1
|
Rietmeyer L, Fix-Boulier N, Le Fournis C, Iannazzo L, Kitoun C, Patin D, Mengin-Lecreulx D, Ethève-Quelquejeu M, Arthur M, Fonvielle M. Partition of tRNAGly isoacceptors between protein and cell-wall peptidoglycan synthesis in Staphylococcus aureus. Nucleic Acids Res 2021; 49:684-699. [PMID: 33367813 PMCID: PMC7826273 DOI: 10.1093/nar/gkaa1242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022] Open
Abstract
The sequence of tRNAs is submitted to evolutionary constraints imposed by their multiple interactions with aminoacyl-tRNA synthetases, translation elongation factor Tu in complex with GTP (EF-Tu•GTP), and the ribosome, each being essential for accurate and effective decoding of messenger RNAs. In Staphylococcus aureus, an additional constraint is imposed by the participation of tRNAGly isoacceptors in the addition of a pentaglycine side chain to cell-wall peptidoglycan precursors by transferases FmhB, FemA and FemB. Three tRNAGly isoacceptors poorly interacting with EF-Tu•GTP and the ribosome were previously identified. Here, we show that these ‘non-proteogenic’ tRNAs are preferentially recognized by FmhB based on kinetic analyses and on synthesis of stable aminoacyl-tRNA analogues acting as inhibitors. Synthesis of chimeric tRNAs and of helices mimicking the tRNA acceptor arms revealed that this discrimination involves identity determinants exclusively present in the D and T stems and loops of non-proteogenic tRNAs, which belong to an evolutionary lineage only present in the staphylococci. EF-Tu•GTP competitively inhibited FmhB by sequestration of ‘proteogenic’ aminoacyl-tRNAs in vitro. Together, these results indicate that competition for the Gly-tRNAGly pool is restricted by both limited recognition of non-proteogenic tRNAs by EF-Tu•GTP and limited recognition of proteogenic tRNAs by FmhB.
Collapse
Affiliation(s)
- Lauriane Rietmeyer
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Nicolas Fix-Boulier
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Chloé Le Fournis
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Laura Iannazzo
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS UMR 8601, Paris F-75006 France
| | - Camelia Kitoun
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS UMR 8601, Paris F-75006 France
| | - Delphine Patin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Dominique Mengin-Lecreulx
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Mélanie Ethève-Quelquejeu
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS UMR 8601, Paris F-75006 France
| | - Michel Arthur
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Matthieu Fonvielle
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| |
Collapse
|
2
|
Lahry K, Gopal A, Sah S, Shah RA, Varshney U. Metabolic Flux of N 10-Formyltetrahydrofolate Plays a Critical Role in the Fidelity of Translation Initiation in Escherichia coli. J Mol Biol 2020; 432:5473-5488. [PMID: 32795532 DOI: 10.1016/j.jmb.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
One-carbon metabolism produces methionine and N10-formyl-tetrahydrofolate (N10-fTHF) required for aminoacylation and formylation of initiator tRNA (i-tRNA), respectively. In Escherichia coli, N10-fTHF is made from 5, 10-methylene-THF by a two-step reaction using 5,10-methylene-THF dehydrogenase/cyclohydrolase (FolD). The i-tRNAs from all domains of life possess a highly conserved sequence of three consecutive G-C base pairs (3GC pairs) in their anticodon stem. A 3GC mutant i-tRNA (wherein the 3GC pairs are mutated to those found in elongator tRNAMet) is incompetent in initiation in E. coli (even though it is efficiently aminoacylated and formylated). Here, we show that E. coli strains having mutations in FolD (G122D or C58Y or P140L) allow a plasmid encoded 3GC mutant i-tRNA to participate in initiation. In vitro, the FolD mutants are highly compromised in their dehydrogenase/cyclohydrolase activities leading to reduced production of N10-fTHF and decreased rates of i-tRNA formylation. The perturbation of one-carbon metabolism by trimethoprim (inhibitor of dihydrofolate reductase) phenocopies FolD deficiency and allows initiation with the 3GC mutant i-tRNA. This study reveals an important crosstalk between one-carbon metabolism and the fidelity of translation initiation via formylation of i-tRNA, and suggests that augmentation of the age old sulfa drugs with FolD inhibitors could be an important antibacterial strategy.
Collapse
Affiliation(s)
- Kuldeep Lahry
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Aiswarya Gopal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Shivjee Sah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Riyaz Ahmad Shah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| |
Collapse
|
3
|
Moutiez M, Belin P, Gondry M. Aminoacyl-tRNA-Utilizing Enzymes in Natural Product Biosynthesis. Chem Rev 2017; 117:5578-5618. [DOI: 10.1021/acs.chemrev.6b00523] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mireille Moutiez
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Pascal Belin
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Muriel Gondry
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
4
|
Charrière F, Tan THP, Schneider A. Mitochondrial initiation factor 2 of Trypanosoma brucei binds imported formylated elongator-type tRNA(Met). J Biol Chem 2005; 280:15659-65. [PMID: 15731104 DOI: 10.1074/jbc.m411581200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrion of Trypanosoma brucei lacks tRNA genes. Its translation system therefore depends on the import of nucleus-encoded tRNAs. Thus, except for the cytosol-specific initiator tRNA(Met), all trypanosomal tRNAs function in both the cytosol and the mitochondrion. The only tRNA(Met) present in T. brucei mitochondria is therefore the one which, in the cytosol, is involved in translation elongation. Mitochondrial translation initiation depends on an initiator tRNA(Met) carrying a formylated methionine. This tRNA is then recognized by initiation factor 2, which brings it to the ribosome. To guarantee mitochondrial translation initiation, T. brucei has an unusual methionyl-tRNA formyltransferase that formylates elongator tRNA(Met). In the present study, we have identified initiation factor 2 of T. brucei and shown that its carboxyl-terminal domain specifically binds formylated trypanosomal elongator tRNA(Met). Furthermore, the protein also recognizes the structurally very different Escherichia coli initiator tRNA(Met), suggesting that the main determinant recognized is the formylated methionine. In vivo studies using stable RNA interference cell lines showed that knock-down of initiation factor 2, depending on which construct was used, causes slow growth or even growth arrest. Moreover, concomitantly with ablation of the protein, a loss of oxidative phosphorylation was observed. Finally, although ablation of the methionyl-tRNA formyltransferase on its own did not impair growth, a complete growth arrest was observed when it was combined with the initiation factor 2 RNA interference cell line showing the slow growth phenotype. Thus, these experiments illustrate the importance of mitochondrial translation initiation for growth of procyclic T. brucei.
Collapse
Affiliation(s)
- Fabien Charrière
- Department of Biology/Zoology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | | | | |
Collapse
|
5
|
Vial L, Gomez P, Panvert M, Schmitt E, Blanquet S, Mechulam Y. Mitochondrial methionyl-tRNAfMet formyltransferase from Saccharomyces cerevisiae: gene disruption and tRNA substrate specificity. Biochemistry 2003; 42:932-9. [PMID: 12549912 DOI: 10.1021/bi026901x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Initiation of protein synthesis in bacteria, mitochondria, and chloroplasts involves a formylated methionyl-tRNA species. Formylation of this tRNA is catalyzed by a methionyl-tRNA(f)(Met) formyltransferase (formylase). Upon inactivation of the gene encoding formylase, the growth rate of Escherichia coli is severely decreased. This behavior underlines the importance of formylation to give tRNA(Met) an initiator identity. Surprisingly, however, recent data [Li, Y., Holmes, W. B., Appling, D. R., and RajBhandary, U. L. (2000) J. Bacteriol. 182, 2886-2892] showed that the respiratory growth of Saccharomyces cerevisiaewas not sensitive to deprivation of the mitochondrial formylase. In the present study, we report conditions of temperature or of growth medium composition in which inactivation of the formylase gene indeed impairs the growth of a S. cerevisiae haploid strain. Therefore, some selective advantage can eventually be associated to the existence of a formylating activity in the fungal mitochondrion under severe growth conditions. Finally, the specificity toward tRNA of S. cerevisiae mitochondrial formylase was studied using E. coli initiator tRNA and mutants derived from it. Like its bacterial counterpart, this formylase recognizes nucleotidic features in the acceptor stem of mitochondrial initiator tRNA. This behavior markedly distinguishes the mitochondrial formylase of yeast from that of animals. Indeed, it was shown that bovine mitochondrial formylase mainly recognizes the side chain of the esterified methionine plus a purine-pyrimidine base pair in the D-stem of tRNA [Takeuchi, N., Vial, L., Panvert, M., Schmitt, E., Watanabe, K., Mechulam, Y., and Blanquet, S. (2001) J. Biol. Chem. 276, 20064-20068]. Distinct tRNA recognition mechanisms adopted by the formylases of prokaryotic, fungal, or mammalian origins are likely to reflect coevolution of these enzymes with their tRNA substrate. Each mechanism appears well suited to an efficient selection of the substrate within the pool of all tRNAs.
Collapse
Affiliation(s)
- Lionel Vial
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, CNRS-Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | | | | | | | | | | |
Collapse
|
6
|
Rosas-Sandoval G, Ambrogelly A, Rinehart J, Wei D, Cruz-Vera LR, Graham DE, Stetter KO, Guarneros G, Söll D. Orthologs of a novel archaeal and of the bacterial peptidyl-tRNA hydrolase are nonessential in yeast. Proc Natl Acad Sci U S A 2002; 99:16707-12. [PMID: 12475929 PMCID: PMC139208 DOI: 10.1073/pnas.222659199] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptidyl-tRNA hydrolase (encoded by pth) is an essential enzyme in all bacteria, where it releases tRNA from the premature translation termination product peptidyl-tRNA. Archaeal genomes lack a recognizable peptidyl-tRNA hydrolase (Pth) ortholog, although it is present in most eukaryotes. However, we detected Pth-like activity in extracts of the archaeon Methanocaldococcus jannaschii. The uncharacterized MJ0051 ORF was shown to correspond to a protein with Pth activity. Heterologously expressed MJ0051 enzyme catalyzed in vitro the cleavage of the Pth substrates diacetyl-[14C]lysyl-tRNA and acetyl-[14C]phenylalanyl-tRNA. On transformation of an Escherichia coli pth(ts) mutant, the MJ0051 gene (named pth2) rescued the temperature-sensitive phenotype of the strain. Analysis of known genomes revealed the presence of highly conserved orthologs of the archaeal pth2 gene in all archaea and eukaryotes but not in bacteria. The phylogeny of pth2 homologs suggests that the gene has been vertically inherited throughout the archaeal and eukaryal domains. Deletions in Saccharomyces cerevisiae of the pth2 (YBL057c) or pth (YHR189w) orthologs were viable, as was the double deletion strain, implying that the canonical Pth and Pth2 enzymes are not essential for yeast viability.
Collapse
Affiliation(s)
- Guillermina Rosas-Sandoval
- Departments of Molecular Biophysics and Biochemistry and Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Schmitt E, Blanquet S, Mechulam Y. The large subunit of initiation factor aIF2 is a close structural homologue of elongation factors. EMBO J 2002; 21:1821-32. [PMID: 11927566 PMCID: PMC125960 DOI: 10.1093/emboj/21.7.1821] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The heterotrimeric factor e/aIF2 plays a central role in eukaryotic/archaeal initiation of translation. By delivering the initiator methionyl-tRNA to the ribosome, e/aIF2 ensures specificity of initiation codon selection. The three subunits of aIF2 from the hyperthermophilic archaeon Pyrococcus abyssi could be overproduced in Escherichia coli. The beta and gamma subunits each contain a tightly bound zinc. The large gamma subunit is shown to form the structural core for trimer assembly. The crystal structures of aIF2gamma, free or complexed to GDP-Mg(2+) or GDPNP-Mg(2+), were resolved at resolutions better than 2 A. aIF2gamma displays marked similarities to elongation factors. A distinctive feature of e/aIF2gamma is a subdomain containing a zinc-binding knuckle. Examination of the nucleotide-complexed aIF2gamma structures suggests mechanisms of action and tRNA binding properties similar to those of an elongation factor. Implications for the mechanism of translation initiation in both eukarya and archaea are discussed. In particular, positioning of the initiator tRNA in the ribosomal A site during the search for the initiation codon is envisaged.
Collapse
Affiliation(s)
- Emmanuelle Schmitt
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, CNRS-Ecole Polytechnique, F-91128 Palaiseau cedex, France.
| | | | | |
Collapse
|
8
|
Min B, Pelaschier JT, Graham DE, Tumbula-Hansen D, Söll D. Transfer RNA-dependent amino acid biosynthesis: an essential route to asparagine formation. Proc Natl Acad Sci U S A 2002; 99:2678-83. [PMID: 11880622 PMCID: PMC122407 DOI: 10.1073/pnas.012027399] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biochemical experiments and genomic sequence analysis showed that Deinococcus radiodurans and Thermus thermophilus do not possess asparagine synthetase (encoded by asnA or asnB), the enzyme forming asparagine from aspartate. Instead these organisms derive asparagine from asparaginyl-tRNA, which is made from aspartate in the tRNA-dependent transamidation pathway [Becker, H. D. & Kern, D. (1998) Proc. Natl. Acad. Sci. USA 95, 12832-12837; and Curnow, A. W., Tumbula, D. L., Pelaschier, J. T., Min, B. & Söll, D. (1998) Proc. Natl. Acad. Sci. USA 95, 12838-12843]. A genetic knockout disrupting this pathway deprives D. radiodurans of the ability to synthesize asparagine and confers asparagine auxotrophy. The organism's capacity to make asparagine could be restored by transformation with Escherichia coli asnB. This result demonstrates that in Deinococcus, the only route to asparagine is via asparaginyl-tRNA. Analysis of the completed genomes of many bacteria reveal that, barring the existence of an unknown pathway of asparagine biosynthesis, a wide spectrum of bacteria rely on the tRNA-dependent transamidation pathway as the sole route to asparagine.
Collapse
Affiliation(s)
- Bokkee Min
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
9
|
Tan THP, Bochud-Allemann N, Horn EK, Schneider A. Eukaryotic-type elongator tRNAMet of Trypanosoma brucei becomes formylated after import into mitochondria. Proc Natl Acad Sci U S A 2002; 99:1152-7. [PMID: 11792845 PMCID: PMC122159 DOI: 10.1073/pnas.022522299] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mitochondrion of Trypanosoma brucei lacks tRNA genes. Its translation system therefore depends on the import of cytosolic, nucleus-encoded tRNAs. Thus, most trypanosomal tRNAs function in both the cytosol and the mitochondrion, and all are of the eukaryotic type. This is also the case for the elongator tRNA(Met), whereas the only other trypanosomal tRNA(Met), the eukaryotic initiator, is found exclusively in the cytosol. Unlike their cytosolic counterparts, organellar initiator tRNAs(Met) carry a formylated methionine. This raises the question of how initiation of translation works in trypanosomal mitochondria, where only elongator tRNA(Met) is found. Using in organello charging and formylation assays, we show that unexpectedly a fraction of elongator tRNA(Met) becomes formylated after import into mitochondria. Furthermore, in vitro experiments with mitochondrial extracts demonstrate that only the trypanosomal elongator and not the initiator tRNA(Met) is recognized by the formylation activity. Finally, RNA interference assays identify the gene encoding the trypanosomal formylase activity. Whereas the predicted protein is homologous to prokaryotic and mitochondrial methionyl-tRNA(Met) formyltransferases, it has about twice the mass of any of these proteins.
Collapse
Affiliation(s)
- Timothy H P Tan
- Department of Biology/Zoology, University of Fribourg, Chemin du Musee 10, CH-1700 Fribourg, Switzerland
| | | | | | | |
Collapse
|
10
|
Abstract
The role of tRNA as the adaptor in protein synthesis has held an enduring fascination for molecular biologists. Over four decades of study, taking in numerous milestones in molecular biology, led to what was widely held to be a fairly complete picture of how tRNAs and amino acids are paired prior to protein synthesis. However, recent developments in genomics and structural biology have revealed an unexpected array of new enzymes, pathways and mechanisms involved in aminoacyl-tRNA synthesis. As a more complete picture of aminoacyl-tRNA synthesis now begins to emerge, the high degree of evolutionary diversity in this universal and essential process is becoming clearer.
Collapse
Affiliation(s)
- M Ibba
- Center for Biomolecular Recognition, Department of Medical Biochemistry and Genetics, Laboratory B, The Panum Institute, Blegdamsvej 3c, DK-2200, Copenhagen N,
| | | |
Collapse
|
11
|
Takeuchi N, Vial L, Panvert M, Schmitt E, Watanabe K, Mechulam Y, Blanquet S. Recognition of tRNAs by Methionyl-tRNA transformylase from mammalian mitochondria. J Biol Chem 2001; 276:20064-8. [PMID: 11274157 DOI: 10.1074/jbc.m101007200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein synthesis involves two methionine-isoaccepting tRNAs, an initiator and an elongator. In eubacteria, mitochondria, and chloroplasts, the addition of a formyl group gives its full functional identity to initiator Met-tRNA(Met). In Escherichia coli, it has been shown that the specific action of methionyl-tRNA transformylase on Met-tRNA(f)(Met) mainly involves a set of nucleotides in the acceptor stem, particularly a C(1)A(72) mismatch. In animal mitochondria, only one tRNA(Met) species has yet been described. It is admitted that this species can engage itself either in initiation or elongation of translation, depending on the presence or absence of a formyl group. In the present study, we searched for the identity elements of tRNA(Met) that govern its formylation by bovine mitochondrial transformylase. The main conclusion is that the mitochondrial formylase preferentially recognizes the methionyl moiety of its tRNA substrate. Moreover, the relatively small importance of the tRNA acceptor stem in the recognition process accounts for the protection against formylation of the mitochondrial tRNAs that share with tRNA(Met) an A(1)U(72) motif.
Collapse
Affiliation(s)
- N Takeuchi
- Laboratoire de Biochimie, Unité Mixte de Recherche Number 7654, CNRS, Ecole Polytechnique, F-91128 Palaiseau cedex, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Söll D, Becker HD, Plateau P, Blanquet S, Ibba M. Context-dependent anticodon recognition by class I lysyl-tRNA synthetases. Proc Natl Acad Sci U S A 2000; 97:14224-8. [PMID: 11121028 PMCID: PMC18899 DOI: 10.1073/pnas.97.26.14224] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lysyl-tRNA synthesis is catalyzed by two unrelated families of aminoacyl-tRNA synthetases. In most bacteria and all eukarya, the known lysyl-tRNA synthetases (LysRSs) are subclass IIb-type aminoacyl-tRNA synthetases, whereas many archaea and a scattering of bacteria contain an unrelated class I-type LysRS. Examination of the recognition of partially modified tRNA(Lys) anticodon variants by a bacterial (from Borrelia burgdorferi) and an archaeal (from Methanococcus maripaludis) class I lysyl-tRNA synthetase revealed differences in the pattern of anticodon recognition between the two enzymes. U35 and U36 were both important for recognition by the B. burgdorferi enzyme, whereas only U36 played a role in recognition by M. maripaludis LysRS. Examination of the phylogenetic distribution of class I LysRSs suggested a correlation between recognition of U35 and U36 and the presence of asparaginyl-tRNA synthetase (AsnRS), which also recognizes U35 and U36 in the anticodon of tRNA(Asn). However, the class II LysRS of Helicobacter pylori, an organism that lacks AsnRS, also recognizes both U35 and U36, indicating that the presence of AsnRS has solely influenced the phylogenetic distribution of class I LysRSs. These data suggest that competition between unrelated aminoacyl-tRNA synthetases for overlapping anticodon sequences is a determinant of the phylogenetic distribution of extant synthetase families. Such patterns of competition also provide a basis for the two separate horizontal gene transfer events hypothesized in the evolution of the class I lysyl-tRNA synthetases.
Collapse
Affiliation(s)
- D Söll
- Center for Biomolecular Recognition, IMBG Laboratory B, The Panum Institute, Blegdamsvej 3c, DK 2200N, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
13
|
Ronneberg TA, Landweber LF, Freeland SJ. Testing a biosynthetic theory of the genetic code: fact or artifact? Proc Natl Acad Sci U S A 2000; 97:13690-5. [PMID: 11087835 PMCID: PMC17637 DOI: 10.1073/pnas.250403097] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2000] [Indexed: 11/18/2022] Open
Abstract
It has long been conjectured that the canonical genetic code evolved from a simpler primordial form that encoded fewer amino acids [e.g., Crick, F. H. C. (1968) J. Mol. Biol. 38, 367-379]. The most influential form of this idea, "code coevolution" [Wong, J. T.-F. (1975) Proc. Natl. Acad. Sci. USA 72, 1909-1912], proposes that the genetic code coevolved with the invention of biosynthetic pathways for new amino acids. It further proposes that a comparison of modern codon assignments with the conserved metabolic pathways of amino acid biosynthesis can inform us about this history of code expansion. Here we re-examine the biochemical basis of this theory to test the validity of its statistical support. We show that the theory's definition of "precursor-product" amino acid pairs is unjustified biochemically because it requires the energetically unfavorable reversal of steps in extant metabolic pathways to achieve desired relationships. In addition, the theory neglects important biochemical constraints when calculating the probability that chance could assign precursor-product amino acids to contiguous codons. A conservative correction for these errors reveals a surprisingly high 23% probability that apparent patterns within the code are caused purely by chance. Finally, even this figure rests on post hoc assumptions about primordial codon assignments, without which the probability rises to 62% that chance alone could explain the precursor-product pairings found within the code. Thus we conclude that coevolution theory cannot adequately explain the structure of the genetic code.
Collapse
Affiliation(s)
- T A Ronneberg
- Departments of Ecology and Evolutionary Biology, and Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|