1
|
Parlato R, Volarić J, Lasorsa A, Bagherpoor Helabad M, Kobauri P, Jain G, Miettinen MS, Feringa BL, Szymanski W, van der Wel PCA. Photocontrol of the β-Hairpin Polypeptide Structure through an Optimized Azobenzene-Based Amino Acid Analogue. J Am Chem Soc 2024; 146:2062-2071. [PMID: 38226790 PMCID: PMC10811659 DOI: 10.1021/jacs.3c11155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024]
Abstract
A family of neurodegenerative diseases, including Huntington's disease (HD) and spinocerebellar ataxias, are associated with an abnormal polyglutamine (polyQ) expansion in mutant proteins that become prone to form amyloid-like aggregates. Prior studies have suggested a key role for β-hairpin formation as a driver of nucleation and aggregation, but direct experimental studies have been challenging. Toward such research, we set out to enable spatiotemporal control over β-hairpin formation by the introduction of a photosensitive β-turn mimic in the polypeptide backbone, consisting of a newly designed azobenzene derivative. The reported derivative overcomes the limitations of prior approaches associated with poor photochemical properties and imperfect structural compatibility with the desired β-turn structure. A new azobenzene-based β-turn mimic was designed, synthesized, and found to display improved photochemical properties, both prior and after incorporation into the backbone of a polyQ polypeptide. The two isomers of the azobenzene-polyQ peptide showed different aggregate structures of the polyQ peptide fibrils, as demonstrated by electron microscopy and solid-state NMR (ssNMR). Notably, only peptides in which the β-turn structure was stabilized (azobenzene in the cis configuration) closely reproduced the spectral fingerprints of toxic, β-hairpin-containing fibrils formed by mutant huntingtin protein fragments implicated in HD. These approaches and findings will enable better deciphering of the roles of β-hairpin structures in protein aggregation processes in HD and other amyloid-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Raffaella Parlato
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jana Volarić
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The
Netherlands
| | - Alessia Lasorsa
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Mahdi Bagherpoor Helabad
- Department
of Theory and Bio-Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Piermichele Kobauri
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The
Netherlands
| | - Greeshma Jain
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Markus S. Miettinen
- Computational
Biology Unit, Departments of Chemistry and Informatics, University of Bergen, 5020 Bergen, Norway
| | - Ben L. Feringa
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The
Netherlands
| | - Wiktor Szymanski
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The
Netherlands
- Medical
Imaging Center, University Medical Center
Groningen, Hanzeplein
1, 9713 GZ Groningen, The Netherlands
| | - Patrick C. A. van der Wel
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Zhang M, Liu K. Lipid and Protein Oxidation of Brown Rice and Selenium-Rich Brown Rice during Storage. Foods 2022; 11:foods11233878. [PMID: 36496686 PMCID: PMC9737139 DOI: 10.3390/foods11233878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Selenium-rich rice has become one of the effective ways to increase people's selenium intake. Selenium-containing proteins have higher antioxidant properties, which may lead to selenium-rich brown rice (Se-BR) having better storage stability than ordinary brown rice (BR). By measuring the peroxidation value, fatty acid value, carbonyl value and protein secondary structure, it was found that Se-BR had higher oxidation resistance stability than BR. The biological function of the differential proteins (DEPs) between ordinary brown rice stored for 0 days (BR-0) and 180 days (BR-6) as well as Se-rich brown rice stored for 0 days (Se-0) and 180 days (Se-6) was investigated by using iTRAQ. A total of 237, 235, 113 and 213 DEPs were identified from group A (BR-0/BR-6), group B (Se-0/Se-6), group C (BR-0/Se-0) and group D (BR-6/Se-6), respectively. Kyoto Encyclopedia of Genes and Genomes analysis showed that the DEPs were mainly enriched in glucose metabolism, tricarboxylic acid cycle, fatty acid biosynthesis and degradation, glutathione metabolism, sulfur metabolism, peroxisome and other metabolic pathways. This study provides theoretical support for the study of protein oxidation kinetics and storage quality control of brown rice during storage.
Collapse
Affiliation(s)
- Minghui Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-371-67758850
| |
Collapse
|
3
|
Molecular Dynamics Study of Citrullinated Proteins Associated with the Development of Rheumatoid Arthritis. Proteomes 2022; 10:proteomes10010008. [PMID: 35225987 PMCID: PMC8884019 DOI: 10.3390/proteomes10010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
Biological activity regulation by protein post-translational modification (PTM) is critical for cell function, development, differentiation, and survival. Dysregulation of PTM proteins is present in various pathological conditions, including rheumatoid arthritis (RA). RA is a systemic autoimmune disease that primarily affects joints, and there are three main types of protein PTMs associated with the development of this disease, namely, glycosylation, citrullination, and carbamylation. Glycosylation is important for the processing and presentation of antigen fragments on the cell surface and can modulate immunoglobulin activity. The citrullination of autoantigens is closely associated with RA, as evidenced by the presence of antibodies specific to citrullinated proteins in the serum of patients. Carbamylation and dysregulation have recently been associated with RA development in humans.In this study, we performed an overview analysis of proteins with post-translational modifications associated with the development of RA adverted in peer-reviewed scientific papers for the past 20 years. As a result of the search, a list of target proteins and corresponding amino acid sequences with PTM in RA was formed. Structural characteristics of the listed modified proteins were extracted from the Protein Data Bank. Then, molecular dynamics experiments of intact protein structures and corresponding structures with PTMs were performed regarding structures in the list announced in the ProtDB service. This study aimed to conduct a molecular dynamics study of intact proteins and proteins, including post-translational modification and protein citrullination, likely associated with RA development. We observed another exhibition of the fundamental physics concept, symmetry, at the submolecular level, unveiled as the autonomous repetitions of outside the protein structural motif performance globule corresponding to those in the whole protein molecule.
Collapse
|
4
|
Fenner K, Redgate A, Brancaleon L. A 200 nanoseconds all-atom simulation of the pH-dependent EF loop transition in bovine β-lactoglobulin. The role of the orientation of the E89 side chain. J Biomol Struct Dyn 2022; 40:549-564. [PMID: 32909899 PMCID: PMC8853732 DOI: 10.1080/07391102.2020.1817785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In silico molecular dynamics (MD) using crystallographic and NMR data was used to simulate the effects of the protonation state of E89 on the pH-dependent conformational rearrangement of the EF loop, also known as the Tanford transition, in a series of apo-β-lactoglobulin (BLG) structures. Compared to existing studies these simulations were carried out over a much longer time scale (200 ns where the stability of the transition can be evaluated) and used an explicit water model. We considered eight different entries from the Brookhaven Protein Data Bank (PDB) separated into two groups. We observed that fixing the protonation state of E89 prompts the transition of the EF loop only when its side chain is oriented under the loop and into the entrance of the interior cavity. The motion of the EF loop occurs mostly as a step-function and its timing varies greatly from ∼ 20 ns to ∼170 ns from the beginning of the simulation. Once the transition is completed, the protein appears to reach a stable conformation as in a true two-state transition. We also observed novel findings. When the transition occurs, the hydrogen bond between E89 and S116 is replaced with a salt bridge with Lys residues in the βC-CD loop-βD motif. This electrostatic interaction causes the distortion of this motif as well as the protrusion of the GH loop into the aperture of the cavity with the result of limiting the increase of its contour area despite the rotation of the EF loop.Communicated by Ramaswamy H. Sarma.
Collapse
|
5
|
Menard LM, Wood NB, Vigoreaux JO. Secondary Structure of the Novel Myosin Binding Domain WYR and Implications within Myosin Structure. BIOLOGY 2021; 10:603. [PMID: 34209926 PMCID: PMC8301185 DOI: 10.3390/biology10070603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 01/05/2023]
Abstract
Structural changes in the myosin II light meromyosin (LMM) that influence thick filament mechanical properties and muscle function are modulated by LMM-binding proteins. Flightin is an LMM-binding protein indispensable for the function of Drosophila indirect flight muscle (IFM). Flightin has a three-domain structure that includes WYR, a novel 52 aa domain conserved throughout Pancrustacea. In this study, we (i) test the hypothesis that WYR binds the LMM, (ii) characterize the secondary structure of WYR, and (iii) examine the structural impact WYR has on the LMM. Circular dichroism at 260-190 nm reveals a structural profile for WYR and supports an interaction between WYR and LMM. A WYR-LMM interaction is supported by co-sedimentation with a stoichiometry of ~2.4:1. The WYR-LMM interaction results in an overall increased coiled-coil content, while curtailing ɑ helical content. WYR is found to be composed of 15% turns, 31% antiparallel β, and 48% 'other' content. We propose a structural model of WYR consisting of an antiparallel β hairpin between Q92-K114 centered on an ASX or β turn around N102, with a G1 bulge at G117. The Drosophila LMM segment used, V1346-I1941, encompassing conserved skip residues 2-4, is found to possess a traditional helical profile but is interpreted as having <30% helical content by multiple methods of deconvolution. This low helicity may be affiliated with the dynamic behavior of the structure in solution or the inclusion of a known non-helical region in the C-terminus. Our results support the hypothesis that WYR binds the LMM and that this interaction brings about structural changes in the coiled-coil. These studies implicate flightin, via the WYR domain, for distinct shifts in LMM secondary structure that could influence the structural properties and stabilization of the thick filament, scaling to modulation of whole muscle function.
Collapse
Affiliation(s)
| | | | - Jim O. Vigoreaux
- Department of Biology, University of Vermont, Burlington, VT 05405, USA; (L.M.M.); (N.B.W.)
| |
Collapse
|
6
|
Mitsikas DA, Glykos NM. A molecular dynamics simulation study on the propensity of Asn-Gly-containing heptapeptides towards β-turn structures: Comparison with ab initio quantum mechanical calculations. PLoS One 2020; 15:e0243429. [PMID: 33270807 PMCID: PMC7714341 DOI: 10.1371/journal.pone.0243429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/23/2020] [Indexed: 11/19/2022] Open
Abstract
Both molecular mechanical and quantum mechanical calculations play an important role in describing the behavior and structure of molecules. In this work, we compare for the same peptide systems the results obtained from folding molecular dynamics simulations with previously reported results from quantum mechanical calculations. More specifically, three molecular dynamics simulations of 5 μs each in explicit water solvent were carried out for three Asn-Gly-containing heptapeptides, in order to study their folding and dynamics. Previous data, based on quantum mechanical calculations within the DFT framework have shown that these peptides adopt β-turn structures in aqueous solution, with type I’ β-turn being the most preferred motif. The results from our analyses indicate that at least for the given systems, force field and simulation protocol, the two methods diverge in their predictions. The possibility of a force field-dependent deficiency is examined as a possible source of the observed discrepancy.
Collapse
Affiliation(s)
- Dimitrios A. Mitsikas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University campus, Alexandroupolis, Greece
| | - Nicholas M. Glykos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University campus, Alexandroupolis, Greece
- * E-mail:
| |
Collapse
|
7
|
Batalha IL, Lychko I, Branco RJF, Iranzo O, Roque ACA. β-Hairpins as peptidomimetics of human phosphoprotein-binding domains. Org Biomol Chem 2020; 17:3996-4004. [PMID: 30945720 DOI: 10.1039/c9ob00564a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphoprotein-binding domains interact with cognate phosphorylated targets ruling several biological processes. The impairment of such interactions is often associated with disease development, namely cancer. The breast cancer susceptibility gene 1 (BRCA1) C-terminal (BRCT) domain is involved in the control of complex signaling networks of the DNA damage response. The capture and identification of BRCT-binding proteins and peptides may be used for the development of new diagnostic tools for diseases with abnormal phosphorylation profiles. Here we show that designed cyclic β-hairpin structures can be used as peptidomimetics of the BRCT domain, with high selectivity in binding to a target phosphorylated peptide. The amino acid residues and spatial constraints involved in the interaction between a phosphorylated peptide (GK14-P) and the BRCT domain were identified and crafted onto a 14-mer β-hairpin template in silico. Several cyclic peptides models were designed and their binding towards the target peptide and other phosphorylated peptides evaluated through virtual screening. Selected cyclic peptides were then synthesized, purified and characterized. The high affinity and selectivity of the lead cyclic peptide towards the target phosphopeptide was confirmed, and the possibility to capture it using affinity chromatography demonstrated. This work paves the way for the development of cyclic β-hairpin peptidomimetics as a novel class of affinity reagents for the highly selective identification and capture of target molecules.
Collapse
Affiliation(s)
- I L Batalha
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal.
| | | | | | | | | |
Collapse
|
8
|
Design and structural characterisation of monomeric water-soluble α-helix and β-hairpin peptides: State-of-the-art. Arch Biochem Biophys 2019; 661:149-167. [DOI: 10.1016/j.abb.2018.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
|
9
|
Zamora-Carreras H, Maestro B, Strandberg E, Ulrich AS, Sanz JM, Jiménez MÁ. Roles of Amphipathicity and Hydrophobicity in the Micelle-Driven Structural Switch of a 14-mer Peptide Core from a Choline-Binding Repeat. Chemistry 2018; 24:5825-5839. [PMID: 29369425 DOI: 10.1002/chem.201704802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 01/16/2023]
Abstract
Choline-binding repeats (CBRs) are ubiquitous sequences with a β-hairpin core that are found in the surface proteins of several microorganisms such as S. pneumoniae (pneumococcus). Previous studies on a 14-mer CBR sequence derived from the pneumoccal LytA autolysin (LytA239-252 peptide) have demonstrated a switch behaviour for this peptide, so that it acquires a stable, native-like β-hairpin conformation in aqueous solution but is reversibly transformed into an amphipathic α-helix in the presence of detergent micelles. With the aim of understanding the factors responsible for this unusual β-hairpin to α-helix transition, and to specifically assess the role of peptide hydrophobicity and helical amphipathicity in the process, we designed a series of LytA239-252 variants affecting these two parameters and studied their interaction with dodecylphosphocholine (DPC) micelles by solution NMR, circular dichroism and fluorescence spectroscopies. Our results indicate that stabilising cross-strand interactions become essential for β-hairpin stability in the absence of optimal turn sequences. Moreover, both amphipathicity and hydrophobicity display comparable importance for helix stabilisation of CBR-derived peptides in micelles, indicating that these sequences represent a novel class of micelle/membrane-interacting peptides.
Collapse
Affiliation(s)
- Héctor Zamora-Carreras
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006, Madrid, Spain
| | - Beatriz Maestro
- Instituto de Biología MolecularyCelular, Universidad Miguel Hernández, Elche, 03202, Alicante, Spain
| | - Erik Strandberg
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany.,Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Jesús M Sanz
- Instituto de Biología MolecularyCelular, Universidad Miguel Hernández, Elche, 03202, Alicante, Spain.,Biological Research Centre (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - M Ángeles Jiménez
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006, Madrid, Spain
| |
Collapse
|
10
|
Diana D, Di Salvo C, Celentano V, De Rosa L, Romanelli A, Fattorusso R, D'Andrea LD. Conformational stabilization of a β-hairpin through a triazole–tryptophan interaction. Org Biomol Chem 2018; 16:787-795. [DOI: 10.1039/c7ob02815f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triazole and indole rings stabilize a β-hairpin conformation through an aromatic–aromatic interaction.
Collapse
Affiliation(s)
| | | | | | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini
- CNR
- Napoli
- Italy
| | | | - Roberto Fattorusso
- Dipartimento di Scienze e Tecnologie Ambientali
- Biologiche e Farmaceutiche
- Università della Campania “L. Vanvitelli”
- Caserta
- Italy
| | | |
Collapse
|
11
|
Sharadadevi A, Nagaraj R. On the intrinsic propensity of the Asn-Gly sequence to fold into type I′ β-turn: molecular dynamics simulations of Asn-Gly β-turn containing peptide sequences. J Biomol Struct Dyn 2017; 36:3916-3925. [DOI: 10.1080/07391102.2017.1403958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
DeBlase AF, Harrilal CP, Lawler JT, Burke NL, McLuckey SA, Zwier TS. Conformation-Specific Infrared and Ultraviolet Spectroscopy of Cold [YAPAA+H]+ and [YGPAA+H]+ Ions: A Stereochemical “Twist” on the β-Hairpin Turn. J Am Chem Soc 2017; 139:5481-5493. [PMID: 28353347 DOI: 10.1021/jacs.7b01315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew F. DeBlase
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Christopher P. Harrilal
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - John T. Lawler
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Nicole L. Burke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Timothy S. Zwier
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
13
|
Kar K, Baker MA, Lengyel GA, Hoop CL, Kodali R, Byeon IJ, Horne WS, van der Wel PCA, Wetzel R. Backbone Engineering within a Latent β-Hairpin Structure to Design Inhibitors of Polyglutamine Amyloid Formation. J Mol Biol 2016; 429:308-323. [PMID: 27986569 DOI: 10.1016/j.jmb.2016.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/03/2016] [Accepted: 12/07/2016] [Indexed: 11/28/2022]
Abstract
Candidates for the toxic molecular species in the expanded polyglutamine (polyQ) repeat diseases range from various types of aggregates to "misfolded" monomers. One way to vet these candidates is to develop mutants that restrict conformational landscapes. Previously, we inserted two self-complementary β-hairpin enhancing motifs into a short polyQ sequence to generate a mutant, here called "βHP," that exhibits greatly improved amyloid nucleation without measurably enhancing β-structure in the monomer ensemble. We extend these studies here by introducing single-backbone H-bond impairing modifications αN-methyl Gln or l-Pro at key positions within βHP. Modifications predicted to allow formation of a fully H-bonded β-hairpin at the fibril edge while interfering with H-bonding to the next incoming monomer exhibit poor amyloid formation and act as potent inhibitors in trans of simple polyQ peptide aggregation. In contrast, a modification that disrupts intra-β-hairpin H-bonding within βHP, while also aggregating poorly, is ineffective at inhibiting amyloid formation in trans. The inhibitors constitute a dynamic version of the edge-protection negative design strategy used in protein evolution to limit unwanted protein aggregation. Our data support a model in which polyQ peptides containing strong β-hairpin encouraging motifs only rarely form β-hairpin conformations in the monomer ensemble, but nonetheless take on such conformations at key steps during amyloid formation. The results provide insights into polyQ solution structure and fibril formation while also suggesting an approach to the design of inhibitors of polyQ amyloid growth that focuses on conformational requirements for fibril and nucleus elongation.
Collapse
Affiliation(s)
- Karunakar Kar
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Matthew A Baker
- Department of Chemistry, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - George A Lengyel
- Department of Chemistry, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Cody L Hoop
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Ravindra Kodali
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - In-Ja Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - W Seth Horne
- Department of Chemistry, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Ronald Wetzel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
14
|
Engineering Short Preorganized Peptide Sequences for Metal Ion Coordination: Copper(II) a Case Study. Methods Enzymol 2016. [PMID: 27586340 DOI: 10.1016/bs.mie.2016.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Peptides are multidentate chiral ligands capable of coordinating different metal ions. Nowadays, they can be obtained with high yield and purity, thanks to the advances on peptide/protein chemistry as well as in equipment (peptide synthesizers). Based on the identity and length of their amino acid sequences, peptides can present different degrees of flexibility and folding. Although short peptide sequences (<20 amino acids) usually lack structure in solution, different levels of structural preorganization can be induced by introducing conformational constraints, such as β-turn/loop template sequences and backbone cyclization. For all these reasons, and the fact that one is not restricted to use proteinogenic amino acids, small peptidic scaffolds constitute a simple and versatile platform for the development of inorganic systems with tailor-made properties and functions. Here we outline a general approach to the design of short preorganized peptide sequences (10-16 amino acids) for metal ion coordination. Based on our experience, we present a general scheme for the design, synthesis, and characterization of these peptidic scaffolds and provide protocols for the study of their metal ion coordination properties.
Collapse
|
15
|
Ross JE, Knipe PC, Thompson S, Hamilton AD. Hybrid Diphenylalkyne-Dipeptide Oligomers Induce Multistrand β-Sheet Formation. Chemistry 2015; 21:13518-21. [DOI: 10.1002/chem.201502690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 12/14/2022]
|
16
|
Sukthankar P, Whitaker SK, Garcia M, Herrera A, Boatwright M, Prakash O, Tomich JM. Thermally induced conformational transitions in nascent branched amphiphilic peptide capsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2946-55. [PMID: 25719598 DOI: 10.1021/la504381y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Branched amphiphilic peptide capsules (BAPCs) are biocompatible, bilayer delimited polycationic nanospheres that spontaneously form at room temperature through the coassembly of two amphiphilic branched peptides: bis(FLIVI)-K-K4 and bis(FLIVIGSII)-K-K4. BAPCs are readily taken up by cells in culture, where they escape and/or evade the endocytic pathway and accumulate in the perinuclear region, persisting there without apparent degradation or extravasation. Drugs, small proteins, and solutes as well as α particle emitting radionuclides are stably encapsulated for extended periods of time. BAPC formation at room temperature proceeds via a fusogenic process and after 48 h a range of BAPCs sizes are observed, from 50 nm to a few microns in diameter. It was previously reported that cooling BAPCs from 25 to 4 °C and then back to 25 °C eliminated their fusogenic property. In this report, biophysical techniques reveal that BAPCs undergo thermosensitive conformational transitions as a function of both time and temperature and that the properties of BAPCs vary based on the temperature of assembly. The solvent dissociation properties of BAPCs were studied as well as the contributions of specific amino acid residues to the observed conformations. The roles of the potential stabilizing forces present within the bilayer that bestow the unusal stability of the BAPCs are discussed. Ultimately this study presents revised assembly protocols for preparing BAPCs with discrete sizes and solvent-induced extravasation properties.
Collapse
Affiliation(s)
- Pinakin Sukthankar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66502, United States
| | - Susan K Whitaker
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66502, United States
| | - Macy Garcia
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66502, United States
| | - Alvaro Herrera
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66502, United States
| | - Mark Boatwright
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66502, United States
| | - Om Prakash
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66502, United States
| | - John M Tomich
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66502, United States
| |
Collapse
|
17
|
Rabong C, Schuster C, Liptaj T, Prónayová N, Delchev VB, Jordis U, Phopase J. NXO beta structure mimicry: an ultrashort turn/hairpin mimic that folds in water. RSC Adv 2014. [DOI: 10.1039/c4ra01210k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An NXO building block derived tetrapeptide mimic emulates a natural proline-glycine β-turn/hairpin in polar media, including water at room temperature.
Collapse
Affiliation(s)
- Constantin Rabong
- Institute of Applied Synthetic Chemistry
- Vienna University of Technology
- A-1060 Vienna, Austria
| | - Christoph Schuster
- Department of Environmental Geosciences
- University of Vienna
- A-1090 Vienna, Austria
| | - Tibor Liptaj
- Department of NMR and Mass Spectrometry
- Institute of Analytical Chemistry
- Faculty of Chemical and Food Technology
- Slovak University of Technology
- 81237 Bratislava, Slovak Republic
| | - Nadežda Prónayová
- Department of NMR and Mass Spectrometry
- Institute of Analytical Chemistry
- Faculty of Chemical and Food Technology
- Slovak University of Technology
- 81237 Bratislava, Slovak Republic
| | - Vassil B. Delchev
- Department of Physical Chemistry
- University of Plovdiv
- 4000 Plovdiv, Bulgaria
| | - Ulrich Jordis
- Institute of Applied Synthetic Chemistry
- Vienna University of Technology
- A-1060 Vienna, Austria
| | - Jaywant Phopase
- Integrative Regenerative Medicine Centre (IGEN) & Department of Physics
- Chemistry and Biology (IFM)
- 58183 Linköping, Sweden
| |
Collapse
|
18
|
Abstract
Since the first report in 1993 (JACS 115, 5887-5888) of a peptide able to form a monomeric β-hairpin structure in aqueous solution, the design of peptides forming either β-hairpins (two-stranded antiparallel β-sheets) or three-stranded antiparallel β-sheets has become a field of growing interest and activity. These studies have yielded great insights into the principles governing the stability and folding of β-hairpins and antiparallel β-sheets. This chapter provides an overview of the reported β-hairpin/β-sheet peptides focussed on the applied design criteria, reviews briefly the factors contributing to β-hairpin/β-sheet stability, and describes a protocol for the de novo design of β-sheet-forming peptides based on them. Guidelines to select appropriate turn and strand residues and to avoid self-association are provided. The methods employed to check the success of new designed peptides are also summarized. Since NMR is the best technique to that end, NOEs and chemical shifts characteristic of β-hairpins and three-stranded antiparallel β-sheets are given.
Collapse
Affiliation(s)
- M Angeles Jiménez
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Química Física Rocasolano (IQFR), Serrano 119, 28006, Madrid, Spain,
| |
Collapse
|
19
|
Liu HL, Lin YM. Stability and Unfolding Mechanism of the N-terminal β-Hairpin from [2Fe-2S] Ferredoxin I by Molecular Dynamics Simulations. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200300112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Mahajan M, Bhattacharjya S. β-Hairpin peptides: heme binding, catalysis, and structure in detergent micelles. Angew Chem Int Ed Engl 2013; 52:6430-4. [PMID: 23640811 DOI: 10.1002/anie.201300241] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/25/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Mukesh Mahajan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | |
Collapse
|
21
|
Mahajan M, Bhattacharjya S. β-Hairpin Peptides: Heme Binding, Catalysis, and Structure in Detergent Micelles. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Kar K, Hoop CL, Drombosky KW, Baker MA, Kodali R, Arduini I, van der Wel PCA, Horne WS, Wetzel R. β-hairpin-mediated nucleation of polyglutamine amyloid formation. J Mol Biol 2013; 425:1183-97. [PMID: 23353826 PMCID: PMC3602386 DOI: 10.1016/j.jmb.2013.01.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/15/2013] [Accepted: 01/15/2013] [Indexed: 12/01/2022]
Abstract
The conformational preferences of polyglutamine (polyQ) sequences are of major interest because of their central importance in the expanded CAG repeat diseases that include Huntington's disease. Here, we explore the response of various biophysical parameters to the introduction of β-hairpin motifs within polyQ sequences. These motifs (tryptophan zipper, disulfide, d-Pro-Gly, Coulombic attraction, l-Pro-Gly) enhance formation rates and stabilities of amyloid fibrils with degrees of effectiveness well correlated with their known abilities to enhance β-hairpin formation in other peptides. These changes led to decreases in the critical nucleus for amyloid formation from a value of n=4 for a simple, unbroken Q23 sequence to approximate unitary n values for similar length polyQs containing β-hairpin motifs. At the same time, the morphologies, secondary structures, and bioactivities of the resulting fibrils were essentially unchanged from simple polyQ aggregates. In particular, the signature pattern of solid-state NMR (13)C Gln resonances that appears to be unique to polyQ amyloid is replicated exactly in fibrils from a β-hairpin polyQ. Importantly, while β-hairpin motifs do produce enhancements in the equilibrium constant for nucleation in aggregation reactions, these Kn values remain quite low (~10(-)(10)) and there is no evidence for significant enhancement of β-structure within the monomer ensemble. The results indicate an important role for β-turns in the nucleation mechanism and structure of polyQ amyloid and have implications for the nature of the toxic species in expanded CAG repeat diseases.
Collapse
Affiliation(s)
- Karunakar Kar
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Prigozhin MB, Gruebele M. Microsecond folding experiments and simulations: a match is made. Phys Chem Chem Phys 2013; 15:3372-88. [PMID: 23361200 PMCID: PMC3632410 DOI: 10.1039/c3cp43992e] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
For the past two decades, protein folding experiments have been speeding up from the second or millisecond time scale to the microsecond time scale, and full-atom simulations have been extended from the nanosecond to the microsecond and even millisecond time scale. Where the two meet, it is now possible to compare results directly, allowing force fields to be validated and refined, and allowing experimental data to be interpreted in atomistic detail. In this perspective we compare recent experiments and simulations on the microsecond time scale, pointing out the progress that has been made in determining native structures from physics-based simulations, refining experiments and simulations to provide more quantitative underlying mechanisms, and tackling the problems of multiple reaction coordinates, downhill folding, and complex underlying structure of unfolded or misfolded states.
Collapse
Affiliation(s)
- M. B. Prigozhin
- Department of Chemistry, Center for Biophsyics and Computational Biology, 600 South Mathews Ave. Box 5–6, Urbana IL 61801, USA
| | - M. Gruebele
- Department of Chemistry, Center for Biophsyics and Computational Biology, 600 South Mathews Ave. Box 5–6, Urbana IL 61801, USA
- Department of Physics, Center for Biophsyics and Computational Biology, 600 South Mathews Ave. Box 5–6, Urbana IL 61801, USA
| |
Collapse
|
24
|
Engin O, Sayar M. Adsorption, Folding, and Packing of an Amphiphilic Peptide at the Air/Water Interface. J Phys Chem B 2012; 116:2198-207. [DOI: 10.1021/jp206327y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ozge Engin
- College of Engineering, Koç University, 34450, Istanbul,
Turkey
| | - Mehmet Sayar
- College of Engineering, Koç University, 34450, Istanbul,
Turkey
| |
Collapse
|
25
|
Shao Q, Yang L, Gao YQ. Structure change of β-hairpin induced by turn optimization: An enhanced sampling molecular dynamics simulation study. J Chem Phys 2011; 135:235104. [DOI: 10.1063/1.3668288] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Xu Y, Du D, Oyola R. Infrared study of the stability and folding kinetics of a series of β-hairpin peptides with a common NPDG turn. J Phys Chem B 2011; 115:15332-8. [PMID: 22136248 DOI: 10.1021/jp2046867] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The thermal stability and folding kinetics of a series of 15-residue β-hairpins with a common Type I [3:5] NPDG turn were studied using Fourier transform infrared spectroscopy (FTIR) and laser-induced temperature jump (T-jump) with infrared detection, respectively. Mutations at positions 3, 5, or 13 in the peptide sequence SEXYXNPDGTWTXTE, where X represents the position of mutation, were performed to study the roles of hydrophobic interactions in determining the thermodynamic and kinetic properties of β-hairpin folding. The thermal stability studies show a broad thermal folding/unfolding transition for all the peptides. T-jump studies indicate that these β-hairpin peptides fold in less than 2 μs. In addition, both folding and unfolding rate constants decrease with increasing strength of hydrophobic interactions. Kinetically, the hydrophobic interactions have more significant influence on the unfolding rate than the folding rate. Φ-value analysis indicates that the hydrophobic interactions between the side chains are mainly formed at the latter part of the transition-state region during the folding process. In summary, the results suggest that the formation of the native structure of these β-hairpins depends on the correct topology of the hydrophobic cluster. Besides the formation of the turn region as a key process for folding as suggested by previous studies, a hydrophobic collapse process may also play a crucial role during β-hairpin folding.
Collapse
Affiliation(s)
- Yao Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
27
|
Diana D, Basile A, De Rosa L, Di Stasi R, Auriemma S, Arra C, Pedone C, Turco MC, Fattorusso R, D'Andrea LD. β-hairpin peptide that targets vascular endothelial growth factor (VEGF) receptors: design, NMR characterization, and biological activity. J Biol Chem 2011; 286:41680-41691. [PMID: 21969375 DOI: 10.1074/jbc.m111.257402] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
VEGF receptors have been the target of intense research aimed to develop molecules able to inhibit or stimulate angiogenesis. Based on the x-ray structure of the complex placental growth factor-VEGF receptor 1(D2), we designed a VEGF receptor-binding peptide reproducing the placental growth factor β-hairpin region Gln(87)-Val(100) that is involved in receptor recognition. A conformational analysis showed that the designed peptide adopts the expected fold in pure water. Moreover, a combination of NMR interaction analysis and cell binding studies were used to demonstrate that the peptide targets VEGF receptors. The VEGF receptor 1(D2)-interacting residues were characterized at the molecular level, and they correspond to the residues recognizing the placental growth factor sequence Gln(87)-Val(100). Finally, the peptide biological activity was characterized in vitro and in vivo, and it showed a VEGF-like behavior. Indeed, the peptide activated VEGF-dependent intracellular pathways, induced endothelial cell proliferation and rescue from apoptosis, and promoted angiogenesis in vivo. This compound is one of the few peptides known with proangiogenic activity, which makes it a candidate for the development of a novel peptide-based drug for medical applications in therapeutic angiogenesis.
Collapse
Affiliation(s)
- Donatella Diana
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, via Mezzocannone 16, 80134 Napoli, Italy
| | - Anna Basile
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università di Salerno, via Ponte don Melillo, 84084 Fisciano (Salerno), Italy
| | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, via Mezzocannone 16, 80134 Napoli, Italy
| | - Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, via Mezzocannone 16, 80134 Napoli, Italy
| | - Sara Auriemma
- Dipartimento delle Scienze Biologiche, Università di Napoli "Federico II," via Mezzocannone 16, 80134 Napoli, Italy
| | - Claudio Arra
- Istituto Nazionale Tumori "Fondazione G. Pascale," via Mariano Semmola 49, 80131 Napoli, Italy
| | - Carlo Pedone
- Dipartimento delle Scienze Biologiche, Università di Napoli "Federico II," via Mezzocannone 16, 80134 Napoli, Italy
| | - Maria Caterina Turco
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università di Salerno, via Ponte don Melillo, 84084 Fisciano (Salerno), Italy
| | - Roberto Fattorusso
- Dipartimento di Scienze Ambientali, Seconda Università di Napoli, via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Luca Domenico D'Andrea
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, via Mezzocannone 16, 80134 Napoli, Italy.
| |
Collapse
|
28
|
Huang Q, Lou J, Wu J, Zhu C. Conformational Transition of Glycoprotein Ibα Mutants in Flow Molecular Dynamics Simulation. Cell Mol Bioeng 2011. [DOI: 10.1007/s12195-011-0171-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
29
|
Santiveri CM, Jiménez MA. Tryptophan residues: scarce in proteins but strong stabilizers of β-hairpin peptides. Biopolymers 2011; 94:779-90. [PMID: 20564027 DOI: 10.1002/bip.21436] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tryptophan plays important roles in protein stability and recognition despite its scarcity in proteins. Except as fluorescent groups, they have been used rarely in peptide design. Nevertheless, Trp residues were crucial for the stability of some designed minimal proteins. In 2000, Trp-Trp pairs were shown to contribute more than any other hydrophobic interaction to the stability of β-hairpin peptides. Since then, Trp-Trp pairs have emerged as a paradigm for the design of stable β-hairpins, such as the Trpzip peptides. Here, we analyze the nature of the stabilizing capacity of Trp-Trp pairs by reviewing the β-hairpin peptides containing Trp-Trp pairs described up to now, the spectroscopic features and geometry of the Trp-Trp pairs, and their use as binding sites in β-hairpin peptides. To complete the overview, we briefly go through the other relevant β-hairpin stabilizing Trp-non-Trp interactions and illustrate the use of Trp in the design of short peptides adopting α-helical and mixed α/β motifs. This review is of interest in the field of rational design of proteins, peptides, peptidomimetics, and biomaterials.
Collapse
Affiliation(s)
- Clara M Santiveri
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, Madrid 28006, Spain
| | | |
Collapse
|
30
|
Uozumi R, Takahashi T, Yamazaki T, Granholm V, Mihara H. Design and conformational analysis of natively folded β-hairpin peptides stabilized by nucleobase interactions. Biopolymers 2011; 94:830-42. [PMID: 20535820 DOI: 10.1002/bip.21464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To examine stabilizing effects of the base pair interaction on a protein scaffold, various peptides with L-α-amino acids bearing a nucleobase in the side chain (nucleobase amino acids; NBAs) were designed based on a G-peptide β-hairpin structure, and their conformational properties were investigated by circular dichroism and NMR spectroscopy. Thermodynamic analyses based on the chemical shifts showed that adenine-thymine pairing in a diagonal fashion at positions 4 and 15 (2AT) enhanced thermal stability of the peptide conformation by more than 30 K as compared with the wild-type G-peptide. In NOESY spectrum, not only numerous nonadjacent crosspeaks but also long-range crosspeaks between the nucleobases were observed in some peptides with the base pairing. NMR structure calculations of the 2AT peptide confirmed that cross-strand pairing of the nucleobases occurs on the well-defined β-hairpin structure as designed. Taken together, the base pairing in an appropriate position and orientation facilitates folding and stabilization of a native-like β-hairpin structure.
Collapse
Affiliation(s)
- Ryuichi Uozumi
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B40 4259 Nagatsuta, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
31
|
Schrader TE, Cordes T, Schreier WJ, Koller FO, Dong SL, Moroder L, Zinth W. Folding and Unfolding of Light-Triggered β-Hairpin Model Peptides. J Phys Chem B 2010; 115:5219-26. [DOI: 10.1021/jp107683d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tobias E. Schrader
- Ludwig-Maximilians-Universität München, Lehrstuhl für BioMolekulare Optik and Munich Center for Integrated Protein Science CIPSM, Oettingenstrasse 67, 80538 München, Germany
| | - Thorben Cordes
- Ludwig-Maximilians-Universität München, Lehrstuhl für BioMolekulare Optik and Munich Center for Integrated Protein Science CIPSM, Oettingenstrasse 67, 80538 München, Germany
| | - Wolfgang J. Schreier
- Ludwig-Maximilians-Universität München, Lehrstuhl für BioMolekulare Optik and Munich Center for Integrated Protein Science CIPSM, Oettingenstrasse 67, 80538 München, Germany
| | - Florian O. Koller
- Ludwig-Maximilians-Universität München, Lehrstuhl für BioMolekulare Optik and Munich Center for Integrated Protein Science CIPSM, Oettingenstrasse 67, 80538 München, Germany
| | - Shou-Liang Dong
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Luis Moroder
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Zinth
- Ludwig-Maximilians-Universität München, Lehrstuhl für BioMolekulare Optik and Munich Center for Integrated Protein Science CIPSM, Oettingenstrasse 67, 80538 München, Germany
| |
Collapse
|
32
|
Bunschoten A, Ippel JH, Kruijtzer JAW, Feitsma L, de Haas CJC, Liskamp RMJ, Kemmink J. A peptide mimic of the chemotaxis inhibitory protein of Staphylococcus aureus: towards the development of novel anti-inflammatory compounds. Amino Acids 2010; 40:731-40. [PMID: 20683629 PMCID: PMC3020301 DOI: 10.1007/s00726-010-0711-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/19/2010] [Indexed: 12/13/2022]
Abstract
Complement factor C5a is one of the most powerful pro-inflammatory agents involved in recruitment of leukocytes, activation of phagocytes and other inflammatory responses. C5a triggers inflammatory responses by binding to its G-protein-coupled C5a-receptor (C5aR). Excessive or erroneous activation of the C5aR has been implicated in numerous inflammatory diseases. The C5aR is therefore a key target in the development of specific anti-inflammatory compounds. A very potent natural inhibitor of the C5aR is the 121-residue chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS). Although CHIPS effectively blocks C5aR activation by binding tightly to its extra-cellular N terminus, it is not suitable as a potential anti-inflammatory drug due to its immunogenic properties. As a first step in the development of an improved CHIPS mimic, we designed and synthesized a substantially shorter 50-residue adapted peptide, designated CHOPS. This peptide included all residues important for receptor binding as based on the recent structure of CHIPS in complex with the C5aR N terminus. Using isothermal titration calorimetry we demonstrate that CHOPS has micromolar affinity for a model peptide comprising residues 7–28 of the C5aR N terminus including two O-sulfated tyrosine residues at positions 11 and 14. CD and NMR spectroscopy showed that CHOPS is unstructured free in solution. Upon addition of the doubly sulfated model peptide, however, the NMR and CD spectra reveal the formation of structural elements in CHOPS reminiscent of native CHIPS.
Collapse
Affiliation(s)
- Anton Bunschoten
- Department of Medicinal Chemistry and Chemical Biology, Utrecht University, Sorbonnelaan 16, 3584 CA, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Wathen B, Jia Z. Protein beta-sheet nucleation is driven by local modular formation. J Biol Chem 2010; 285:18376-84. [PMID: 20382979 DOI: 10.1074/jbc.m110.120824] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite its central role in the protein folding process, the specific mechanism(s) behind beta-sheet formation has yet to be determined. For example, whether the nucleation of beta-sheets, often containing strands separated in sequence by many residues, is local or not remains hotly debated. Here, we investigate the initial nucleation step of beta-sheet formation by performing an analysis of the smallest beta-sheets in a non-redundant dataset on the grounds that the smallest sheets, having undergone little growth after nucleation, will be enriched for nucleating characteristics. We find that the residue propensities are similar for small and large beta-sheets as are their interstrand pairing preferences, suggesting that nucleation is not primarily driven by specific residues or interacting pairs. Instead, an examination of the structural environments of the two-stranded sheets shows that virtually all of them are contained in single, compact structural modules, or when multiple modules are present, one or both of the chain termini are involved. We, therefore, find that beta-nucleation is a local phenomenon resulting either from sequential or topological proximity. We propose that beta-nucleation is a result of two opposite factors; that is, the relative rigidity of an associated folding module that holds two stretches of coil close together in topology coupled with sufficient chain flexibility that enables the stretches of coil to bring their backbones in close proximity. Our findings lend support to the hydrophobic zipper model of protein folding (Dill, K. A., Fiebig, K. M., and Chan, H. S. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 1942-1946). Implications for protein folding are discussed.
Collapse
Affiliation(s)
- Brent Wathen
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
34
|
Marai CN, Mukamel S, Wang J. Probing the folding of mini-protein Beta3s by two-dimensional infrared spectroscopy; simulation study. PMC BIOPHYSICS 2010; 3:8. [PMID: 20302645 PMCID: PMC2851665 DOI: 10.1186/1757-5036-3-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 03/19/2010] [Indexed: 11/12/2022]
Abstract
We propose to use infrared coherent two-dimensional correlation spectroscopy (2DCS) to characterize the folding mechanism of the mini-protein Beta3s. In this study Beta3s was folded by molecular dynamics (MD) simulation and intermediate conformational ensembles were identified. The one and two-dimensional correlation spectrum was calculated for the intermediate and native states of the mini-protein. A direct structure-spectra relationship was determined by analysis of conformational properties and specific residue contributions. We identified the structural origin of diagonal and off-diagonal peaks in the 2DCS spectra for the native and intermediate conformational ensembles in the folding mechanism. This work supports the implementation of computational techniques in conjunction with experimental 2DCS to study the folding mechanism of proteins. In addition to exploring the folding mechanism the work presented here can be applied in combination with experiment to refine and validate current molecular dynamics force fields. PACS Codes: 87.15.Cc, 87.15.hm, 87.15.hp
Collapse
Affiliation(s)
- Christopher Nj Marai
- Graduate Program in Biochemistry and Structural Biology, State University of New York at Stony Brook, New York, 11794-3400, USA.
| | | | | |
Collapse
|
35
|
Isozaki K, Miki K. Design, synthesis, and complementary recognition of beta-hairpin peptides stabilized by artificial DNA base-pairing amino acids. Chem Commun (Camb) 2010; 46:2947-9. [PMID: 20386832 DOI: 10.1039/b924239b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel DNA base-pairing beta-hairpin peptide involving intramolecular hydrogen bonds for induction of beta-hairpin secondary structure and intermolecular complementary hydrogen bonds between thymine and diaminopyridine for molecular recognition has been synthesized.
Collapse
Affiliation(s)
- Katsuhiro Isozaki
- Organic Nanomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | | |
Collapse
|
36
|
Jager M, Deechongkit S, Koepf EK, Nguyen H, Gao J, Powers ET, Gruebele M, Kelly JW. Understanding the mechanism of beta-sheet folding from a chemical and biological perspective. Biopolymers 2009; 90:751-8. [PMID: 18844292 DOI: 10.1002/bip.21101] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Perturbing the structure of the Pin1 WW domain, a 34-residue protein comprised of three beta-strands and two intervening loops has provided significant insight into the structural and energetic basis of beta-sheet folding. We will review our current perspective on how structure acquisition is influenced by the sequence, which determines local conformational propensities and mediates the hydrophobic effect, hydrogen bonding, and analogous intramolecular interactions. We have utilized both traditional site-directed mutagenesis and backbone mutagenesis approaches to alter the primary structure of this beta-sheet protein. Traditional site-directed mutagenesis experiments are excellent for altering side-chain structure, whereas amide-to-ester backbone mutagenesis experiments modify backbone-backbone hydrogen bonding capacity. The transition state structure associated with the folding of the Pin1 WW domain features a partially H-bonded, near-native reverse turn secondary structure in loop 1 that has little influence on thermodynamic stability. The thermodynamic stability of the Pin1 WW domain is largely determined by the formation of a small hydrophobic core and by the formation of desolvated backbone-backbone H-bonds enveloped by this hydrophobic core. Loop 1 engineering to the consensus five-residue beta-bulge-turn found in most WW domains or a four-residue beta-turn found in most beta-hairpins accelerates folding substantially relative to the six-residue turn found in the wild type Pin1 WW domain. Furthermore, the more efficient five- and four-residue reverse turns now contribute to the stability of the three-stranded beta-sheet. These insights have allowed the design of Pin1 WW domains that fold at rates that approach the theoretical speed limit of folding.
Collapse
Affiliation(s)
- Marcus Jager
- Department of Chemistry, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Beta-sheets consist of extended polypeptide strands (beta-strands) connected by a network of hydrogen bonds and occur widely in proteins. Although the importance of beta-sheets in the folded structures of proteins has long been recognized, there is a growing recognition of the importance of intermolecular interactions among beta-sheets. Intermolecular interactions between the hydrogen-bonding edges of beta-sheets constitute a fundamental form of biomolecular recognition (like DNA base pairing) and are involved protein quaternary structure, protein-protein interactions, and peptide and protein aggregation. The importance of beta-sheet interactions in biological processes makes them potential targets for intervention in diseases such as AIDS, cancer, and Alzheimer's disease. This Account describes my research group's use of chemical model systems to study the structure and interactions of beta-sheets. Chemical model systems provide an excellent vehicle with which to explore beta-sheets, because they are smaller, simpler, and easier to manipulate than proteins. Synthetic chemical models also provide the opportunity to control or modulate natural systems or to develop other useful applications and may eventually lead to new drugs with which to treat diseases. In our "artificial beta-sheets", molecular template and turn units are combined with peptides to mimic the structures of parallel and antiparallel beta-sheets. The templates and turn units form folded, hydrogen-bonded structures with the peptide groups and help prevent the formation of complex, ill-defined aggregates. Templates that duplicate the hydrogen-bonding pattern of one edge of a peptide beta-strand while blocking the other edge have proven particularly valuable in preventing aggregate formation and in promoting the formation of simple monomeric and dimeric structures. Artificial beta-sheets that present exposed hydrogen-bonding edges can form well-defined hydrogen-bonded dimers. Dimerization occurs readily in chloroform solutions but requires additional hydrophobic interactions to occur in aqueous solution. Interactions among the side chains, as well as hydrogen bonding among the main chains, are important in dimer formation. NMR studies of artificial beta-sheets have elucidated the importance of hydrogen-bonding complementarity, size complementarity, and chiral complementarity in these interactions. These pairing preferences demonstrate sequence selectivity in the molecular recognition between beta-sheets. These studies help illustrate the importance of intermolecular edge-to-edge interactions between beta-sheets in peptides and proteins. Ultimately, these model systems may lead to new ways of controlling beta-sheet interactions and treating diseases in which they are involved.
Collapse
Affiliation(s)
- James S Nowick
- Department of Chemistry University of California, Irvine, Irvine, California 92617-4048, USA.
| |
Collapse
|
38
|
|
39
|
Marcelino AMC, Gierasch LM. Roles of beta-turns in protein folding: from peptide models to protein engineering. Biopolymers 2008; 89:380-91. [PMID: 18275088 PMCID: PMC2904567 DOI: 10.1002/bip.20960] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Reverse turns are a major class of protein secondary structure; they represent sites of chain reversal and thus sites where the globular character of a protein is created. It has been speculated for many years that turns may nucleate the formation of structure in protein folding, as their propensity to occur will favor the approximation of their flanking regions and their general tendency to be hydrophilic will favor their disposition at the solvent-accessible surface. Reverse turns are local features, and it is therefore not surprising that their structural properties have been extensively studied using peptide models. In this article, we review research on peptide models of turns to test the hypothesis that the propensities of turns to form in short peptides will relate to the roles of corresponding sequences in protein folding. Turns with significant stability as isolated entities should actively promote the folding of a protein, and by contrast, turn sequences that merely allow the chain to adopt conformations required for chain reversal are predicted to be passive in the folding mechanism. We discuss results of protein engineering studies of the roles of turn residues in folding mechanisms. Factors that correlate with the importance of turns in folding indeed include their intrinsic stability, as well as their topological context and their participation in hydrophobic networks within the protein's structure.
Collapse
|
40
|
|
41
|
Ahmed S, Guptasarma P. Design of a soluble mini-protein through tandem duplication of the minimally engineered beta hairpin 'tongue' motif of alpha-hemolysin. Biochimie 2008; 90:957-67. [PMID: 18374661 DOI: 10.1016/j.biochi.2008.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
Abstract
In an attempt to fashion a globular protein out of two conjoined beta hairpin structural motif(s), we created a gene encoding, in tandem, two copies of the 40 residues-long transmembrane beta hairpin tongue (BHT) motif of the pore-forming toxin, alpha-hemolysin, of Staphylococcus aureus. Seven selected hydrophobic residues on each copy of the BHT motif's lipid-facing surface were mutated to hydrophilic residues, to prevent or reduce any non-specific aggregation based on hydrophobic interactions. Tandem BHT turned out to be expressed as a soluble polypeptide which could be raised to concentrations of approximately 2mg/ml. It displayed several characteristics of a folded mini-protein, although not the characteristics of a typical well-folded globular protein. These characteristics include (i) far-UV CD and FTIR spectra indicative of the presence of sheet structure mixed with polyproline type II secondary structure, (ii) a near-UV CD spectrum, indicating some formation of tertiary structure, (iii) evidence of unfolding and dissociation transitions in the presence of denaturants, accompanied by increase in random coil content, and (iv) the ability to transform from sheet to helical structure through a biphasic structural transition in the presence of the cosolvent, trifluorethanol. Importantly, however, tandem BHT displayed no cooperativity during unfolding; taken together with the poor structural content revealed in the far-UV CD spectrum and some non-canonical gel filtration behavior seen in the presence of denaturants, this suggests a partially unsuccessful instance of protein design.
Collapse
Affiliation(s)
- Shubbir Ahmed
- Department of Protein Science and Engineering, Institute of Microbial Technology, Sector 39-A, Chandigarh, India
| | | |
Collapse
|
42
|
Santiveri C, León E, Rico M, Jiménez M. Context-Dependence of the Contribution of Disulfide Bonds to β-Hairpin Stability. Chemistry 2008; 14:488-99. [DOI: 10.1002/chem.200700845] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Schneider S, Zhang W, Soultanas P, Paoli M. Structure of the N-terminal oligomerization domain of DnaD reveals a unique tetramerization motif and provides insights into scaffold formation. J Mol Biol 2007; 376:1237-50. [PMID: 18206906 DOI: 10.1016/j.jmb.2007.12.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/18/2007] [Accepted: 12/20/2007] [Indexed: 02/05/2023]
Abstract
DnaD is a primosomal protein that remodels supercoiled plasmids. It binds to supercoiled forms and converts them to open forms without nicking. During this remodeling process, all the writhe is converted to twist and the plasmids are held around the periphery of large scaffolds made up of DnaD molecules. This DNA-remodeling function is the sum of a scaffold-forming activity on the N-terminal domain and a DNA-dependent oligomerization activity on the C-terminal domain. We have determined the crystal structure of the scaffold-forming N-terminal domain, which reveals a winged-helix architecture, with additional structural elements extending from both N- and C-termini. Four monomers form dimers that join into a tetramer. The N-terminal extension mediates dimerization and tetramerization, with extensive interactions and distinct interfaces. The wings and helices of the winged-helix domains remain exposed on the surface of the tetramer. Structure-guided mutagenesis and atomic force microscopy imaging indicate that these elements, together with the C-terminal extension, are involved in scaffold formation. Based upon our data, we propose a model for the DnaD-mediated scaffold formation.
Collapse
Affiliation(s)
- S Schneider
- Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | |
Collapse
|
44
|
Makabe K, Yan S, Tereshko V, Gawlak G, Koide S. Beta-strand flipping and slipping triggered by turn replacement reveal the opportunistic nature of beta-strand pairing. J Am Chem Soc 2007; 129:14661-9. [PMID: 17985889 DOI: 10.1021/ja074252c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated how the register between adjacent beta-strands is specified using a series of mutants of the single-layer beta-sheet (SLB) in Borrelia OspA. The single-layer architecture of this system eliminates structural restraints imposed by a hydrophobic core, enabling us to address this question. A critical turn (turn 9/10) in the SLB was replaced with a segment with an intentional structural mismatch. Its crystal structure revealed a one-residue insertion into the central beta-strand (strand 9) of the SLB. This insertion triggered a surprisingly large-scale structural rearrangement: (i) the central strand (strand 9) was shifted by one residue, causing the strand to flip with respect to the adjacent beta-strands and thus completely disrupting the native side-chain contacts; (ii) the three-residue turn located on the opposite end of the beta-strand (turn 8/9) was pushed into its preceding beta-strand (strand 8); (iii) the register between strands 8 and 9 was shifted by three residues. Replacing the original sequence for turn 8/9 with a stronger turn motif restored the original strand register but still with a flipped beta-strand 9. The stability differences of these distinct structures were surprisingly small, consistent with an energy landscape where multiple low-energy states with different beta-sheet configurations exist. The observed conformations can be rationalized in terms of maximizing the number of backbone H-bonds. These results suggest that adjacent beta-strands "stick" through the use of factors that are not highly sequence specific and that beta-strands could slide back and forth relatively easily in the absence of external elements such as turns and tertiary packing.
Collapse
Affiliation(s)
- Koki Makabe
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
45
|
Legge FS, Treutlein H, Howlett GJ, Yarovsky I. Molecular dynamics simulations of a fibrillogenic peptide derived from apolipoprotein C-II. Biophys Chem 2007; 130:102-13. [PMID: 17825978 DOI: 10.1016/j.bpc.2007.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/03/2007] [Accepted: 08/03/2007] [Indexed: 01/17/2023]
Abstract
The pathway to amyloid fibril formation in proteins involves specific structural changes leading to the combination of misfolded intermediates into oligomeric assemblies. Recent NMR studies showed the presence of "turns" in amyloid peptides, indicating that turn formation may play an important role in the nucleation of the intramolecular folding and possible assembly of amyloid. Fully solvated all-atom molecular dynamics simulations were used to study the structure and dynamics of the apolipoprotein C-II peptide 56 to 76, associated with the formation of amyloid fibrils. The peptide populated an ensemble of turn structures, stabilized by hydrogen bonds and hydrophobic interactions enabling the formation of a strong hydrophobic core which may provide the conditions required to initiate aggregation. Two competing mechanisms discussed in the literature were observed. This has implications in understanding the mechanism of amyloid formation in not only apoC-II and its fragments, but also in other amyloidogenic peptides.
Collapse
Affiliation(s)
- F Sue Legge
- Applied Physics, School of Applied Sciences, RMIT University, GPO Box 2476V Melbourne, Victoria, 3001, Australia
| | | | | | | |
Collapse
|
46
|
Woods RJ, Brower JO, Castellanos E, Hashemzadeh M, Khakshoor O, Russu WA, Nowick JS. Cyclic modular beta-sheets. J Am Chem Soc 2007; 129:2548-58. [PMID: 17295482 PMCID: PMC2597679 DOI: 10.1021/ja0667965] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of peptide beta-hairpins is problematic, because folding depends on the amino acid sequence and changes to the sequence can significantly decrease folding. Robust beta-hairpins that can tolerate such changes are attractive tools for studying interactions involving protein beta-sheets and developing inhibitors of these interactions. This paper introduces a new class of peptide models of protein beta-sheets that addresses the problem of separating folding from the sequence. These model beta-sheets are macrocyclic peptides that fold in water to present a pentapeptide beta-strand along one edge; the other edge contains the tripeptide beta-strand mimic Hao [JACS 2000, 122, 7654] and two additional amino acids. The pentapeptide and Hao-containing peptide strands are connected by two delta-linked ornithine (deltaOrn) turns [JACS 2003, 125, 876]. Each deltaOrn turn contains a free alpha-amino group that permits the linking of individual modules to form divalent beta-sheets. These "cyclic modular beta-sheets" are synthesized by standard solid-phase peptide synthesis of a linear precursor followed by solution-phase cyclization. Eight cyclic modular beta-sheets 1a-1h containing sequences based on beta-amyloid and macrophage inflammatory protein 2 were synthesized and characterized by 1H NMR. Linked cyclic modular beta-sheet 2, which contains two modules of 1b, was also synthesized and characterized. 1H NMR studies show downfield alpha-proton chemical shifts, deltaOrn delta-proton magnetic anisotropy, and NOE cross-peaks that establish all compounds but 1c and 1g to be moderately or well folded into a conformation that resembles a beta-sheet. Pulsed-field gradient NMR diffusion experiments show little or no self-association at low (=2 mM) concentrations. Changes to the residues in the Hao-containing strands of 1c and 1g improve folding and show that folding of the structures can be enhanced without altering the sequence of the pentapeptide strand. Well-folded cyclic modular beta-sheets 1a, 1b, and 1f each have a phenylalanine directly across from Hao, suggesting that cyclic modular beta-sheets containing aromatic residues across from Hao are better folded.
Collapse
Affiliation(s)
- R. Jeremy Woods
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, Phone: 949-824-6091, FAX: 949-824-9920
| | - Justin O. Brower
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, Phone: 949-824-6091, FAX: 949-824-9920
| | - Elena Castellanos
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, Phone: 949-824-6091, FAX: 949-824-9920
| | - Mehrnoosh Hashemzadeh
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, Phone: 949-824-6091, FAX: 949-824-9920
| | - Omid Khakshoor
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, Phone: 949-824-6091, FAX: 949-824-9920
| | - Wade A. Russu
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, Phone: 949-824-6091, FAX: 949-824-9920
| | - James S. Nowick
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, Phone: 949-824-6091, FAX: 949-824-9920
| |
Collapse
|
47
|
Schelling P, Guglielmi KM, Kirchner E, Paetzold B, Dermody TS, Stehle T. The reovirus sigma1 aspartic acid sandwich: a trimerization motif poised for conformational change. J Biol Chem 2007; 282:11582-9. [PMID: 17303562 DOI: 10.1074/jbc.m610805200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reovirus attachment protein sigma1 mediates engagement of receptors on the surface of target cells and undergoes dramatic conformational rearrangements during viral disassembly in the endocytic pathway. The sigma1 protein is a filamentous, trimeric molecule with a globular beta-barrel head domain. An unusual cluster of aspartic acid residues sandwiched between hydrophobic tyrosines is located at the sigma1 subunit interface. A 1.75-A structure of the sigma1 head domain now reveals two water molecules at the subunit interface that are held strictly in position and interact with neighboring residues. Structural and biochemical analyses of mutants affecting the aspartic acid sandwich indicate that these residues and the corresponding chelated water molecules act as a plug to block the free flow of solvent and stabilize the trimer. This arrangement of residues at the sigma1 head trimer interface illustrates a new protein design motif that may confer conformational mobility during cell entry.
Collapse
Affiliation(s)
- Pierre Schelling
- Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe-Seyler-Strasse 4, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Bruston F, Lacombe C, Zimmermann K, Piesse C, Nicolas P, El Amri C. Structural malleability of plasticins: Preorganized conformations in solution and relevance for antimicrobial activity. Biopolymers 2007; 86:42-56. [PMID: 17309077 DOI: 10.1002/bip.20703] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasticins (23 long-residue glycine-leucine-rich dermaseptin-related peptides produced by the skin of South American hylids) have very similar amino acid sequences, hydrophobicities, and amphipathicities, but differ in their membrane-damaging properties and structurations (i.e. destabilized helix states, beta-hairpin, beta-sheet, and disordered states) at anionic and zwitterionic membrane interfaces. Structural malleability of plasticins in aqueous solutions together with parameters that may govern their ability to fold within beta-hairpin like structures were analyzed through circular dichroism and FTIR spectroscopic studies completed by molecular dynamics simulations in polar mimetic media. The goal of this study was to probe to which extent pre-existent peptide conformations, i.e. intrinsic "conformational landscape", may be responsible for variability in bioactive conformation and antimicrobial/hemolytic mechanisms of action of these peptides in relation with their various membrane disturbing properties. All plasticins present a turn region that does not always result in folding into a beta-hairpin shaped conformation. Residue at position 8 plays a major role in initiating the folding, while position 12 is not critical. Conformational stability has no major impact on antimicrobial efficacy. However, preformed beta-hairpin in solution may act as a conformational lock that prevents switch to alpha-helical structure. This lock lowers the antimicrobial efficiency and explains subtle differences in potencies of the most active antimicrobial plasticins.
Collapse
Affiliation(s)
- F Bruston
- FRE 2852 Protéines: Biochimie Structurale et Fonctionnelle, Université Paris 6-CNRS, Peptidome de la peau d'amphibiens, tour 43, 4, Place Jussieu 75252 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
49
|
Yang H, Wu H, Li D, Han L, Huo S. Temperature-Dependent Probabilistic Roadmap Algorithm for Calculating Variationally Optimized Conformational Transition Pathways. J Chem Theory Comput 2006; 3:17-25. [DOI: 10.1021/ct0502054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haijun Yang
- Gustaf H. Carlson School of Chemistry and Biochemistry and Department of Mathematics and Computer Science, Clark University, 950 Main Street, Worcester, Massachusetts 01610
| | - Hao Wu
- Gustaf H. Carlson School of Chemistry and Biochemistry and Department of Mathematics and Computer Science, Clark University, 950 Main Street, Worcester, Massachusetts 01610
| | - Dawei Li
- Gustaf H. Carlson School of Chemistry and Biochemistry and Department of Mathematics and Computer Science, Clark University, 950 Main Street, Worcester, Massachusetts 01610
| | - Li Han
- Gustaf H. Carlson School of Chemistry and Biochemistry and Department of Mathematics and Computer Science, Clark University, 950 Main Street, Worcester, Massachusetts 01610
| | - Shuanghong Huo
- Gustaf H. Carlson School of Chemistry and Biochemistry and Department of Mathematics and Computer Science, Clark University, 950 Main Street, Worcester, Massachusetts 01610
| |
Collapse
|
50
|
Nowick JS. What I have learned by using chemical model systems to study biomolecular structure and interactions. Org Biomol Chem 2006; 4:3869-85. [PMID: 17047863 DOI: 10.1039/b608953b] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical model systems provide valuable insights into biomolecular structure and interactions by allowing researchers to simplify, isolate, and manipulate aspects of the complex molecular machinery of living systems. This perspective describes my laboratory's design, synthesis, and study of chemical model systems that fold and self-assemble like proteins and elucidates the insights that have come from studying these systems. Many of these studies have focused on protein beta-sheets, which exhibit fascinating intra- and intermolecular interactions and play important roles in protein folding, aggregation, and molecular recognition.
Collapse
Affiliation(s)
- James S Nowick
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| |
Collapse
|