1
|
Notomi R, Sasaki S, Taniguchi Y. Novel strategy for activating gene expression through triplex DNA formation targeting epigenetically suppressed genes. RSC Chem Biol 2024; 5:884-890. [PMID: 39211471 PMCID: PMC11353075 DOI: 10.1039/d4cb00134f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Triplex DNA formation is a useful genomic targeting tool that is expected to have a wide range of applications, including the antigene method; however, there are fundamental limitations in its forming sequence. We recently extended the triplex DNA-forming sequence to methylated DNA sequences containing 5mCG base pairs by developing guanidino-dN, which is capable of recognizing a 5mCG base pair with high affinity. We herein investigated the effect of triplex DNA formation using TFOs with guanidino-dN on methylated DNA sequences at the promoter of the RASSF1A gene, whose expression is epigenetically suppressed by DNA methylation in MCF-7 cells, on gene expression. Interestingly, triplex DNA formation increased the expression of the RASSF1A gene at the transcript and protein levels. Furthermore, RASSF1A-activated MCF-7 cells exhibited cell growth suppressing activity. Changes in the expression of various genes associated with the promotion of apoptosis and breast cancer survival accompanied the activation of RASSF1A in cells exhibited antiproliferative activity. These results suggest the potential of increases in gene expression through triplex DNA formation as a new genomic targeting tool.
Collapse
Affiliation(s)
- Ryotaro Notomi
- Graduate School of Pharmaceutical Sciences, Kyushu University 3-1-1 Maidashi Higashi-ku Fukuoka 812-8582 Japan
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Nagasaki International University 22825-7 Huis Ten Bosch Machi Sasebo city Nagasaki 859-3298 Japan
| | - Yosuke Taniguchi
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University 1-1-1 Tsushima-naka Kita-ku Okayama 700-8530 Japan
- Graduate School of Pharmaceutical Sciences, Kyushu University 3-1-1 Maidashi Higashi-ku Fukuoka 812-8582 Japan
| |
Collapse
|
2
|
Rilievo G, Cecconello A, Fouladi Ghareshiran N, Magro M, Simmel FC, Vianello F. Integration of DNA-RNA-triplex-based regulation of transcription into molecular logic gates. FEBS Lett 2023; 597:2461-2472. [PMID: 37591635 DOI: 10.1002/1873-3468.14721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
In recent years, increasing numbers of noncoding RNA molecules were identified as possible components of endogenous DNA-RNA hybrid triplexes involved in gene regulation. Triplexes are potentially involved in complex molecular signaling networks that, if understood, would allow the engineering of biological computing components. Here, by making use of the enhancing and inhibiting effects of such triplexes, we demonstrate in vitro the construction of triplex-based molecular gates: 'exclusive OR' (XOR), 'exclusive NOT-OR' (XNOR), and a threshold gate, via transcription of a fluorogenic RNA aptamer. Precise modulation was displayed by the biomolecular-integrated systems over a wide interval of transcriptional outputs, ranging from drastic inhibition to significant enhancement. The present contribution represents a first example of molecular gates developed using DNA-RNA triplex nanostructures.
Collapse
Affiliation(s)
- Graziano Rilievo
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Alessandro Cecconello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | | | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Friedrich C Simmel
- Physik Department, Technische Universitat München, Garching bei München, Germany
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| |
Collapse
|
3
|
Cicconetti C, Lauria A, Proserpio V, Masera M, Tamburrini A, Maldotti M, Oliviero S, Molineris I. 3plex enables deep computational investigation of triplex forming lncRNAs. Comput Struct Biotechnol J 2023; 21:3091-3102. [PMID: 37273849 PMCID: PMC10236371 DOI: 10.1016/j.csbj.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression through different molecular mechanisms, including DNA binding via the formation of RNA:DNA:DNA triple helices (TPXs). Despite the increasing amount of experimental evidence, TPXs investigation remains challenging. Here we present 3plex, a software able to predict TPX interactions in silico. Given an RNA sequence and a set of DNA sequences, 3plex integrates 1) Hoogsteen pairing rules that describe the biochemical interactions between RNA and DNA nucleotides, 2) RNA secondary structure prediction and 3) determination of the TPX thermal stability derived from a collection of TPX experimental evidences. We systematically collected and uniformly re-analysed published experimental lncRNA binding sites on human and mouse genomes. We used these data to evaluate 3plex performance and showed that its specific features allow a reliable identification of TPX interactions. We compared 3plex with the other available software and obtained comparable or even better accuracy at a fraction of the computation time. Interestingly, by inspecting collected data with 3plex we found that TPXs tend to be shorter and more degenerated than previously expected and that the majority of analysed lncRNAs can directly bind to the genome by TPX formation. Those results suggest that an important fraction of lncRNAs can exert its biological function through this mechanism. The software is available at https://github.com/molinerisLab/3plex.
Collapse
Affiliation(s)
- Chiara Cicconetti
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| | - Andrea Lauria
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| | - Valentina Proserpio
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| | - Marco Masera
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
| | - Annalaura Tamburrini
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| | - Mara Maldotti
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| | - Salvatore Oliviero
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| | - Ivan Molineris
- Dipartimento di Scienze della Vita e Biologia dei Sistemi and MBC, Università di Torino, Via Nizza 52, 10126 Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, Candiolo 10060 (Torino), Italy
| |
Collapse
|
4
|
Cecconello A, Magro M, Vianello F, Simmel F. Rational design of hybrid DNA-RNA triplex structures as modulators of transcriptional activity in vitro. Nucleic Acids Res 2022; 50:13172-13182. [PMID: 36537227 PMCID: PMC9825147 DOI: 10.1093/nar/gkac1131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
Triplex nanostructures can be formed in vitro in the promoter region of DNA templates, and it is commonly accepted that these assemblies inhibit the transcription of the downstream genes. Herein, a proof of concept highlighting the possibility of the up- or downregulation of RNA transcription is presented. Hybrid DNA-RNA triplex nanostructures were rationally designed to produce bacterial transcription units with switchable promoters. The rate of RNA production was measured using the signal of a transcribed fluorescent RNA aptamer (i.e. Broccoli). Indeed, several designed bacterial promoters showed the ability of induced transcriptional inhibition, while other properly tailored sequences demonstrated switchable enhancement of transcriptional activity, representing an unprecedented feature to date. The use of RNA-regulated transcription units and fluorescent RNA aptamers as readouts will allow the realization of biocomputation circuits characterized by a strongly reduced set of components. Triplex forming RNA oligonucleotides are proposed as smart tools for transcriptional modulation and represent an alternative to current methods for producing logic gates using protein-based components.
Collapse
Affiliation(s)
- Alessandro Cecconello
- Correspondence may also be addressed to Alessandro Cecconello. Tel: +39 49 827 2638; Fax: +39 49 827 2604;
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro 35020, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro 35020, Italy
| | - Friedrich C Simmel
- To whom correspondence should be addressed. Tel: +49 89 289 11610; Fax: +49 89 289 11612;
| |
Collapse
|
5
|
Hennessy J, McGorman B, Molphy Z, Farrell NP, Singleton D, Brown T, Kellett A. A Click Chemistry Approach to Targeted DNA Crosslinking with
cis
‐Platinum(II)‐Modified Triplex‐Forming Oligonucleotides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joseph Hennessy
- School of Chemical Sciences and National Institute for Cellular Biotechnology Dublin City University, Glasnevin Dublin 9 Ireland
| | - Bríonna McGorman
- School of Chemical Sciences and National Institute for Cellular Biotechnology Dublin City University, Glasnevin Dublin 9 Ireland
| | - Zara Molphy
- School of Chemical Sciences and National Institute for Cellular Biotechnology Dublin City University, Glasnevin Dublin 9 Ireland
- Synthesis and Solid-State Pharmaceutical Centre School of Chemical Sciences Dublin City University, Glasnevin Dublin 9 Ireland
| | - Nicholas P. Farrell
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
| | - Daniel Singleton
- ATDBio Ltd. School of Chemistry University of Southampton Southampton SO17 1BJ UK
| | - Tom Brown
- ATDBio Ltd. School of Chemistry University of Southampton Southampton SO17 1BJ UK
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology Dublin City University, Glasnevin Dublin 9 Ireland
- Synthesis and Solid-State Pharmaceutical Centre School of Chemical Sciences Dublin City University, Glasnevin Dublin 9 Ireland
| |
Collapse
|
6
|
Hennessy J, McGorman B, Molphy Z, Farrell NP, Singleton D, Brown T, Kellett A. A Click Chemistry Approach to Targeted DNA Crosslinking with cis-Platinum(II)-Modified Triplex-Forming Oligonucleotides. Angew Chem Int Ed Engl 2022; 61:e202110455. [PMID: 34652881 PMCID: PMC9299770 DOI: 10.1002/anie.202110455] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/11/2021] [Indexed: 01/05/2023]
Abstract
Limitations of clinical platinum(II) therapeutics include systemic toxicity and inherent resistance. Modern approaches, therefore, seek new ways to deliver active platinum(II) to discrete nucleic acid targets. In the field of antigene therapy, triplex-forming oligonucleotides (TFOs) have attracted interest for their ability to specifically recognise extended duplex DNA targets. Here, we report a click chemistry based approach that combines alkyne-modified TFOs with azide-bearing cis-platinum(II) complexes-based on cisplatin, oxaliplatin, and carboplatin motifs-to generate a library of PtII -TFO hybrids. These constructs can be assembled modularly and enable directed platinum(II) crosslinking to purine nucleobases on the target sequence under the guidance of the TFO. By covalently incorporating modifications of thiazole orange-a known DNA-intercalating fluorophore-into PtII -TFOs constructs, enhanced target binding and discrimination between target and off-target sequences was achieved.
Collapse
Affiliation(s)
- Joseph Hennessy
- School of Chemical Sciences and National Institute for Cellular BiotechnologyDublin City University, GlasnevinDublin9Ireland
| | - Bríonna McGorman
- School of Chemical Sciences and National Institute for Cellular BiotechnologyDublin City University, GlasnevinDublin9Ireland
| | - Zara Molphy
- School of Chemical Sciences and National Institute for Cellular BiotechnologyDublin City University, GlasnevinDublin9Ireland
- Synthesis and Solid-State Pharmaceutical CentreSchool of Chemical SciencesDublin City University, GlasnevinDublin9Ireland
| | - Nicholas P. Farrell
- Department of ChemistryVirginia Commonwealth UniversityRichmondVA23284-2006USA
| | - Daniel Singleton
- ATDBio Ltd.School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Tom Brown
- ATDBio Ltd.School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJUK
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular BiotechnologyDublin City University, GlasnevinDublin9Ireland
- Synthesis and Solid-State Pharmaceutical CentreSchool of Chemical SciencesDublin City University, GlasnevinDublin9Ireland
| |
Collapse
|
7
|
Identification and comparative analysis of long non-coding RNAs in the brain of fire ant queens in two different reproductive states. BMC Genomics 2021; 22:917. [PMID: 35418014 PMCID: PMC9006410 DOI: 10.1186/s12864-022-08539-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Many long non-coding RNAs (lncRNAs) have been extensively identified in higher eukaryotic species. The function of lncRNAs has been reported to play important roles in diverse biological processes, including developmental regulation and behavioral plasticity. However, there are no reports of systematic characterization of long non-coding RNAs in the fire ant Solenopsis invicta.
Results
In this study, we performed a genome-wide analysis of lncRNAs in the brains of S. invicta from RNA-seq. In total, 1,393 novel lncRNA transcripts were identified in the fire ant. In contrast to the annotated lncRNA transcripts having at least two exons, novel lncRNAs are monoexonic transcripts with a shorter length. Besides, the transcriptome from virgin alate and dealate mated queens were analyzed and compared. The results showed 295 differentially expressed mRNA genes (DEGs) and 65 differentially expressed lncRNA genes (DELs) between virgin and mated queens, of which 17 lncRNAs were highly expressed in the virgin alates and 47 lncRNAs were highly expressed in the mated dealates. By identifying the DEL:DEG pairs with a high association in their expression (Spearman’s |rho|> 0.8 and p-value < 0.01), many DELs were co-regulated with DEGs after mating. Furthermore, several remarkable lncRNAs (MSTRG.6523, MSTRG.588, and nc909) that were found to associate with particular coding genes may play important roles in the regulation of brain gene expression in reproductive transition in fire ants.
Conclusion
This study provides the first genome-wide identification of S. invicta lncRNAs in the brains in different reproductive states. It will contribute to a fuller understanding of the transcriptional regulation underpinning reproductive changes.
Collapse
|
8
|
Lu S, Shen J, Fan C, Li Q, Yang X. DNA Assembly-Based Stimuli-Responsive Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100328. [PMID: 34258165 PMCID: PMC8261508 DOI: 10.1002/advs.202100328] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Indexed: 05/06/2023]
Abstract
Stimuli-responsive designs with exogenous stimuli enable remote and reversible control of DNA nanostructures, which break many limitations of static nanostructures and inspired development of dynamic DNA nanotechnology. Moreover, the introduction of various types of organic molecules, polymers, chemical bonds, and chemical reactions with stimuli-responsive properties development has greatly expand the application scope of dynamic DNA nanotechnology. Here, DNA assembly-based stimuli-responsive systems are reviewed, with the focus on response units and mechanisms that depend on different exogenous stimuli (DNA strand, pH, light, temperature, electricity, metal ions, etc.), and their applications in fields of nanofabrication (DNA architectures, hybrid architectures, nanomachines, and constitutional dynamic networks) and biomedical research (biosensing, bioimaging, therapeutics, and theranostics) are discussed. Finally, the opportunities and challenges for DNA assembly-based stimuli-responsive systems are overviewed and discussed.
Collapse
Affiliation(s)
- Shasha Lu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jianlei Shen
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Chunhai Fan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineDepartment of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Qian Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Xiurong Yang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
9
|
Breslauer KJ. The shaping of a molecular linguist: How a career studying DNA energetics revealed the language of molecular communication. J Biol Chem 2021; 296:100522. [PMID: 34237886 PMCID: PMC8058554 DOI: 10.1016/j.jbc.2021.100522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 01/31/2023] Open
Abstract
My personal and professional journeys have been far from predictable based on my early childhood. Owing to a range of serendipitous influences, I miraculously transitioned from a rebellious, apathetic teenage street urchin who did poorly in school to a highly motivated, disciplined, and ambitious academic honors student. I was the proverbial “late bloomer.” Ultimately, I earned my PhD in biophysical chemistry at Yale, followed by a postdoc fellowship at Berkeley. These two meccas of thermodynamics, coupled with my deep fascination with biology, instilled in me a passion to pursue an academic career focused on mapping the energy landscapes of biological systems. I viewed differential energetics as the language of molecular communication that would dictate and control biological structures, as well as modulate the modes of action associated with biological functions. I wanted to be a “molecular linguist.” For the next 50 years, my group and I used a combination of spectroscopic and calorimetric techniques to characterize the energy profiles of the polymorphic conformational space of DNA molecules, their differential ligand-binding properties, and the energy landscapes associated with mutagenic DNA damage recognition, repair, and replication. As elaborated below, the resultant energy databases have enabled the development of quantitative molecular biology through the rational design of primers, probes, and arrays for diagnostic, therapeutic, and molecular-profiling protocols, which collectively have contributed to a myriad of biomedical assays. Such profiling is further justified by yielding unique energy-based insights that complement and expand elegant, structure-based understandings of biological processes.
Collapse
Affiliation(s)
- Kenneth J Breslauer
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA; The Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
| |
Collapse
|
10
|
Habibian M, Yahyaee-Anzahaee M, Lucic M, Moroz E, Martín-Pintado N, Di Giovanni LD, Leroux JC, Hall J, González C, Damha MJ. Structural properties and gene-silencing activity of chemically modified DNA-RNA hybrids with parallel orientation. Nucleic Acids Res 2019; 46:1614-1623. [PMID: 29373740 PMCID: PMC5829573 DOI: 10.1093/nar/gky024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/12/2018] [Indexed: 01/24/2023] Open
Abstract
We report, herein, a new class of RNAi trigger molecules based on the unconventional parallel hybridization of two oligonucleotide chains. We have prepared and studied several parallel stranded (ps) duplexes, in which the parallel orientation is achieved through incorporation of isoguanine and isocytosine to form reverse Watson-Crick base pairs in ps-DNA:DNA, ps-DNA:RNA, ps-(DNA-2'F-ANA):RNA, and ps-DNA:2'F-RNA duplexes. The formation of these duplexes was confirmed by UV melting experiments, FRET and CD studies. In addition, NMR structural studies were conducted on a ps-DNA:RNA hybrid for the first time. Finally, we provide evidence for the unprecedented finding that ps-DNA:RNA and ps-DNA:2'F-RNA hybrids can engage the RNAi pathway to silence gene expression in vitro.
Collapse
Affiliation(s)
- Maryam Habibian
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Maryam Yahyaee-Anzahaee
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Matije Lucic
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland
| | - Elena Moroz
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland
| | - Nerea Martín-Pintado
- Instituto de Química Física 'Rocasolano', CSIC, Serrano 119, 28006 Madrid, Spain
| | - Logan Dante Di Giovanni
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland
| | - Carlos González
- Instituto de Química Física 'Rocasolano', CSIC, Serrano 119, 28006 Madrid, Spain
| | - Masad J Damha
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
11
|
Abstract
Here we describe novel enzymatic procedures for the production of long (from tens of nanometers to microns) double-stranded poly(dG)-poly(dC), triple-helical poly(dG)-poly(dG)-poly(dC), and quadruple-helical G4 DNA. All these molecules are uniform in size and possess improved mechanical and electrical properties with respect to a canonical random sequence double-stranded DNA. They can potentially be used as elements in nanoelectronic devices and circuits.
Collapse
|
12
|
Jeltsch A. From Bioengineering to CRISPR/Cas9 - A Personal Retrospective of 20 Years of Research in Programmable Genome Targeting. Front Genet 2018; 9:5. [PMID: 29434619 PMCID: PMC5790776 DOI: 10.3389/fgene.2018.00005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/04/2018] [Indexed: 12/03/2022] Open
Abstract
Genome targeting of restriction enzymes and DNA methyltransferases has many important applications including genome and epigenome editing. 15–20 years ago, my group was involved in the development of approaches for programmable genome targeting, aiming to connect enzymes with an oligodeoxynucleotide (ODN), which could form a sequence-specific triple helix at the genomic target site. Importantly, the target site of such enzyme-ODN conjugate could be varied simply by altering the ODN sequence promising great applicative values. However, this approach was facing many problems including the preparation and purification of the enzyme-ODN conjugates, their efficient delivery into cells, slow kinetics of triple helix formation and the requirement of a poly-purine target site sequence. Hence, for several years genome and epigenome editing approaches mainly were based on Zinc fingers and TAL proteins as targeting devices. More recently, CRISPR/Cas systems were discovered, which use a bound RNA for genome targeting that forms an RNA/DNA duplex with one DNA strand of the target site. These systems combine all potential advantages of the once imagined enzyme-ODN conjugates and avoid all main disadvantageous. Consequently, the application of CRISPR/Cas in genome and epigenome editing has exploded in recent years. We can draw two important conclusions from this example of research history. First, evolution still is the better bioengineer than humans and, whenever tested in parallel, natural solutions outcompete engineered ones. Second, CRISPR/Cas system were discovered in pure, curiosity driven, basic research, highlighting that it is basic, bottom-up research paving the way for fundamental innovation.
Collapse
Affiliation(s)
- Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
13
|
The Mapping of Predicted Triplex DNA:RNA in the Drosophila Genome Reveals a Prominent Location in Development- and Morphogenesis-Related Genes. G3-GENES GENOMES GENETICS 2017; 7:2295-2304. [PMID: 28515050 PMCID: PMC5499136 DOI: 10.1534/g3.117.042911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Double-stranded DNA is able to form triple-helical structures by accommodating a third nucleotide strand. A nucleic acid triplex occurs according to Hoogsteen rules that predict the stability and affinity of the third strand bound to the Watson–Crick duplex. The “triplex-forming oligonucleotide” (TFO) can be a short sequence of RNA that binds to the major groove of the targeted duplex only when this duplex presents a sequence of purine or pyrimidine bases in one of the DNA strands. Many nuclear proteins are known to bind triplex DNA or DNA:RNA, but their biological functions are unexplored. We identified sequences that are capable of engaging as the “triplex-forming oligonucleotide” in both the pre-lncRNA and pre-mRNA collections of Drosophila melanogaster. These motifs were matched against the Drosophila genome in order to identify putative sequences of triplex formation in intergenic regions, promoters, and introns/exons. Most of the identified TFOs appear to be located in the intronic region of the analyzed genes. Computational prediction of the most targeted genes by TFOs originating from pre-lncRNAs and pre-mRNAs revealed that they are restrictively associated with development- and morphogenesis-related gene networks. The refined analysis by Gene Ontology enrichment demonstrates that some individual TFOs present genome-wide scale matches that are located in numerous genes and regulatory sequences. The triplex DNA:RNA computational mapping at the genome-wide scale suggests broad interference in the regulatory process of the gene networks orchestrated by TFO RNAs acting in association simultaneously at multiple sites.
Collapse
|
14
|
Goldsmith G, Rathinavelan T, Yathindra N. Selective Preference of Parallel DNA Triplexes Is Due to the Disruption of Hoogsteen Hydrogen Bonds Caused by the Severe Nonisostericity between the G*GC and T*AT Triplets. PLoS One 2016; 11:e0152102. [PMID: 27010368 PMCID: PMC4807104 DOI: 10.1371/journal.pone.0152102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/08/2016] [Indexed: 12/14/2022] Open
Abstract
Implications of DNA, RNA and RNA.DNA hybrid triplexes in diverse biological functions, diseases and therapeutic applications call for a thorough understanding of their structure-function relationships. Despite exhaustive studies mechanistic rationale for the discriminatory preference of parallel DNA triplexes with G*GC & T*AT triplets still remains elusive. Here, we show that the highest nonisostericity between the G*GC & T*AT triplets imposes extensive stereochemical rearrangements contributing to context dependent triplex destabilisation through selective disruption of Hoogsteen scheme of hydrogen bonds. MD simulations of nineteen DNA triplexes with an assortment of sequence milieu reveal for the first time fresh insights into the nature and extent of destabilization from a single (non-overlapping), double (overlapping) and multiple pairs of nonisosteric base triplets (NIBTs). It is found that a solitary pair of NIBTs, feasible either at a G*GC/T*AT or T*AT/G*GC triplex junction, does not impinge significantly on triplex stability. But two overlapping pairs of NIBTs resulting from either a T*AT or a G*GC interruption disrupt Hoogsteen pair to a noncanonical mismatch destabilizing the triplex by ~10 to 14 kcal/mol, implying that their frequent incidence in multiples, especially, in short sequences could even hinder triplex formation. The results provide (i) an unambiguous and generalised mechanistic rationale for the discriminatory trait of parallel triplexes, including those studied experimentally (ii) clarity for the prevalence of antiparallel triplexes and (iii) comprehensive perspectives on the sequence dependent influence of nonisosteric base triplets useful in the rational design of TFO's against potential triplex target sites.
Collapse
Affiliation(s)
- Gunaseelan Goldsmith
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, India
- Manipal University, Manipal, India
| | | | - Narayanarao Yathindra
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, India
| |
Collapse
|
15
|
Alam R, Thazhathveetil AK, Li H, Seidman MM. Preparation and application of triple helix forming oligonucleotides and single strand oligonucleotide donors for gene correction. Methods Mol Biol 2014; 1114:103-13. [PMID: 24557899 DOI: 10.1007/978-1-62703-761-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Strategies for site-specific modulation of genomic sequences in mammalian cells require two components. One must be capable of recognizing and activating a specific target sequence in vivo, driving that site into an exploitable repair pathway. Information is transferred to the site via participation in the pathway by the second component, a donor nucleic acid, resulting in a permanent change in the target sequence. We have developed biologically active triple helix forming oligonucleotides (TFOs) as site-specific gene targeting reagents. These TFOs, linked to DNA reactive compounds (such as a cross-linking agent), activate pathways that can engage informational donors. We have used the combination of a psoralen-TFO and single strand oligonucleotide donors to generate novel cell lines with directed sequence changes at the target site. Here we describe the synthesis and purification of bioactive psoralen-linked TFOs, their co-introduction into mammalian cells with donor nucleic acids, and the identification of cells with sequence conversion of the target site. We have emphasized details in the synthesis and purification of the oligonucleotides that are essential for preparation of reagents with optimal activity.
Collapse
|
16
|
Maji J, Bhattacharjee SM, Seno F, Trovato A. Melting behavior and different bound states in three-stranded DNA models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012121. [PMID: 24580186 DOI: 10.1103/physreve.89.012121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Indexed: 06/03/2023]
Abstract
Thermal denaturation of DNA is often studied with coarse-grained models in which native sequential base pairing is mimicked by the existence of attractive interactions only between monomers at the same position along strands (Poland and Scheraga models). Within this framework, the existence of a three-stranded DNA bound state in conditions where a duplex DNA would be in the denaturated state was recently predicted from a study of three directed polymer models on simplified hierarchical lattices (d>2) and in 1+1 dimensions. Such a phenomenon which is similar to the Efimov effect in nuclear physics was named Efimov-DNA. In this paper we study the melting of the three-stranded DNA on a Sierpinski gasket of dimensions d<2 by assigning extra weight factors to fork openings and closings, to induce a two-strand DNA melting. In such a context we can find again the existence of the Efimov-DNA-like state but quite surprisingly we discover also the presence of a different phase, to be called a mixed state, where the strands are pair-wise bound but without three chain contacts. Whereas the Efimov DNA turns out to be a crossover near melting, the mixed phase is a thermodynamic phase.
Collapse
Affiliation(s)
- Jaya Maji
- Institute of Physics, Bhubaneswar 751005, India
| | | | - Flavio Seno
- INFN, Dipartimento di Fisica e Astronomia 'Galileo Galilei', Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Antonio Trovato
- INFN, Dipartimento di Fisica e Astronomia 'Galileo Galilei', Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| |
Collapse
|
17
|
Doluca O, Withers JM, Filichev VV. Molecular engineering of guanine-rich sequences: Z-DNA, DNA triplexes, and G-quadruplexes. Chem Rev 2013; 113:3044-83. [PMID: 23391174 DOI: 10.1021/cr300225q] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Osman Doluca
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | | | | |
Collapse
|
18
|
Doluca O, Boutorine AS, Filichev VV. Triplex-Forming Twisted Intercalating Nucleic Acids (TINAs): Design Rules, Stabilization of Antiparallel DNA Triplexes and Inhibition of G-Quartet-Dependent Self-Association. Chembiochem 2011; 12:2365-74. [DOI: 10.1002/cbic.201100354] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Abstract
Here we describe novel procedures for production of DNA-based nanowires. This include synthesis and characterization of the one-to-one double-helical complex of poly(dG)-poly(dC), triple-helical poly(dG)-poly(dG)-poly(dC) and G4-DNA, which is a quadruple-helical form of DNA. All these types of DNA-based molecules were synthesized enzymatically using Klenow exo(-) fragment of DNA Polymerase I. All the above types of nanowires are characterized by a narrow-size distribution of molecules. The contour length of the molecules can be varied from tens to hundreds of nanometers. These structures possess improved conductive and mechanical properties with respect to a canonical random-sequenced DNA and can possibly be used as wire-like conducting or semiconducting nanostructures in the field of nanoelectronics.
Collapse
Affiliation(s)
- Alexander Kotlyar
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel.
| |
Collapse
|
20
|
Arslan P, Jyo A, Ihara T. Reversible circularization of an anthracene-modified DNA conjugate through bimolecular triplex formation and its analytical application. Org Biomol Chem 2010; 8:4843-8. [PMID: 20734012 DOI: 10.1039/c0ob00282h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We prepared an oligodeoxyribonucleotide conjugate (5-3ant(2)18) carrying two anthracenes, each of which was tethered to both ends of the conjugate through hexamethylene linker chains. The conjugate has a mirror repeat of two heptamer sequences, such that it forms a bimolecular triplex with the single stranded target, forming a two-fold U-shaped conformation. The conformation of the conjugate in its triplex structure could be frozen instantaneously by circularization through photodimerization of the anthracenes. Compared with the duplex formation of linear probes with relevant sequences, bimolecular triplex formation of 5-3ant(2)18 shows a unique feature in its target recognition; it binds the target tightly, yet still retains high sequence selectivity. Circularization of 5-3ant(2)18 by UV photoirradiation was verified as the probe reaction for a DNA assay. The probe reaction could be performed in a few seconds over a wide range of temperatures, at least between 0 and 25 °C. In addition, the reaction could be regarded as a reversible method for the preparation of circular DNA that shows higher affinity for the target.
Collapse
Affiliation(s)
- Pelin Arslan
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | | | | |
Collapse
|
21
|
Xue L, Xi H, Kumar S, Gray D, Davis E, Hamilton P, Skriba M, Arya DP. Probing the recognition surface of a DNA triplex: binding studies with intercalator-neomycin conjugates. Biochemistry 2010; 49:5540-52. [PMID: 20499878 DOI: 10.1021/bi100071j] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thermodynamic studies on the interactions between intercalator-neomycin conjugates and a DNA polynucleotide triplex [poly(dA).2poly(dT)] were conducted. To draw a complete picture of such interactions, naphthalene diimide-neomycin (3) and anthraquinone-neomycin (4) conjugates were synthesized and used together with two other analogues, previously synthesized pyrene-neomycin (1) and BQQ-neomycin (2) conjugates, in our investigations. A combination of experiments, including UV denaturation, circular dichroism (CD) titration, differential scanning calorimetry (DSC), and isothermal titration calorimetry (ITC), revealed that all four conjugates (1-4) stabilized poly(dA).2poly(dT) much more than its parent compound, neomycin. UV melting experiments clearly showed that the temperature (T(m3-->2)) at which poly(dA).2poly(dT) dissociated into poly(dA).poly(dT) and poly(dT) increased dramatically (>12 degrees C) in the presence of intercalator-neomycin conjugates (1-4) even at a very low concentration (2 muM). In contrast to intercalator-neomycin conjugates, the increment of T(m3-->2) of poly(dA).2poly(dT) induced by neomycin was negligible under the same conditions. The binding preference of intercalator-neomycin conjugates (1-4) to poly(dA).2poly(dT) was also confirmed by competition dialysis and a fluorescent intercalator displacement assay. Circular dichroism titration studies revealed that compounds 1-4 had slightly larger binding site size ( approximately 7-7.5) with poly(dA).2poly(dT) as compared to neomycin ( approximately 6.5). The thermodynamic parameters of these intercalator-neomycin conjugates with poly(dA).2poly(dT) were derived from an integrated van't Hoff equation using the T(m3-->2) values, the binding site size numbers, and other parameters obtained from DSC and ITC. The binding affinity of all tested ligands with poly(dA).2poly(dT) increased in the following order: neomycin < 1 < 3 < 4 < 2. Among them, the binding constant [(2.7 +/- 0.3) x 10(8) M(-1)] of 2 with poly(dA).2poly(dT) was the highest, almost 1000-fold greater than that of neomycin. The binding of compounds 1-4 with poly(dA).2poly(dT) was mostly enthalpy-driven and gave negative DeltaC(p) values. The results described here suggest that the binding affinity of intercalator-neomycin conjugates for poly(dA).2poly(dT) increases as a function of the surface area of the intercalator moiety.
Collapse
Affiliation(s)
- Liang Xue
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Aviñó A, Cubero E, Gargallo R, González C, Orozco M, Eritja R. Structural properties of g,t-parallel duplexes. J Nucleic Acids 2010; 2010. [PMID: 20798879 PMCID: PMC2925217 DOI: 10.4061/2010/763658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/15/2009] [Indexed: 11/20/2022] Open
Abstract
The structure of G,T-parallel-stranded duplexes of DNA carrying similar amounts of adenine and guanine residues is studied by means of molecular dynamics (MD) simulations and UV- and CD spectroscopies. In addition the impact of the substitution of adenine by 8-aminoadenine and guanine by 8-aminoguanine is analyzed. The presence of 8-aminoadenine and 8-aminoguanine stabilizes the parallel duplex structure. Binding of these oligonucleotides to their target polypyrimidine sequences to form the corresponding G,T-parallel triplex was not observed. Instead, when unmodified parallel-stranded duplexes were mixed with their polypyrimidine target, an interstrand Watson-Crick duplex was formed. As predicted by theoretical calculations parallel-stranded duplexes carrying 8-aminopurines did not bind to their target. The preference for the parallel-duplex over the Watson-Crick antiparallel duplex is attributed to the strong stabilization of the parallel duplex produced by the 8-aminopurines. Theoretical studies show that the isomorphism of the triads is crucial for the stability of the parallel triplex.
Collapse
Affiliation(s)
- Anna Aviñó
- Institute for Research in Biomedicine, IQAC-CSIC, CIBER-BBN Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Edifici Helix, Baldiri Reixac 15, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Keating KS, Toor N, Perlman PS, Pyle AM. A structural analysis of the group II intron active site and implications for the spliceosome. RNA (NEW YORK, N.Y.) 2010; 16:1-9. [PMID: 19948765 PMCID: PMC2802019 DOI: 10.1261/rna.1791310] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 08/12/2009] [Indexed: 05/20/2023]
Abstract
Group II introns are self-splicing, mobile genetic elements that have fundamentally influenced the organization of terrestrial genomes. These large ribozymes remain important for gene expression in almost all forms of bacteria and eukaryotes and they are believed to share a common ancestry with the eukaryotic spliceosome that is required for processing all nuclear pre-mRNAs. The three-dimensional structure of a group IIC intron was recently determined by X-ray crystallography, making it possible to visualize the active site and the elaborate network of tertiary interactions that stabilize the molecule. Here we describe the molecular features of the active site in detail and evaluate their correspondence with prior biochemical, genetic, and phylogenetic analyses on group II introns. In addition, we evaluate the structural significance of RNA motifs within the intron core, such as the major-groove triple helix and the domain 5 bulge. Having combined what is known about the group II intron core, we then compare it with known structural features of U6 snRNA in the eukaryotic spliceosome. This analysis leads to a set of predictions for the molecular structure of the spliceosomal active site.
Collapse
Affiliation(s)
- Kevin S Keating
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
24
|
Rakotondradany F, Sleiman H, Whitehead MA. Hydrogen-bond self-assembly of DNA-base analogues — Experimental results. CAN J CHEM 2009. [DOI: 10.1139/v09-028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel biomimetic DNA analogue with fluorescence has been synthesized to generate functional supramolecular architectures. Experimental studies show that triaminopyrimidine nucleoside (2) undergoes a sterically controlled self-assembly into hydrogen-bonded linear tapes and hexameric rosettes. Self-association of the hydrogen-bonded triaminopyrimidine–cyanuric acid complex into elongated, rodlike nanostructures was shown by dynamic light scattering and transmission electron microscopy, suggesting hierarchical formation of higher-order, π-stacked assemblies. The hydrogen-bond self-assembly of the DNA analogue decreased the fluorescence of the nucleosides. This guest-induced fluorescence quenching can be used to develop DNA-hybridization probes. MM+ molecular modelling and semi-empirical molecular orbital PM3 calculations (1) predicted the incorporation of triaminopyrimidine nucleoside into new types of artificial DNA strands and triplex formation with natural, complementary DNA strands containing thymine (1).
Collapse
Affiliation(s)
- Felaniaina Rakotondradany
- Department of Chemistry, McGill University, Otto Maass Chemistry Building, 801 Sherbrooke St. West, Montreal, QC H3A 2K6, Canada
- Imperial Oil Resources, Oil Sands Development and Research, 3535 Research Road NW, Calgary, AB T2L 2K8, Canada
| | - Hanadi Sleiman
- Department of Chemistry, McGill University, Otto Maass Chemistry Building, 801 Sherbrooke St. West, Montreal, QC H3A 2K6, Canada
- Imperial Oil Resources, Oil Sands Development and Research, 3535 Research Road NW, Calgary, AB T2L 2K8, Canada
| | - M. A. Whitehead
- Department of Chemistry, McGill University, Otto Maass Chemistry Building, 801 Sherbrooke St. West, Montreal, QC H3A 2K6, Canada
- Imperial Oil Resources, Oil Sands Development and Research, 3535 Research Road NW, Calgary, AB T2L 2K8, Canada
| |
Collapse
|
25
|
Ye Z, Houssein HSH, Mahato RI. Bioconjugation of oligonucleotides for treating liver fibrosis. Oligonucleotides 2008; 17:349-404. [PMID: 18154454 DOI: 10.1089/oli.2007.0097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is urgently needed to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remain the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of alpha1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in-depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|
26
|
Wan C, Guo X, Liu Z, Liu S. Studies of the intermolecular DNA triplexes of C+.GC and T.AT triplets by electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:164-72. [PMID: 17828803 DOI: 10.1002/jms.1277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Formation and stabilities of four 14-mer intermolecular DNA triplexes, consisting of third strands with repeating sequence CTCT, CCTT, CTT, or TTT, were studied by electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) in the gas phase. The gas-phase stabilities of the triplexes were compared with their CD spectra and melting behaviors in solution, and parallel correlation between two phases were obtained. In the presence of 20 mM NH(4) (+) (pH 5.5), the formation of the TTT triplex was not detected in both solution and the gas phase. Other triplexes showed the same order, CTCT > CCTT > CTT, of ion abundances in mass spectra and T(m) values in solution. The more stable triplexes are those that contained higher percentage of C(+).GC triplets and an alternating CT sequence. However, the CCTT with the same C(+).GC triplets as the CTCT showed a higher stability than the latter during the gas-phase dissociation. Furthermore, a biphasic triplex-to-duplex-to-single transition was detected in the gas phase, while a monophasic triplex-to-single dissociation was observed in solution. The present results reveal that hydrogen bonds and electrostatic interactions dominate in the gas phase, while base stacking and hydrophobic interactions dominate in solution to stabilize the triplexes. Moreover, weak acidic conditions (pH 5-6) promote the formation of the parallel triplexes.
Collapse
Affiliation(s)
- Cuihong Wan
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | | | | | | |
Collapse
|
27
|
Halby L, Ryabinin VA, Sinyakov AN, Novopashina DS, Venyaminova AG, Grokhovsky SL, Surovaya AN, Gursky GV, Boutorine AS. Head-to-head bis-hairpin polyamide minor groove binders and their conjugates with triplex-forming oligonucleotides: studies of interaction with target double-stranded DNA. J Biomol Struct Dyn 2007; 25:61-76. [PMID: 17676939 DOI: 10.1080/07391102.2007.10507156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two hairpin hexa(N-methylpyrrole)carboxamide DNA minor groove binders (MGB) were linked together via their N-termini in head-to-head orientation. Complex formation between these bis-MGB conjugates and target DNA has been studied using DNase I footprinting, circular dichroism, thermal dissociation, and molecular modeling. DNase I footprint revealed binding of these conjugates to all the sites of 492 b.p. DNA fragment containing (A/T)(n)X(m)(A/T)(p) sequences, where n>3, p>3; m=1,2; X = A,T,G, or C. Binding affinity depended on the sequence context of the target. CD experiments and molecular modeling showed that oligo(N-methylpyrrole)carboxamide moieties in the complex form two short antiparallel hairpins rather than a long parallel head-to-head hairpin. Binding of bis-MGB also stabilized a target duplex thermodynamically. Sequence specificity of bis-MGB/DNA binding was validated using bis-conjugates of sequence-specific hairpin (N-methylpyrrole)/(N-methylimidazole) carboxamides. In order to increase the size of recognition sequence, the conjugates of bis-MGB with triplex-forming oligonucleotides (TFO) were synthesized and compared to TFO conjugated with single MGB hairpin unit. Bis-MGB-oligonucleotide conjugates also bind to two blocks of three and more A.T/T.A pairs similarly to bis-MGB alone, independently of the oligonucleotide moiety, but with lower affinity. However, the role of TFO in DNA recognition was demonstrated for mono-MGB-TFO conjugate where the binding was detected mainly in the area of the target sequence consisting of both MGB and TFO recognition sites. Basing on the molecular modeling, three-dimensional models of both target DNA/bis-MGB and target DNA/TFO-bis-MGB complexes were built, where bis-MGB forms two antiparallel hairpins. According to the second model, one MGB hairpin is in the minor groove of 5'-adjacent A/T sequence next to the triplex-forming region, whereas the other one occupies the minor groove of the TFO binding polypurine tract. All these data together give a key information for the construction of MGB-MGB and MGB-oligonucleotide conjugates possessing high specificity and affinity for the target double-stranded DNA.
Collapse
Affiliation(s)
- Ludovic Halby
- Museum National d'Histoire Naturelle, RDDM, USM 0503, 57 rue Cuvier, B.P. 26, Paris Cedex 05, F-75231 France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Boutorine AS, Escudé C. Biophysical Analysis of Triple‐Helix Formation. ACTA ACUST UNITED AC 2007; Chapter 7:Unit 7.12. [DOI: 10.1002/0471142700.nc0712s29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Campbell MA, Mason TM, Miller PS. Interactions of platinum(II)-derivatized triplex-forming oligonucleotides with DNA. CAN J CHEM 2007. [DOI: 10.1139/v07-016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polypyrimidine oligonucleotides can bind to tracts of contiguous purines in double-stranded DNA to form triple-stranded complexes. The stability of the triplex is reduced significantly if the target purine tract is interrupted by a single pyrimidine. Previous studies have shown that incorporation of an N4-aminoalkylcytosine into the triplex-forming oligonucleotide (TFO), opposite a single CG interruption, facilitates triplex formation. Examination of molecular models suggested that further modification of the amino group of the aminoalkyl arm might enable adduct formation with the N7 of the guanine of the CG interruption. To test this, we prepared 2′-deoxyribo-and 2′-O-methylribo-TFOs that contained cytosine (C), N4-(2-aminoethyl)cytosine (ae-C), or diethylenetriamineplatinum(II) (DPt-C) or cis-aquodiammineplatinum(II) (cPt-C) derivatives of N4-(2-aminoethyl)cytosine, positioned opposite a CG interruption of a polypurine tract found in the pol gene of HIV-1 proviral DNA. Although the C- and ae-C-derivatized deoxyribo-TFOs formed triplexes of modest stability and the DPt-C-modified TFO failed to form a triplex, the C- and ae-C-derivatized 2′-O-methylribo-TFOs formed remarkably stable triplexes (Tm = 57 °C). The DPt-C- and cPt-C-modified 2′-O-methylribo-TFOs also formed triplexes, although their stabilities were reduced (Tm = 33 °C), suggesting that the tethered platinum group may interfere sterically with TFO binding. Consistent with this hypothesis was the observation that triplex stability was restored (Tm = 57 °C) when the diethylenetriamineplatinum(II) group was tethered to the 5′-end of the 2′-O-methylribo-TFO via a 2-aminoethylcarbamate linkage. Taken together, these results suggest that 2′-O-methylribo-TFOs may be particularly useful in targeting purine tracts in DNA that have CG interruptions, and that further modification with platinum derivatives could lead to the design of TFOs that are capable of covalent binding to their target, thus increasing the effectiveness of the TFO.Key words: triplex-forming oligonucleotide, TFO, cisplatin, interrupted polypurine tract.
Collapse
|
30
|
Novopashina DS, Sinyakov AN, Ryabinin VA, Venyaminova AG, Halby L, Sun JS, Boutorine AS. Sequence-specific conjugates of oligo(2'-O-methylribonucleotides) and hairpin oligocarboxamide minor-groove binders: design, synthesis, and binding studies with double-stranded DNA. Chem Biodivers 2007; 2:936-52. [PMID: 17193185 DOI: 10.1002/cbdv.200590071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
New conjugates of triplex-forming pyrimidine oligo(2'-O-methylribonucleotides) with one or two 'head-to-head' hairpin oligo(N-methylpyrrole carboxamide) minor-groove binders (MGBs) attached to the terminal phosphate of the oligonucleotides with a oligo(ethylene glycol) linker were synthesized. It was demonstrated that, under appropriate conditions, the conjugates form stable complexes with double-stranded DNA (dsDNA) similarly to triplex-forming oligo(deoxyribonucleotide) (TFO) conjugates containing 5-methylated cytosines. Kinetic and thermodynamic parameters of the complex formation were evaluated by gel-shift assay and thermal denaturation. Higher melting temperatures (Tm), faster complex formation, and lower dissociation constants (Kd) of the triple helices (6-7 nM) were observed for complexes of MGB-oligo(2'-O-methylribonucleotide) conjugates with the target dsDNA compared to the nonconjugated individual components. Interaction of MGB moieties with the HIV proviral DNA fragment was indicated by UV/VIS absorption changes at 320 nm in the melting curves. The introduction of thymidine via a 3',3'-type 'inverted' phosphodiester linkage at the 3'-end of oligo(2'-O-methylribonucleotide) conjugates (3'-protection) had no strong influence on triplex formation, but slightly affected complex stability. At pH 6.0, when one or two hairpin MGBs were attached to the oligonucleotide, both triplex formation and minor-groove binding played important roles in complex formation. When two 'head-to-head' oligo(N-methylpyrrole) ligands were attached to the same terminal phosphate of the oligonucleotide or the linker, binding was observed at pH >7.5 and at high temperatures (up to 74 degrees). However, under these conditions, binding was retained only by the MGB part of the conjugate.
Collapse
Affiliation(s)
- Darya S Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 8, 630090 Novosibirsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
31
|
Corral E, Kooijman H, Spek AL, Reedijk J. Nucleic acids in two dimensions: layers of base pairs linked by carboxylate. NEW J CHEM 2007. [DOI: 10.1039/b613845d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Abstract
We have developed high-throughput microtitre plate-based assays for DNA gyrase and other DNA topoisomerases. These assays exploit the fact that negatively supercoiled plasmids form intermolecular triplexes more efficiently than when they are relaxed. Two assays are presented, one using capture of a plasmid containing a single triplex-forming sequence by an oligonucleotide tethered to the surface of a microtitre plate and subsequent detection by staining with a DNA-specific fluorescent dye. The other uses capture of a plasmid containing two triplex-forming sequences by an oligonucleotide tethered to the surface of a microtitre plate and subsequent detection by a second oligonucleotide that is radiolabelled. The assays are shown to be appropriate for assaying DNA supercoiling by Escherichia coli DNA gyrase and DNA relaxation by eukaryotic topoisomerases I and II, and E.coli topoisomerase IV. The assays are readily adaptable to other enzymes that change DNA supercoiling (e.g. restriction enzymes) and are suitable for use in a high-throughput format.
Collapse
Affiliation(s)
- Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre Norwich Research Park, Colney, Norwich NR4 7UH, UK.
| | | | | |
Collapse
|
33
|
Zheng Y, Long H, Schatz GC, Lewis FD. A cooperative beads-on-a-string approach to exceptionally stable DNA triplexes. Chem Commun (Camb) 2006:3830-2. [PMID: 16969472 DOI: 10.1039/b607941e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A poly(dT) oligomer can serve as the string on which synthetic hairpins possessing poly(dA) and poly(dT) arms connected by a hydrophobic perylene diimide linker are assembled like beads on a string. The synthetic hairpins form head-to-head dimers and trimers, respectively, in the absence of the poly(dT) string and in the presence of a string with inverted polarity at mid-strand. However, they assemble in cooperative head-to-tail fashion on normal poly(dT) oligomers.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Chemistry, Northwestern University, Evanston, IL 60208-3113, USA
| | | | | | | |
Collapse
|
34
|
Kotlyar A, Borovok N, Molotsky T, Klinov D, Dwir B, Kapon E. Synthesis of novel poly(dG)-poly(dG)-poly(dC) triplex structure by Klenow exo- fragment of DNA polymerase I. Nucleic Acids Res 2005; 33:6515-21. [PMID: 16314313 PMCID: PMC1292991 DOI: 10.1093/nar/gki963] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The extension of the G-strand of long (700 bp) poly(dG)-poly(dC) by the Klenow exo(-) fragment of DNA polymerase I yields a complete triplex structure of the H-DNA type. High-performance liquid chromatography analysis demonstrates that the length of the G-strand is doubled during the polymerase synthesis. Fluorescence resonance energy transfer analysis shows that the 5' ends of the G- and the C-strands, labeled with fluorescein and TAMRA, respectively, are positioned close to each other in the product of the synthesis. Atomic force microscopy morphology imaging shows that the synthesized structures lack single-stranded fragments and have approximately the same length as the parent 700 bp poly(dG)-poly(dC). CD spectrum of the polymer has a large negative peak at 278 nm, which is characteristic of the poly(dG)-poly(dG)-poly(dC) triplex. The polymer is resistant to DNase and interacts much more weakly with ethidium bromide as compared with the double-stranded DNA.
Collapse
Affiliation(s)
- Alexander Kotlyar
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Israel.
| | | | | | | | | | | |
Collapse
|
35
|
Rakotondradany F, Palmer A, Toader V, Chen B, Whitehead MA, Sleiman HF. Hydrogen-bond self-assembly of DNA-analogues into hexameric rosettes. Chem Commun (Camb) 2005:5441-3. [PMID: 16261240 DOI: 10.1039/b511984g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly of a DNA-analogue hexameric rosette from triaminopyrimidine and cyanuric acid-based nucleosides, and its subsequent aggregation into rod-like morphologies is reported.
Collapse
|
36
|
A molecular orbital study of C–H···Cl– and N–H···Cl– hydrogen bonds. Inferences on selected metal complexes and on protein ClC Cl– channels. CR CHIM 2005. [DOI: 10.1016/j.crci.2004.11.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Cogoi S, Ballico M, Bonora GM, Xodo LE. Antiproliferative activity of a triplex-forming oligonucleotide recognizing a Ki-ras polypurine/polypyrimidine motif correlates with protein binding. Cancer Gene Ther 2005; 11:465-76. [PMID: 15118760 DOI: 10.1038/sj.cgt.7700722] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Ki-ras gene is frequently mutated and/or overexpressed in human cancer. Since it is suspected to play a key role in the pathogenesis of many tumors, there is interest to search for strategies aiming at the specific inhibition of this oncogene. In this paper, we investigated the capacity of a 20 mer G-rich oligonucleotide (ODN20) conjugated to high molecular weight monomethoxy polyethylene glycol (MPEG) to inhibit the expression of the Ki-ras gene and the proliferation of pancreatic cancer cells. The conjugate, MPEG ODN20, was designed to form a triplex with a critical pur/pyr sequence located in the promoter of the Ki-ras gene. To make the conjugate resistant to endogenous and exogenous nucleases, five phosphorothioate linkages were introduced in its backbone. Confocal microscopy and FACS experiments showed that MPEG ODN20 had a higher capacity to penetrate the cell membranes and accumulate in the nucleus of Panc-1 cells than ODN20. Incubation of Panc-1 cells with MPEG ODN20 reduced specifically the levels of Ki-ras mRNA and RAS protein p21RAS. A single-dose administration of MPEG ODN20 was sufficient to inhibit cell proliferation by about 50% compared with control. By contrast, the antiproliferative activity of the unconjugated ODN20 analog was found to be not significant. Band-shift and footprinting experiments showed that MPEG ODN20 formed a weak triplex (Kd approximately 1.5 microM at 37 degrees C, 50 mM Tris-acetate, pH 7.4, 10 mM NaCl, 10 mM MgCl2, 5 mM spermidine) with the Ki-ras pyr/pur motif, suggesting that its bioactivity can hardly be mediated by a triplex-based mechanism. Here, we provide evidence that, in vitro, ODN20 and MPEG ODN20 competitively inhibit the binding to the Ki-ras pur/pyr motif of a nuclear protein, suggesting that the activity of MPEG ODN20 occurs with an aptameric mechanism. The biological implications of this study are discussed.
Collapse
Affiliation(s)
- Susanna Cogoi
- Dipartimento di Scienze e Tecnologie Biomediche, Piazzale Kolbe 4, Università di Udine, 33100 Udine, Italy
| | | | | | | |
Collapse
|
38
|
Brucale M, Zuccheri G, Samorì B. The dynamic properties of an intramolecular transition from DNA duplex to cytosine-thymine motif triplex. Org Biomol Chem 2005; 3:575-7. [PMID: 15703789 DOI: 10.1039/b418353n] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We here report that the formation and breakdown of an intramolecular cytosine-thymine (CT) motif DNA triple-helix can be performed repeatedly, quickly and independently of its local concentration without performance reduction over successive cycles; as a consequence, we propose that this set of characteristics makes the DNA duplex-triplex transition an ideal candidate to power simple nanometer-scale devices capable of maintaining effective performance regardless of their local concentration.
Collapse
Affiliation(s)
- Marco Brucale
- Department of Biochemistry G. Moruzzi and National Institute for the Physics of the Matter, University of Bologna, Via Irnerio 48, Bologna 40126
| | | | | |
Collapse
|
39
|
Lehmann TE, Greenberg WA, Liberles DA, Wada CK, Dervan PB. Triple-Helix Formation by Pyrimidine Oligonucleotides Containing Nonnatural Nucleosides with Extended Aromatic Nucleobases: Intercalation from the major groove as a method for recognizing C·G and T · A base pairs. Helv Chim Acta 2004. [DOI: 10.1002/hlca.19970800618] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Aviñó A, Cubero E, González C, Eritja R, Orozco M. Antiparallel triple helices. Structural characteristics and stabilization by 8-amino derivatives. J Am Chem Soc 2004; 125:16127-38. [PMID: 14678005 DOI: 10.1021/ja035039t] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structural, dynamical, and recognition properties of antiparallel DNA triplexes formed by the antiparallel d(G#G.C), d(A#A.T), and d(T#A.T) motifs (the pound sign and dot mean reverse-Hoogsteen and Watson-Crick hydrogen bonds, respectively) are studied by means of "state of the art" molecular dynamics simulations. Once the characteristics of the helix are defined, molecular dynamics and thermodynamic integration calculations are used to determine the expected stabilization of the antiparallel triplex caused by the introduction of 8-aminopurines. Finally, oligonucleotides containing 8-aminopurine derivatives are synthesized and tested experimentally using several approaches in a variety of systems. A very large stabilization of the triplex is found experimentally, as predicted by simulations. These results open the possibility for the use of oligonucleotides carrying 8-aminopurines to bind single-stranded nucleic acids by formation of antiparallel triplexes.
Collapse
Affiliation(s)
- Anna Aviñó
- Institut de Biologia Molecular de Barcelona, CSIC, C/Jordi Girona 18-26, E-08034 Barcelona, Spain
| | | | | | | | | |
Collapse
|
41
|
|
42
|
James PL, Brown T, Fox KR. Thermodynamic and kinetic stability of intermolecular triple helices containing different proportions of C+*GC and T*AT triplets. Nucleic Acids Res 2003; 31:5598-606. [PMID: 14500823 PMCID: PMC206477 DOI: 10.1093/nar/gkg782] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have used oligonucleotides containing appropriately placed fluorophores and quenchers to measure the stability of 15mer intermolecular triplexes with third strands consisting of repeats of TTT, TTC, TCC and TCTC. In the presence of 200 mM sodium (pH 5.0) triplexes that contain only T.AT triplets are unstable and melt below 30 degrees C. In contrast, triplets with repeats of TTC, TCC and CTCT melt at 67, 72 and 76 degrees C, respectively. The most stable complex is generated by the sequence containing alternating C+*GC and T*AT triplets. All four triplexes are stabilised by increasing the ionic strength or by the addition of magnesium, although triplexes with a higher proportion of C+*GC triplets are much less sensitive to changes in the ionic conditions. The enthalpies of formation of these triplexes were estimated by examining the concentration dependence of the melting profiles and show that, in the presence of 200 mM sodium at pH 5.0, each C+*GC triplet contributes about 30 kJ x mol(-1), while each T*AT contributes only 11 kJ x mol(-1). Kinetic experiments with these oligonucleotides show that in 200 mM sodium (pH 5.0) repeats of TCC and TTC have half-lives of approximately 20 min, while the triplex with alternating C+*GC and T.AT triplets has a half-life of approximately 3 days. In contrast, the dissociation kinetics of the triplex containing only T*AT are too fast to measure.
Collapse
Affiliation(s)
- Peter L James
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | |
Collapse
|
43
|
Jaumot J, Aviña A, Eritja R, Tauler R, Gargallo R. Resolution of parallel and antiparallel oligonucleotide triple helices formation and melting processes by multivariate curve resolution. J Biomol Struct Dyn 2003; 21:267-78. [PMID: 12956610 DOI: 10.1080/07391102.2003.10506922] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A procedure is described for the complete resolution of concentration profiles of oligonucleotide triplexes as a function of pH and temperature. The pH and temperature ranges at which triplexes are present and the relative concentrations of all the species involved in acid-base and conformational equilibria are successfully estimated from Multivariate Curve Resolution analysis of UV absorbance spectra recorded along acid-base titrations and melting experiments of single stranded, hairpin and their mixtures. The dependence of formation constants upon pH was successfully estimated. The hairpin h26 (5'-GAAGGAGGAGA-TTTT-TCTCCTCCTTC-3'), and the single stranded oligonucleotides s11CT (5'-CTTCCTCCTCT-3'), s11AG (5'-AGAGGAGGAAG-3') and s11TG (5'-TGTGGTGGTTG-3') were synthesized and their protonation and conformational equilibria were studied in detail. The procedure was shown to be especially useful for the study of triplexes with a low hypochromism upon formation.
Collapse
Affiliation(s)
- J Jaumot
- Departament de Quimica Analitica, Universitat de Barcelona, Marti Franques 1 -11, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
44
|
Zain R, Polverari D, Nguyen CH, Blouquit Y, Bisagni E, Garestier T, Grierson DS, Sun JS. Optimization of triple-helix-directed DNA cleavage by benzoquinoquinoxaline-ethylenediaminetetraacetic acid conjugates. Chembiochem 2003; 4:856-62. [PMID: 12964160 DOI: 10.1002/cbic.200300621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The formation of triple-helical structures of DNA is based on sequence-specific recognition of oligopyrimidine.oligopurine stretches of double-helical DNA. Triple-helical structures can be stabilized by DNA-binding ligands. Benzoquinoquinoxaline (BQQ) derivatives are among the most potent intercalating-type agents known to stabilize DNA triple-helical structures. We previously reported the conversion of BQQ into a triplex-directed DNA cleaving agent, namely BQQ-ethylenediaminetetraacetic acid (EDTA), by coupling of 6-(3-aminopropylamino)BQQ to a suitable ethylenediaminetetraacetic acid derivative, and we demonstrated the ability of this conjugate to cause double-stranded cleavage of DNA at the triplex site. However, this prototype derivative BQQ-EDTA conjugate showed lower affinity towards triplex DNA than BQQ itself. In the light of this observation, and guided by molecular modeling studies, we synthesized a second generation of BQQ-EDTA conjugates based on 6-[bis(2-aminoethyl)amino]- and 6-(3,3'-diamino-N-methyldipropylamino)-BQQ derivatives. We confirmed by DNA melting experiments that the new conjugates displayed an increased specific affinity towards triple helices when compared to the previously synthesized BQQ-EDTA. In addition, the efficiency of these new agents in triplex-specific binding and cleavage was demonstrated by triplex-directed double-stranded cleavage of plasmid DNA.
Collapse
Affiliation(s)
- Rula Zain
- Department of Molecular Biology & Functional Genomics, Stockholm University, 10691 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kankia BI. Mg2+-induced triplex formation of an equimolar mixture of poly(rA) and poly(rU). Nucleic Acids Res 2003; 31:5101-7. [PMID: 12930961 PMCID: PMC212798 DOI: 10.1093/nar/gkg698] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Magnesium ions strongly influence the structure and biochemical activity of RNA. The interaction of Mg2+ with an equimolar mixture of poly(rA) and poly(rU) has been investigated by UV spectroscopy, isothermal titration calorimetry, ultrasound velocimetry and densimetry. Measurements in dilute aqueous solutions at 20 degrees C revealed two differ ent processes: (i) Mg2+ binding to unfolded poly(rA)*poly(rU) up to [Mg2+]/[phosphate] = 0.25; and (ii) poly(rA)*2poly(rU) triplex formation at [Mg2+]/[phosphate] between 0.25 and 0.5. The enthalpies of these two different processes are favorable and similar to each other, approximately -1.6 kcal x mol(-1) of base pairs. Volume and compressibility effects of the first process are positive, 8 cm3 x mol(-1) and 24 x 10(-4) cm3 x mol(-1) x bar(-1), respectively, and correspond to the release of water molecules from the hydration shells of Mg2+ and the polynucleotides. The triplex formation is also accompanied by a positive change in compressibility, 14 x 10(-4) cm3 x mol(-1) x bar(-1), but only a small change in volume, 1 cm3 x mol(-1). A phase diagram has been constructed from the melting experiments of poly(rA)*poly(rU) at a constant K+ concentration, 140 mM, and various amounts of Mg2+. Three discrete regions were observed, corresponding to single-, double- and triple-stranded complexes. The phase boundary corresponding to the transition between double and triple helical conformations lies near physiological salt concentrations and temperature.
Collapse
Affiliation(s)
- Besik I Kankia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Avenue, St Paul, MN 55108, USA.
| |
Collapse
|
46
|
Walberer BJ, Cheng AC, Frankel AD. Structural diversity and isomorphism of hydrogen-bonded base interactions in nucleic acids. J Mol Biol 2003; 327:767-80. [PMID: 12654262 DOI: 10.1016/s0022-2836(03)00090-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The wide structural diversity of RNA results in part from the diversity of non-Watson-Crick interactions between bases. To examine the repertoire of possible hydrogen bond interactions among bases, we computed databases of base-pairs and base-triples by systematically matching all possible hydrogen-bond donors and acceptors between bases and evaluating the geometries of each planar configuration. For base-pairs, we find 53 arrangements having at least two hydrogen bonds, including 23 pairs with protonated bases that have not previously been modeled. A comparison with experimentally observed base-pairs reveals an unexpected G:U pair recently observed in the ribosome. For base-triples, we find 840 arrangements in which the three bases are constrained by a total of at least three hydrogen bonds. Base-triples in particular exhibit a wide range of structural diversity, suggesting how compact or elongated nucleic acid structures may be constructed using different hydrogen-bonding patterns. Base-pair and base-triple conformations were systematically compared to identify structurally isomorphic combinations, and the experimentally observed arrangements within double and triple helices are among the most isomorphic. Unexpectedly, however, other combinations in the database are even more isomorphic, including several in which all-purine arrangements overlap with all-pyrimidine arrangements. These studies highlight some of the combinatoric and geometric versatility of base interactions and help provide a framework for analyzing and modeling isomorphic interactions and potentially for designing novel nucleic acid structures.
Collapse
Affiliation(s)
- Bernhard J Walberer
- Department of Biochemistry and Biophysics, University of California, 513 Parnassus Avenue, San Francisco, CA 94143-0448, USA
| | | | | |
Collapse
|
47
|
Alberti P, Arimondo PB, Mergny JL, Garestier T, Hélène C, Sun JS. A directional nucleation-zipping mechanism for triple helix formation. Nucleic Acids Res 2002; 30:5407-15. [PMID: 12490709 PMCID: PMC140048 DOI: 10.1093/nar/gkf675] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A detailed kinetic study of triple helix formation was performed by surface plasmon resonance. Three systems were investigated involving 15mer pyrimidine oligonucleotides as third strands. Rate constants and activation energies were validated by comparison with thermodynamic values calculated from UV-melting analysis. Replacement of a T.A base pair by a C.G pair at either the 5' or the 3' end of the target sequence allowed us to assess mismatch effects and to delineate the mechanism of triple helix formation. Our data show that the association rate constant is governed by the sequence of base triplets on the 5' side of the triplex (referred to as the 5' side of the target oligopurine strand) and provides evidence that the reaction pathway for triple helix formation in the pyrimidine motif proceeds from the 5' end to the 3' end of the triplex according to the nucleation-zipping model. It seems that this is a general feature for all triple helices formation, probably due to the right-handedness of the DNA double helix that provides a stronger base stacking at the 5' than at the 3' duplex-triplex junction. Understanding the mechanism of triple helix formation is not only of fundamental interest, but may also help in designing better triple helix-forming oligonucleotides for gene targeting and control of gene expression.
Collapse
Affiliation(s)
- Patrizia Alberti
- Laboratoire de Biophysique, USM0503 Muséum National d'Histoire Naturelle, UMR8646 CNRS-MNHN, U565 INSERM, 43 rue Cuvier 75231 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
48
|
Reither S, Jeltsch A. Specificity of DNA triple helix formation analyzed by a FRET assay. BMC BIOCHEMISTRY 2002; 3:27. [PMID: 12323077 PMCID: PMC128820 DOI: 10.1186/1471-2091-3-27] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2002] [Accepted: 09/12/2002] [Indexed: 11/10/2022]
Abstract
BACKGROUND A third DNA strand can bind into the major groove of a homopurine duplex DNA to form a DNA triple helix. Sequence specific triplex formation can be applied for gene targeting, gene silencing and mutagenesis. RESULTS We have analyzed triplex formation of two polypurine triplex forming oligodeoxynucleotides (TFOs) using fluorescence resonance energy transfer (FRET). Under our conditions, the TFOs bind to their cognate double strand DNAs with binding constants of 2.6 x 10(5) and 2.3 x 10(6) M(-1). Our data confirm that the polypurine TFO binds in an antiparallel orientation with respect to the polypurine DNA strand and that triplex formation requires Mg2+ ions whereas it is inhibited by K+ ions. The rate of formation of triple helices is slow with bimolecular rate constants of 5.6 x 10(4) and 8.1 x 10(4) min(-1) M(-1). Triplex dissociation was not detectable over at least 30 hours. Triplex formation is sequence specific; alteration of a single base pair within the 13 base pairs long TFOs prevents detectable triplex formation. CONCLUSION We have applied a FRET assay to investigate the specificity of DNA triple helix formation. This assay is homogeneous, continuous and specific, because the appearance of the FRET signal is directly correlated to triplex formation. We show that polypurine TFOs bind highly specifically to polypurine stretches in double stranded DNA. This is a prerequisite for biotechnical applications of triple helices to mediate sequence specific recognition of DNA.
Collapse
Affiliation(s)
- Sabine Reither
- Institut für Biochemie, FB8 Justus-Liebig-Universität Heinrich-Buff-Ring 58 35392 Giessen Germany
- present address: Institut für Genetik, Universität des Saarlandes Postfach 151150 66041 Saarbrücken Germany
| | - Albert Jeltsch
- Institut für Biochemie, FB8 Justus-Liebig-Universität Heinrich-Buff-Ring 58 35392 Giessen Germany
| |
Collapse
|
49
|
Antony T, Subramaniam V. A molecular beacon strategy for real-time monitoring of triplex DNA formation kinetics. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2002; 12:145-54. [PMID: 12162697 DOI: 10.1089/108729002760220743] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We used a molecular beacon (MB) containing a 15-mer triplex-forming oligonucleotide (TFO) to probe in real-time the kinetics of triplex DNA formation in the left side of the TCl tract (502-516) of the c-src proto-oncogene in vitro. The metal ions Na+, K+, and Mg2+ stabilized triplex DNA at this site. The pseudo-first-order rate constant (kpsi) and the second-order association rate constant (k1) for the binding of the MB to the target duplex in 10 mM sodium phosphate buffer, pH 7.3, increased from 3.2 +/- 0.9 to 15 +/- 2.8 x 10(-3) s(-1) and 6.4 +/- 1.8 to 30 +/- 5.6 x 102 M(-1) s(-1), respectively, on increasing the MgCl2 concentration from 1 to 2.5 mM. Similar values were obtained for the triplex DNA stabilized by NaCl (100-250 mM). Surprisingly, the values were around 2 times higher in the presence of KCl. The AG of triplex formation in the presence of 1 mM MgCl2, 150 mM NaCl, and 150 mM KCl were -7.8 +/- 0.3, -8.2 +/- 0.3 and -8.7 +/- 0.7 kcal/mol respectively, despite significant differences in the values of deltaH and deltaS, suggesting enthalpy-entropy compensation in the stabilization of the triplex DNA by these metal ions. These results show the utility of MBs ih probing triplex DNA formation and in evaluating kinetic and thermodynamic parameters important for the design and development of TFOs as triplex DNA-based therapeutic agents.
Collapse
Affiliation(s)
- Thomas Antony
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | | |
Collapse
|
50
|
Goobes R, Cohen O, Minsky A. Unique condensation patterns of triplex DNA: physical aspects and physiological implications. Nucleic Acids Res 2002; 30:2154-61. [PMID: 12000835 PMCID: PMC115281 DOI: 10.1093/nar/30.10.2154] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Triple-stranded DNA structures can be formed in living cells, either by native DNA sequences or following the application of antigene strategies, in which triplex-forming oligonucleotides are targeted to the nucleus. Recent studies imply that triplex motifs may play a role in DNA transcription, recombination and condensation processes in vivo. Here we show that very short triple-stranded DNA motifs, but not double-stranded segments of a comparable length, self-assemble into highly condensed and ordered structures. The condensation process, studied by circular dichroism and polarized-light microscopy, occurs under conditions that mimic cellular environments in terms of ionic strength, ionic composition and crowding. We argue that the unique tendency of triplex DNA structures to self-assemble, a priori unexpected in light of the very short length and the large charge density of these motifs, reflects the presence of strong attractive interactions that result from enhanced ion correlations. The results provide, as such, a direct experimental link between charge density, attractive interactions between like-charge polymers and DNA packaging. Moreover, the observations strongly support the notion that triple-stranded DNA motifs may be involved in the regulation of chromosome organization in living cells.
Collapse
Affiliation(s)
- Rivka Goobes
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|