadruplex formation involving G.G.G.G and G.C.G.C tetrads during the integration of the adeno-associated parvovirus into its target on human chromosome 19, both of which involve stretches of G-G-G-C sequence elements.
Collapse
Affiliation(s)
- A Kettani
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
| | | | | | | | | | | |
Collapse
|
25
|
Fenley MO, Manning GS, Marky NL, Olson WK. Excess counterion binding and ionic stability of kinked and branched DNA. Biophys Chem 1998; 74:135-52. [PMID: 9760723 DOI: 10.1016/s0301-4622(98)00171-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We compute the excess number of counterions associated with kinked and branched DNA, and the ionic stabilities of these structures as a function of chain length and both sodium and magnesium salt concentration, using numerical counterion condensation theory. The DNA structures are modeled as two or more finite lines of phosphate charges radiating from the kink or junction center. The number of excess counterions around the (40-90 degrees) kinked duplex is very small (at most four). The geometries of large three- and four-way DNA junctions (with > 50 base pairs per arm) in solutions containing low to moderate NaCl concentrations, by contrast, accumulate a substantial number of excess sodium ions (> 20) but no more than 15 magnesium counterions. The excess number of counterions surrounding the kinked linear chain and the branched DNA structures either remains invariant or increases with chain length, tending to reach a plateau value. Open configurations, such as the planar Y-shaped three-way junction (with three 120 degrees inter-arm angles) and the 90 degrees cross-shaped four-way junction, are ionically more stable than compact geometries, such as pyramidal three-way junctions and X-shaped four-way junctions, over the entire range of salt concentration considered (10(-5)-10(-1) M NaCl or MgCl2). The ionic stabilities of the compact forms increase with increasing salt concentration and become comparable to those of the extended geometries at high salt (especially when magnesium is the supporting salt).
Collapse
Affiliation(s)
- M O Fenley
- Department of Chemistry, Rutgers, State University of New Jersey, Wright-Rieman Laboratories, Piscataway 08854-8087, USA
| | | | | | | |
Collapse
|
26
|
Overmars FJ, Altona C. NMR study of the exchange rate between two stacked conformers of a model Holliday junction. J Mol Biol 1997; 273:519-24. [PMID: 9356242 DOI: 10.1006/jmbi.1997.1340] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Our investigations into the folding behavior of a series of small model Holliday junctions in the presence of magnesium ions revealed a sequence (junction J9a) displaying a 71/29 population ratio between the two differently folded stacked X-conformers in slow exchange on the NMR chemical shift time scale. For the first time we report the rates of interconversion between two stacked X-conformers and their lifetimes as measured by chemical exchange (EXSY) NMR spectroscopy: k1 5.6 (+/-0.5) s-1, k-1 2.3 (+/-0.2) s-1. The corresponding lifetimes (tau=1/k) are: tau1 430 ms, tau2 180 ms and the conformational transition barrier amounts to DeltaGdouble dagger294 68 kJ/mol (16.2 kcal/mol). It is argued that this free-energy barrier reflects the maximum barrier that separates stacked X-conformers in junction 9a from the unfolded structure.
Collapse
Affiliation(s)
- F J Overmars
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden, 2300 RA, The Netherlands
| | | |
Collapse
|
27
|
Overmars FJ, Lanzotti V, Galeone A, Pepe A, Mayol L, Pikkemaat JA, Altona C. Design and NMR study of an immobile DNA four-way junction containing 38 nucleotides. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:576-83. [PMID: 9370369 DOI: 10.1111/j.1432-1033.1997.00576.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The DNA Holliday junction is a central intermediate in genetic recombination. We have designed and synthesized a DNA oligomer, J1a, as a model compound for the Holliday junction suitable to be studied by NMR spectroscopy and future molecular modelling. The design was based on a 46-base oligomer, J4, previously studied by Pikkemaat, J. A., van den Elst, H., van Boom, J. H. & Altona, C. [Biochemistry 33, 14896-14907 (1994)], including the propensity to undergo a self-folding process to give a four-way junction in which three of the four arms are capped with a hairpin loop. J1a, however, is considerably shortened by eight bases and thus contains only 38 residues which significantly facilitates the proton resonance assignments. The base sequence at the branch point is identical to that in J4. 1H-NMR data clearly point to the presence of three hairpin loops in J1a and show that the double-helical arms adopt the B-DNA form. Quasicontinuous pairwise stacking between helical arms to give a single preferred stacked X-conformation is evident. The extent of folding into this stacked conformation is strongly dependent upon the magnesium concentration. Full Watson-Crick base pairing at the branch point is completely preserved. The A/D-stacking preference of the small junction is the same as that exhibited by J4.
Collapse
Affiliation(s)
- F J Overmars
- Leiden Institute of Chemistry, Gorlaeus Laboratories, The Netherlands
| | | | | | | | | | | | | |
Collapse
|