1
|
Li J, Zheng M, Wang Z, Liu Y, Niu Q, Zhou H, Wang D, Song J, Bi H, Guo B, Yu G, Cai C. Anti-tumor and anti-metastasis of water-soluble sulfated β-glucan derivatives from Saccharomyces cerevisiae. Carbohydr Polym 2024; 344:122466. [PMID: 39218533 DOI: 10.1016/j.carbpol.2024.122466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024]
Abstract
Traditional fungi β-glucan commonly possesses high molecular weight with poor water solubility, which remains significant challenge in the drug development and medical application. Water-soluble β-glucan with high molecular weight (dHSCG) of 560 kDa, low molecular weight (dLSCG) of 60 kDa, and sulfated derivative (SCGS) with a molecular weight of 146 kDa and sulfate degree at 2.04 were obtained through well-controlled degradation and sulfated modification from Saccharomyces cerevisiae in this study. The structural characteristics were confirmed as β-1,3/6-glucan by FT-IR and NMR spectroscopy. Carbohydrate microarrays and surface plasmon resonance revealed distinct and contrasting binding affinities between the natural β-glucans and sulfated derivatives. SCGS exhibited strong binding to FGF and VEGF, while natural β-glucan showed no response, suggesting its potential as a novel antitumor agent. Moreover, SCGS significantly inhibited the migration rate of the highly metastatic melanoma (B16F10) cells. The lung metastasis mouse model also demonstrated that SCGS significantly reduced and eliminated the nodules, achieving an inhibition rate of 86.7% in vivo, with a dramatic improvement in IFN-α, TNF-α, and IL-1β levels. Through analysis of protein content and distribution in lung tissues, the anti-tumor and anti-metastasis mechanism of SCGS involves the regulation of degrading enzymes to protect extracellular matrix (ECM), as well as the reduction of angiogenic factor release. These findings provide a foundation for exploring the potential of SCGS in the development of new anti-tumor and anti-metastasis drugs and open up a new field in cancer research.
Collapse
Affiliation(s)
- Jia Li
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Carbohydrate-Based Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Mengmeng Zheng
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Zhe Wang
- Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Carbohydrate-Based Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yang Liu
- Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Carbohydrate-Based Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qingfeng Niu
- Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Carbohydrate-Based Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Han Zhou
- Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Carbohydrate-Based Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Depeng Wang
- Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Carbohydrate-Based Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jike Song
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hongsheng Bi
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China.
| | - Bin Guo
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Carbohydrate-Based Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Carbohydrate-Based Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
2
|
Taghvimi S, Soltani Fard E, Khatami SH, Zafaranchi Z M S, Taheri-Anganeh M, Movahedpour A, Ghasemi H. lncRNA HOTAIR and Cardiovascular diseases. Funct Integr Genomics 2024; 24:165. [PMID: 39294422 DOI: 10.1007/s10142-024-01444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Cardiovascular diseases (CVDs) a major contributor to global mortality rates, with a steadily rising prevalence observed across the world. Understanding the molecular mechanisms that underlie the signaling pathways implicated in the pathogenesis of CVDs represents a salient and advantageous avenue toward the development of precision and targeted therapeutics. A recent development in CVDs research is the discovery of long non-coding RNAs (lncRNAs), which are now understood to have crucial roles in the onset and development of several pathophysiological processes. The distinct expression patterns exhibited by lncRNAs in various CVDs contexts, present a significant opportunity for their utilization as both biomarkers and targets for therapeutic intervention. Among the various identified lncRNAs, HOX antisense intergenic RNA (HOTAIR) functions as signaling molecules that are significantly implicated in the pathogenesis of cardiovascular disorders in response to risk factors. HOTAIR has been observed to circulate within the bloodstream and possesses an integral epigenetic regulatory function in the transcriptional pathways of many diseases. Recent studies have suggested that HOTAIR offers promise as a biomarker for the detection and treatment of CVDs. The investigation on HOTAIR's role in CVDs, however, is still in its early phases. The goal of the current study is to give a thorough overview of recent developments in the field of analyzing the molecular mechanism of HOTAIR in controlling the pathophysiological processes of CVDs as well as its possible therapeutic uses.
Collapse
Affiliation(s)
- Sina Taghvimi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elahe Soltani Fard
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Zafaranchi Z M
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
3
|
Chu LY, Wu FC, Fang WK, Hong CQ, Huang LS, Zou HY, Peng YH, Chen H, Xie JJ, Xu YW. Secreted proteins encoded by super enhancer-driven genes could be promising biomarkers for early detection of esophageal squamous cell carcinoma. Biomed J 2024; 47:100662. [PMID: 37774793 PMCID: PMC11340493 DOI: 10.1016/j.bj.2023.100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/25/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Early detection of cancer remains an unmet need in clinical practice, and high diagnostic sensitivity and specificity biomarkers are urgently required. Here, we attempted to identify secreted proteins encoded by super-enhancer (SE)-driven genes as diagnostic biomarkers for esophageal squamous cell carcinoma (ESCC). METHODS We conducted an integrative analysis of multiple data sets including ChIP-seq data, secretome data, CCLE data and GEO data to screen secreted proteins encoded by SE-driven genes. Using ELISA, we further identified up-regulated secreted proteins through a small size of clinical samples and verified in a multi-centre validation stage (345 in test cohort and 231 in validation cohort). Receiver operating characteristic curves were used to calculate diagnostic accuracy. Artificial intelligence (AI) method named gradient boosting machine (GBM) were applied for model construction to enhance diagnostic accuracy. RESULTS Serum EFNA1 and MMP13 were identified, and showed significantly higher levels in ESCC patients compared to normal controls. An integrated Five-Biomarker Panel (iFBPanel) established by combining EFNA1, MMP13, carcino-embryonic antigen, Cyfra21-1 and squmaous cell carcinoma antigen had AUCs of 0.881 and 0.880 for ESCC in test and validation cohorts, respectively. Importantly, the iFBPanel also exhibited good performance in detecting early-stage ESCC patients (0.872 and 0.864). Furthermore, the iFBPanel was further empowered by AI technology which showed excellent diagnostic performance in early-stage ESCC (0.927 and 0.907). CONCLUSIONS Our study suggested that serum EFNA1 and MMP13 could potentially assist ESCC detection, and provided an easy-to-use detection model that might help the diagnosis of early-stage ESCC.
Collapse
Affiliation(s)
- Ling-Yu Chu
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Fang-Cai Wu
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shanto, China; Guangdong Esophageal Cancer Institute, Cancer Hospital of Shantou University Medical College, Shanto, China; Esophageal Cancer Prevention and Control Research Centre, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Wang-Kai Fang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Chao-Qun Hong
- Department of Oncological Laboratory Research, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Li-Sheng Huang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shanto, China
| | - Hai-Ying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, China; Guangdong Esophageal Cancer Institute, Cancer Hospital of Shantou University Medical College, Shanto, China
| | - Hao Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China.
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China.
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, China; Guangdong Esophageal Cancer Institute, Cancer Hospital of Shantou University Medical College, Shanto, China; Esophageal Cancer Prevention and Control Research Centre, Cancer Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
4
|
Yu HJ, Kim JH, Choi SJ, Cho SD. In vitro antimetastatic potential of pseudolaric acid B in HSC-3 human tongue squamous carcinoma cell line. Arch Oral Biol 2024; 162:105940. [PMID: 38479277 DOI: 10.1016/j.archoralbio.2024.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/14/2024] [Accepted: 02/25/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVE Pseudolaric acid B (PAB) is a novel diterpenoid derived from the traditional Chinese medicinal herb Cortex pseudolaricis that exerts anticancer, anti-inflammatory, and immunomodulatory properties. While the anticancer potential of PAB has been studied, its effects on metastasis have not been well-studied. This study aims to determine the inhibitory effects of PAB on HSC-3 human tongue squamous cell carcinoma (TSCC) cell line. DESIGN Cell viability and soft agar colony formation assays were conducted to assess cellular proliferation and in vitro tumorigenic capacity of TSCC cells, respectively. Additionally, wound healing, transwell migration, and invasion assays were conducted to monitor the aggressive behavior of TSCC cells. Furthermore, Western blotting analysis was conducted to reveal the signaling pathways involved in the modulation of epithelial-mesenchymal transition (EMT). RESULTS The migratory and invasive capacities of HSC-3 cells were suppressed by PAB irrespective of their proliferation states. PAB's effects on EMT involved upregulation of E-cadherin expression and downregulation of Twist; these were concomitantly accompanied by downregulated phosphorylation of epidermal growth factor receptor (EGFR). CONCLUSIONS PAB suppresses human TSCC in vitro by regulating Twist/E-cadherin through the EGFR signaling pathway. PAB may have potential as a candidate antimetastatic drug for TSCC treatment.
Collapse
Affiliation(s)
- Hyun-Ju Yu
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Ji-Hoon Kim
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Su-Jung Choi
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
| |
Collapse
|
5
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Rashwan HH, Taher AM, Hassan HA, Awaji AA, Kiriacos CJ, Assal RA, Youness RA. Harnessing the supremacy of MEG3 LncRNA to defeat gastrointestinal malignancies. Pathol Res Pract 2024; 256:155223. [PMID: 38452587 DOI: 10.1016/j.prp.2024.155223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Evidence suggests that long non-coding RNAs (lncRNAs) play a pivotal role in the carcinogenesis and progression of various human malignancies including gastrointestinal malignancies. This comprehensive review reports the functions and mechanisms of the lncRNA maternally expressed gene 3 (MEG3) involved in gastrointestinal malignancies. It summarizes its roles in mediating the regulation of cellular proliferation, apoptosis, migration, invasiveness, epithelial-to-mesenchymal transition, and drug resistance in several gastrointestinal cancers such as colorectal cancer, gall bladder cancer, pancreatic cancer, gastric cancer, esophageal cancer, cholangiocarcinoma, gastrointestinal stromal tumors and most importantly, hepatocellular carcinoma. In addition, the authors briefly highlight its implicated mechanistic role and interactions with different non-coding RNAs and oncogenic signaling cascades. This review presents the rationale for developing non coding RNA-based anticancer therapy via harnessing the power of MEG3 in gastrointestinal malignancies.
Collapse
Affiliation(s)
- H H Rashwan
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; Bioinformatics Group, Center for Informatics Science (CIS), School of Information Technology and Computer Science (ITCS), Nile University, 12677, Giza, Egypt
| | - A M Taher
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt
| | - H A Hassan
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt
| | - A A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - C J Kiriacos
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt
| | - R A Assal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - R A Youness
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt.
| |
Collapse
|
7
|
Abbas H, Derkaoui DK, Jeammet L, Adicéam E, Tiollier J, Sicard H, Braun T, Poyet JL. Apoptosis Inhibitor 5: A Multifaceted Regulator of Cell Fate. Biomolecules 2024; 14:136. [PMID: 38275765 PMCID: PMC10813780 DOI: 10.3390/biom14010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Apoptosis, or programmed cell death, is a fundamental process that maintains tissue homeostasis, eliminates damaged or infected cells, and plays a crucial role in various biological phenomena. The deregulation of apoptosis is involved in many human diseases, including cancer. One of the emerging players in the intricate regulatory network of apoptosis is apoptosis inhibitor 5 (API5), also called AAC-11 (anti-apoptosis clone 11) or FIF (fibroblast growth factor-2 interacting factor). While it may not have yet the same level of notoriety as some other cancer-associated proteins, API5 has garnered increasing attention in the cancer field in recent years, as elevated API5 levels are often associated with aggressive tumor behavior, resistance to therapy, and poor patient prognosis. This review aims to shed light on the multifaceted functions and regulatory mechanisms of API5 in cell fate decisions as well as its interest as therapeutic target in cancer.
Collapse
Affiliation(s)
- Hafsia Abbas
- Université Oran 1, Ahmed Ben Bella, Oran 31000, Algeria; (H.A.); (D.K.D.)
| | | | - Louise Jeammet
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Emilie Adicéam
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Jérôme Tiollier
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Hélène Sicard
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Thorsten Braun
- Laboratoire de Transfert des Leucémies, EA3518, Institut de Recherche Saint Louis, Hôpital Saint Louis, Université de Paris, 75010 Paris, France;
- AP-HP, Service d’Hématologie Clinique, Hôpital Avicenne, Université Paris XIII, 93000 Bobigny, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, 75010 Paris, France
| | - Jean-Luc Poyet
- INSERM UMRS976, Institut de Recherche Saint Louis, Hôpital Saint Louis, 75010 Paris, France
- Université Paris Cité, 75015 Paris, France
| |
Collapse
|
8
|
Zhang J, Zhang X, Han K, Wang X, Guo Z, Deng Q, Li J, Lv S, Yu W. Effects of low level laser on periodontal tissue remodeling in hPDLCs under tensile stress. Lasers Med Sci 2023; 38:232. [PMID: 37819407 PMCID: PMC10567958 DOI: 10.1007/s10103-023-03885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
This study aimed to investigate the effect of Low-Level Laser Therapy (LLLT) on human Periodontal Ligament Cells (hPDLCs) under tension stress. Primary hPDLCs were obtained using the tissue culture method, and P3 cells were utilized for the subsequent experiments. The study comprised four groups: a blank control group (Group B), a laser irradiation group (Group L), a tension stress group (Group T), and a laser + tension stress group (Group LT). Mechanical loading was applied using an in-vitro cell stress loading device at a frequency of 0.5 Hz and deformation of 2% for two hours per day for two days. Laser irradiation at 808 nm GaAlAs laser was administered 1 h after force loading. Cell samples were collected after the experiment. Bone and fiber remodeling factors were analyzed using PCR and Western blot. Flow cytometry was employed to assess the cell cycle, while ROS and Ca2+ levels were measured using a multifunctional enzyme labeling instrument. The results revealed that laser intervention under tension stress inhibited the expression of osteogenic differentiation factors, promoted the expression of osteoclast differentiation factors, and significantly increased the production of collagen factors, MMPs, and TIMPs. The LT group exhibited the most active cell cycle (P < 0.05). LLLT not only enhanced Ca2+ expression in hPDLCs under tension stress, but also stimulated the production of ROS. Overall, our findings demonstrate that LLLT effectively accelerated the proliferation of hPDLCs and the remodeling of periodontal tissue, possibly through the regulation of ROS and Ca2+ levels in hPDLCs.
Collapse
Affiliation(s)
- Jiaxi Zhang
- Department of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Xizhong Zhang
- Department of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Kaifang Han
- Department of Stomatology, Tianjin Beichen Hospital, Tianjin, 300400, China
| | - Xuan Wang
- Department of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Ziyuan Guo
- Department of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Qi Deng
- Department of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Jiahui Li
- Department of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Shuxin Lv
- Department of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Wenwen Yu
- Department of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China.
| |
Collapse
|
9
|
Almatroodi SA, Almatroudi A, Khan AA, Rahmani AH. Potential Therapeutic Targets of Formononetin, a Type of Methoxylated Isoflavone, and Its Role in Cancer Therapy through the Modulation of Signal Transduction Pathways. Int J Mol Sci 2023; 24:ijms24119719. [PMID: 37298670 DOI: 10.3390/ijms24119719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is one of the main causes of death in all developed and developing countries. Various factors are involved in cancer development and progression, including inflammation and alterations in cellular processes and signaling transduction pathways. Natural compounds have shown health-promoting effects through their antioxidant and anti-inflammatory potential, having an important role in the inhibition of cancer growth. In this regard, formononetin, a type of isoflavone, plays a significant role in disease management through the modulation of inflammation, angiogenesis, cell cycle, and apoptosis. Furthermore, its role in cancer management has been proven through the regulation of different signal transduction pathways, such as the signal transducer and activator of transcription 3 (STAT 3), Phosphatidyl inositol 3 kinase/protein kinase B (PI3K/Akt), and mitogen activating protein kinase (MAPK) signaling pathways. The anticancer potential of formononetin has been reported against various cancer types, such as breast, cervical, head and neck, colon, and ovarian cancers. This review focuses on the role of formononetin in different cancer types through the modulation of various cell signaling pathways. Moreover, synergistic effect with anticancer drugs and methods to improve bioavailability are explained. Thus, detailed studies based on clinical trials are required to explore the potential role of formononetin in cancer prevention and treatment.
Collapse
Affiliation(s)
- Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
10
|
Zisis V, Andreadis D, Anastasiadou P, Vahtsevanos K, Akrivou M, Vizirianakis IS, Poulopoulos A. Preliminary Study of the Cancer Stem Cells' Biomarker CD147 in Leukoplakia: Dysplasia and Squamous Cell Carcinoma of Oral Epithelial Origin. Cureus 2023; 15:e38807. [PMID: 37303447 PMCID: PMC10256256 DOI: 10.7759/cureus.38807] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Objectives Cancer stem cells (CSCs) are responsible for initiating the process of carcinogenesis de novo, as well as through the transformation of oral potential malignant disorders (OPMDs) to oral squamous cell carcinoma (OSCC). The aim of our study was to detect the expression of stemness-type CSC marker CD147 in oral leukoplakias (OLs), the most common OPMD, and OSCCs as well. Materials and methods This study focuses on the semiquantitative immunohistochemical pattern of the expression of the CSC protein biomarker CD147 in paraffin-embedded samples of 20 OSCCs of different grades of differentiation and 30 cases of OLs without or with different grades of dysplasia, compared to the normal oral epithelium in terms of cells' stain positivity. Statistical analysis was performed through Statistical Package for Social Sciences (SPSS) version 25.0 (IBM SPSS Statistics, Armonk, NY) with Pearson chi-square test, and the significance level was set at 0.05 (p=0.05). In addition, the study clarified the expression of the respective gene of CD147 through quantitative polymerase chain (qPCR), in paraffin-embedded samples of the two extreme graduations: OLs of mildly dysplastic or non-dysplastic cases (n=10 cases) and OSCCs of moderately/poorly differentiated cases (n=17). Statistical analysis was then performed through SPSS version 25.0 with an independent paired t-test, and the significance level was set at 0.05 (p=0.05). Results The gene CD147 was expressed in all cases, although no statistically significant correlations were established. Regarding its protein products, the characteristic membranous staining of CD147 was noticed in the majority of the samples, mostly in the basal and parabasal layers of the epithelium. CD147 was upregulated significantly in the moderately and severely dysplastic OLs than in the mildly dysplastic and non-dysplastic OLs (p=0.008). Also, CD147 was upregulated significantly in the mildly dysplastic and non-dysplastic OLs than in the normal oral epithelium (p=0.012). Discussion The characteristic expression of CD147 in OLs and OSCCs' lesions suggests the presence of stemlike cancer cells, illustrating an underlying effect on the early stages of oral dysplasia, in the OL stage. The clinical application of CD147 as prognostic factor requires the experimental evaluation in larger number of samples. Conclusion Stem cells play an important role in the process of carcinogenesis. A major goal in cancer research is the identification of specific biomarkers for the detection of cancer stem cells. CD147 is considered as an innovative stem cell marker. Our findings in oral mucosal potentially malignant disorders showed that CD147 is expressed more intensely in parallel with the progression of the grade of dysplasia in OL. On the other hand, in oral squamous cell carcinoma, CD147 expression remains stable regardless of the degree of differentiation.
Collapse
Affiliation(s)
- Vasileios Zisis
- Oral Medicine/Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Dimitrios Andreadis
- Oral Medicine/Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | | | | - Meni Akrivou
- Pharmacology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | | | |
Collapse
|
11
|
VEZF1, destabilized by STUB1, affects cellular growth and metastasis of hepatocellular carcinoma by transcriptionally regulating PAQR4. Cancer Gene Ther 2023; 30:256-266. [PMID: 36241701 DOI: 10.1038/s41417-022-00540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive solid malignancy, and recurrence and metastasis are major incentives contributing to its poor outcome. Vascular endothelial zinc finger 1 (VEZF1) has been recognized as an oncoprotein in certain types of cancer, but the expression pattern and regulatory mechanism in HCC remains unclear. This study focused on the functional effect and regulatory basis of VEZF1 in HCC. Microarray analysis identified the differentially expressed VEZF1 in HCC, and we validated its raised expression in HCC clinical samples. Artificial modulation of VEZF1 (knockdown and overexpression) was conducted to explore its role in HCC progression both in vitro and in vivo. It was shown that silencing of VEZF1 suppressed, whereas its overexpression promoted HCC cellular proliferation and metastasis abilities. Mechanistically, VEZF1 transcriptionally activated progestin and adipoQ receptor 4 (PAQR4) to accelerate HCC progression. Furthermore, VEZF1 is confirmed as a substrate of stress-inducible phosphoprotein 1 homology and U-box containing protein 1 (STUB1), and its stability is impacted by STUB1-mediated ubiquitination degradation. Conjointly, our work suggested that VEZF1, destabilized by STUB1, participates in HCC progression by regulating PAQR4. The STUB1/VEZF1/PAQR4 mechanism might provide novel insights on guiding early diagnosis and therapy in HCC patients.
Collapse
|
12
|
Daraban Bocaneti F, Altamura G, Corteggio A, Tanase OI, Dascalu MA, Pasca SA, Hritcu O, Mares M, Borzacchiello G. Expression of matrix metalloproteinases (MMPs)−2/-7/-9/-14 and tissue inhibitors of MMPs (TIMPs)−1/-2 in bovine cutaneous fibropapillomas associated with BPV-2 infection. Front Vet Sci 2022; 9:1063580. [DOI: 10.3389/fvets.2022.1063580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022] Open
Abstract
IntroductionBovine papillomaviruses −1/−2 (BPVs) are small non-enveloped double-stranded DNA viruses able to infect the skin of bovids and equids, causing development of neoplastic lesions such as bovine cutaneous fibropapillomas and equine sarcoid. Matrix metalloproteinases (MMPs) are a group of zinc-dependent endopeptidases that degrade basal membrane and extracellular matrix, whose function is essential in physiological processes such as tissue remodeling and wound healing. MMPs activity is finely regulated by a balancing with expression of tissue inhibitors of MMPs (TIMPs), a process that is impaired during tumour development. BPV infection is associated with upregulation of MMPs and /or their unbalancing with TIMPs, contributing to local invasion and impairment of extracellular matrix remodeling in equine sarcoid; however, studies regarding this topic in bovine fibropapillomas are lacking.MethodsThe aim of this study was to perform an immunohistochemical and biochemical analysis on a panel of MMPs and TIMPs in BPV-2 positive bovine cutaneous fibropapillomas vs. normal skin samples.ResultsImmunohistochemistry revealed a cytoplasmic expression of MMP-2 (15/19), a cytoplasmic and perinuclear immunoreactivity of MMP-7 (19/19) and MMP-9 (19/19), along with a cytoplasmic and nuclear pattern of MMP-14 (16/19), accompanied by a cytoplasmic expression of TIMP-1 (14/19) and TIMP-2 (18/19) in tumour samples; western blotting revealed an overexpression of MMP-2 (8/9), MMP-7 (9/9) and MMP-9 (9/9), and a decreased level of MMP-14 (9/9), TIMP-1 (9/9) and TIMP-2 (9/9) in tumour versus normal skin samples. Moreover, gelatine zymography confirmed the expression of pro-active MMP-2 (9/9) and MMP-9 (9/9) and, most importantly, indicated the presence and increased activity of their active forms (82 and 62 kDa, respectively) in tumour samples.DiscussionThis is the first study describing MMPs and TIMPs in bovine cutaneous fibropapillomas and our results suggest that their unbalanced expression in presence of BPV-2 may play a significant role in tumour development. A further analysis of supplementary MMPs and TIMPs could bring new important insights into the papillomavirus induced tumours.
Collapse
|
13
|
Bunnell BA, Martin EC, Matossian MD, Brock CK, Nguyen K, Collins-Burow B, Burow ME. The effect of obesity on adipose-derived stromal cells and adipose tissue and their impact on cancer. Cancer Metastasis Rev 2022; 41:549-573. [PMID: 35999486 DOI: 10.1007/s10555-022-10063-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
The significant increase in the incidence of obesity represents the next global health crisis. As a result, scientific research has focused on gaining deeper insights into obesity and adipose tissue biology. As a result of the excessive accumulation of adipose tissue, obesity results from hyperplasia and hypertrophy within the adipose tissue. The functional alterations in the adipose tissue are a confounding contributing factor to many diseases, including cancer. The increased incidence and aggressiveness of several cancers, including colorectal, postmenopausal breast, endometrial, prostate, esophageal, hematological, malignant melanoma, and renal carcinomas, result from obesity as a contributing factor. The increased morbidity and mortality of obesity-associated cancers are attributable to increased hormones, adipokines, and cytokines produced by the adipose tissue. The increased adipose tissue levels observed in obese patients result in more adipose stromal/stem cells (ASCs) distributed throughout the body. ASCs have been shown to impact cancer progression in vitro and in preclinical animal models. ASCs influence tumor biology via multiple mechanisms, including the increased recruitment of ASCs to the tumor site and increased production of cytokines and growth factors by ASCs and other cells within the tumor stroma. Emerging evidence indicates that obesity induces alterations in the biological properties of ASCs, subsequently leading to enhanced tumorigenesis and metastasis of cancer cells. As the focus of this review is the interaction and impact of ASCs on cancer, the presentation is limited to preclinical data generated on cancers in which there is a demonstrated role for ASCs, such as postmenopausal breast, colorectal, prostate, ovarian, multiple myeloma, osteosarcoma, cervical, bladder, and gastrointestinal cancers. Our group has investigated the interactions between obesity and breast cancer and the mechanisms that regulate ASCs and adipocytes in these different contexts through interactions between cancer cells, immune cells, and other cell types present in the tumor microenvironment (TME) are discussed. The reciprocal and circular feedback loop between obesity and ASCs and the mechanisms by which ASCs from obese patients alter the biology of cancer cells and enhance tumorigenesis will be discussed. At present, the evidence for ASCs directly influencing human tumor growth is somewhat limited, though recent clinical studies suggest there may be some link.
Collapse
Affiliation(s)
- Bruce A Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| | - Elizabeth C Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Margarite D Matossian
- Department of Microbiology, Immunology and Genetics, University of Chicago, IL, Chicago, USA
| | - Courtney K Brock
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Khoa Nguyen
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bridgette Collins-Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Matthew E Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
14
|
Eiro N, Barreiro-Alonso E, Fraile M, González LO, Altadill A, Vizoso FJ. Expression of MMP-2, MMP-7, MMP-9, and TIMP-1 by Inflamed Mucosa in the Initial Diagnosis of Ulcerative Colitis as a Response Marker for Conventional Medical Treatment. Pathobiology 2022; 90:81-93. [PMID: 35797965 DOI: 10.1159/000524978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/07/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Experimental and clinical data involve matrix metalloproteases (MMPs) and their tissue inhibitors (TIMPs) in the pathogenesis of inflammatory bowel diseases. However, the impact of MMPs/TIMPs expression by inflamed mucosa on medical response therapy has scarcely been investigated. METHODS The expression of MMP-2, MMP-7, MMP-9, and TIMP-1 was determined by immunohistochemical analysis in inflamed mucosa samples at diagnosis in 82 patients with ulcerative colitis (UC; 22 never-treated with corticosteroids, 28 nonresponders, and 32 responders to corticosteroid therapy) and 15 patients with acute diverticulitis (AD). The global expression (score value) of each factor was analyzed by computer-generated image analysis. RESULTS UC samples showed higher MMP-2 and MMP-9 expression but lower TIMP-1 expression than the AD samples (p < 0.0001, for all). High MMP-9 and TIMP-1 scores were significantly associated with no need for corticosteroid treatment (p < 0.001 and p = 0.017, respectively); whereas higher score in the MMP-7 expression was significantly associated with nonresponse to corticosteroid therapy (p = 0.037). In addition, in this latter UC subgroup, MMP-7 correlated positively with the younger age of the patients and with the extension of the disease (p = 0.030 and p = 0.010, respectively). CONCLUSION Our results suggest the relevance of MMPs and TIMPs for predicting treatment response to both 5-aminosalicylates and corticosteroids in UC.
Collapse
Affiliation(s)
- Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Gijón, Spain
| | - Eva Barreiro-Alonso
- Department of Gastroenterology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Maria Fraile
- Research Unit, Fundación Hospital de Jove, Gijón, Spain
| | - Luis O González
- Department of Anatomical Pathology, Fundación Hospital de Jove, Gijón, Spain
| | - Antonio Altadill
- Department of Internal Medicine, Fundación Hospital de Jove, Gijón, Spain
| | - Francisco J Vizoso
- Research Unit, Fundación Hospital de Jove, Gijón, Spain.,Department of Surgery, Fundación Hospital de Jove, Gijón, Spain
| |
Collapse
|
15
|
Petean IBF, Silva-Sousa AC, Cronenbold TJ, Mazzi-Chaves JF, Silva LABD, Segato RAB, Castro GAPD, Kuchler EC, Paula-Silva FWG, Damião Sousa-Neto M. Genetic, Cellular and Molecular Aspects involved in Apical Periodontitis. Braz Dent J 2022; 33:1-11. [PMID: 36043561 PMCID: PMC9645190 DOI: 10.1590/0103-6440202205113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
The development, establishment and repair of apical periodontitis (AP) is
dependent of several factors, which include host susceptibility, microbial
infection, immune response, quality of root canal treatment and organism's
ability to repair. The understanding of genetic contributions to the risk of
developing AP and presenting persistent AP has been extensively explored in
modern Endodontics. Thus, this article aims to provide a review of the
literature regarding the biochemical mediators involved in immune response
signaling, osteoclastogenesis and bone neoformation, as the genetic components
involved in the development and repair of AP. A narrative review of the
literature was performed through a PUBMED/MEDLINE search and a hand search of
the major AP textbooks. The knowledge regarding the cells, receptors and
molecules involved in the host's immune-inflammatory response during the
progression of AP added to the knowledge of bone biology allows the
identification of factors inherent to the host that can interfere both in the
progression and in the repair of these lesions. The main outcomes of studies
evaluated in the review that investigated the correlation between genetic
polymorphisms and AP in the last five years, demonstrate that genetic factors of
the individual are involved in the success of root canal treatment. The
discussion of this review gives subsides that may help to glimpse the
development of new therapies based on the identification of therapeutic targets
and the development of materials and techniques aimed at acting at the molecular
level for clinical, radiographic and histological success of root canal
treatment.
Collapse
Affiliation(s)
- Igor Bassi Ferreira Petean
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Brazil
| | - Alice Corrêa Silva-Sousa
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | - Lea Assed Bezerra da Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Raquel Assed Bezerra Segato
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Erika Calvano Kuchler
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | - Manoel Damião Sousa-Neto
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Brazil
| |
Collapse
|
16
|
Pharmacological effects of cannabidiol by transient receptor potential channels. Life Sci 2022; 300:120582. [PMID: 35483477 DOI: 10.1016/j.lfs.2022.120582] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
Cannabidiol (CBD), as a major phytocannabinoid of Cannabis sativa, has emerged as a promising natural compound in the treatment of diseases. Its diverse pharmacological effects with limited side effects have promoted researchers to pursue new therapeutic applications. It has little affinity for classical cannabinoid receptors (CB1 and CB2). Considering this and its diverse pharmacological effects, it is logical to set up studies for finding its putative potential targets other than CB1 and CB2. A class of ion channels, namely transient potential channels (TRP), has been identified during two recent decades. More than 30 members of this family have been studied, so far. They mediate diverse physiological functions and are associated with various pathological conditions. Some have been recognized as key targets for natural compounds such as capsaicin, menthol, and CBD. Studies show that CBD has agonistic effects for TRPV1-4 and TRPA1 channels with antagonistic effects on the TRPM8 channel. In this article, we reviewed the recent findings considering the interaction of CBD with these channels. The review indicated that TRP channels mediate, at least in part, the effects of CBD on seizure, inflammation, cancer, pain, acne, and vasorelaxation. This highlights the role of TRP channels in CBD-mediated effects, and binding to these channels may justify part of its paradoxical effects in comparison to classical phytocannabinoids.
Collapse
|
17
|
Saeedi Sadr A, Ehteram H, Seyed Hosseini E, Alizadeh Zarei M, Hassani Bafrani H, Haddad Kashani H. The Effect of Irisin on Proliferation, Apoptosis, and Expression of Metastasis Markers in Prostate Cancer Cell Lines. Oncol Ther 2022; 10:377-388. [PMID: 35467303 DOI: 10.1007/s40487-022-00194-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Irisin is a newly discovered myokine released from skeletal muscle during exercise. The matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that play a key role in the metastatic process via degrading extracellular matrix. The aim of this study was to investigate the effect of irisin on expression of metastatic markers MMP2 and MMP9 and induced apoptosis in human prostate cancer cells. METHODS In this study, we examined the effect of different concentrations of irisin on induced apoptosis and cell viability of two cell lines, LNCaP and DU-145, by using flow cytometry and MTT assay, respectively. The expression of MMP2 and MMP9 genes was also analyzed by real-time PCR after irisin treatment. Data were analyzed using the comparative cycle threshold 2-∆∆Ct method. RESULTS Cell viability was reduced in both LNCaP and DU-145 cell lines at different concentrations of irisin. However, this decreased cell viability was strongly significant (p < 0.05) only at 5 and 10 nM concentrations of irisin in the LNCaP cell line. Furthermore, irisin could induce apoptosis in both cell lines at a concentration of 10 nM compared to 5 nM. Real-time PCR results also demonstrated a decreased expression in MMP2 and MMP9 genes in a concentration-dependent manner in both cell lines. CONCLUSION These results showed the anticancer effects of irisin on cell viability of both LNCaP and DU-145 cell lines and also on the expression of MMP2 and MMP9 genes occurred in a dose- and time-dependent manner.
Collapse
Affiliation(s)
- Atiye Saeedi Sadr
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hassan Ehteram
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Seyed Hosseini
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Marziyeh Alizadeh Zarei
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hassan Hassani Bafrani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
18
|
Aloperine: A Potent Modulator of Crucial Biological Mechanisms in Multiple Diseases. Biomedicines 2022; 10:biomedicines10040905. [PMID: 35453655 PMCID: PMC9028564 DOI: 10.3390/biomedicines10040905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/18/2023] Open
Abstract
Aloperine is an alkaloid found in the seeds and leaves of the medicinal plant Sophora alopecuroides L. It has been used as herbal medicine in China for centuries due to its potent anti-inflammatory, antioxidant, antibacterial, and antiviral properties. Recently, aloperine has been widely investigated for its therapeutic activities. Aloperine is proven to be an effective therapeutic agent against many human pathological conditions, including cancer, viral diseases, and cardiovascular and inflammatory disorders. Aloperine is reported to exert therapeutic effects through triggering various biological processes, including cell cycle arrest, apoptosis, autophagy, suppressing cell migration, and invasion. It has also been found to be associated with the modulation of various signaling pathways in different diseases. In this review, we summarize the most recent knowledge on the modulatory effects of aloperine on various critical biological processes and signaling mechanisms, including the PI3K, Akt, NF-κB, Ras, and Nrf2 pathways. These data demonstrate that aloperine is a promising therapeutic candidate. Being a potent modulator of signaling mechanisms, aloperine can be employed in clinical settings to treat various human disorders in the future.
Collapse
|
19
|
Wen Y, Zhang X, Li X, Tian L, Shen S, Ma J, Ai F. Histone deacetylase (HDAC) 11 inhibits matrix metalloproteinase (MMP) 3 expression to suppress colorectal cancer metastasis. J Cancer 2022; 13:1923-1932. [PMID: 35399729 PMCID: PMC8990422 DOI: 10.7150/jca.66914] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence has implicated invasion and metastasis are the major common reason of treatment failure and the leading cause of death in colorectal cancer (CRC). Many members of the HDAC family have been reported to be key factors in the genesis and progression of cancer. Until now, few research focused on the actual expression patterns of HDAC11 in most malignancies. In the current study, we found that the expression of HDAC11 is decreased in mouse colitis tissues and colitis-associated cancer (CAC) tissue compared with normal colon tissue. Clinically HDAC11 expression is significantly lower in colorectal cancer tissues of patients and correlated with lymph node metastasis. Additionally, HDAC11 is downregulated in the relative high metastatic potential colorectal cancer cells. We also found HDAC11 inhibits the migration and invasion of colorectal cancer cell by downregulating Mmp3 expression. At the molecular level, the expression of HDAC11 inversely correlated with the level of histone H3K9 and H3K14 acetylation. In addition, analysis of chromatin-protein association by ChIP-qPCR demonstrated that the level of H3K9 acetylation correlated with the upregulation of Mmp3. Through a better understanding of this previously unknown role of HDAC11 in migration and invasion of colorectal cancer, HDAC11 may become a novel candidate for developing rational therapeutic strategies.
Collapse
Affiliation(s)
- Yuqing Wen
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Changsha, China
| | - Xuemei Zhang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiayu Li
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Li Tian
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Shourong Shen
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Jian Ma
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Changsha, China
| | - Feiyan Ai
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Changsha, China
| |
Collapse
|
20
|
li X, Huo F, Zhang Y, Cheng F, Yin C. Enzyme-activated Prodrugs and Their Release Mechanisms for Treatment of Cancer. J Mater Chem B 2022; 10:5504-5519. [DOI: 10.1039/d2tb00922f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzyme-activated prodrugs have received a lot of attention in recent years. These prodrugs have low toxicity to cells before they are activated, and when they interact with specific enzymes, they...
Collapse
|
21
|
Gusson-Zanetoni JP, da Silva JSGM, Picão TB, Cardin LT, Prates J, Sousa SO, Henrique T, Oliani SM, Tajara EH, E Silva MLA, Cunha NL, da Silva Gomes AC, Laurentiz RS, Rodrigues-Lisoni FC. Effect of Piper cubeba total extract and isolated lignans on head and neck cancer cell lines and normal fibroblasts. J Pharmacol Sci 2021; 148:93-102. [PMID: 34924135 DOI: 10.1016/j.jphs.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022] Open
Abstract
The objective of the present study was to evaluate the action of the crude hydroalcoholic extract of Piper cubeba fruits and isolated lignans (cubebin, dihydrocubebin, ethylcubebin, hinokinin and methylcubebin) on head and neck cancer cells. We evaluated the influence of the Piper cubeba extract and isolated lignans (10, 50 e 100 μg/mL) for 4, 24, 48 and 72 h, in the larynx (Hep-2) and oral (SCC-25) squamous cell carcinoma cells and normal fibroblasts, on morphology, cell proliferation and migration, cytotoxicity, genotoxicity and gene and protein expression (PTGS2, PTGER3, PTGER4, MMP2, MMP9). The results showed that the P. cubeba extract and different lignans do not alter the cellular morphology, but decrease cell proliferation and migration, have low cytotoxic and genotoxic effects, probably due to the alteration of the expression of genes and proteins involved with inflammatory process. From these data, we can conclude that the lignans cubebin and methylcubebin had a greater effect on head and neck cancer cells in the antiproliferative, antimigratory and genotoxic action, and could be the target of the development of new therapies including possible new drugs as a therapeutic resource for the treatment of head and neck cancer due to its immense range of biological properties.
Collapse
Affiliation(s)
- Juliana Prado Gusson-Zanetoni
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Science (IBILCE), Campus São José do Rio Preto, Department of Biology, SP, Brazil
| | | | - Thais Bravo Picão
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Science (IBILCE), Campus São José do Rio Preto, Department of Biology, SP, Brazil
| | - Laila Toniol Cardin
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Science (IBILCE), Campus São José do Rio Preto, Department of Biology, SP, Brazil
| | - Janesly Prates
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Science (IBILCE), Campus São José do Rio Preto, Department of Biology, SP, Brazil
| | - Stefanie Oliveira Sousa
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Science (IBILCE), Campus São José do Rio Preto, Department of Biology, SP, Brazil
| | - Tiago Henrique
- School of Medicine of São José do Rio Preto (FAMERP), Department of Molecular Biology, São José do Rio Preto, Brazil
| | - Sonia Maria Oliani
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Science (IBILCE), Campus São José do Rio Preto, Department of Biology, SP, Brazil
| | - Eloiza Helena Tajara
- School of Medicine of São José do Rio Preto (FAMERP), Department of Molecular Biology, São José do Rio Preto, Brazil; Department of Genetics and Evolutive Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Nayanne Larissa Cunha
- University of Franca (UNIFRAN), Nucleus of Research in Exact and Technological Sciences, Franca, SP, Brazil
| | - Ana Carolina da Silva Gomes
- São Paulo State University (UNESP), School of Engineering (FEIS), Campus Ilha Solteira, Department of Physical Chemistry, Brazil
| | - Rosangela Silva Laurentiz
- São Paulo State University (UNESP), School of Engineering (FEIS), Campus Ilha Solteira, Department of Physical Chemistry, Brazil
| | - Flávia Cristina Rodrigues-Lisoni
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Science (IBILCE), Campus São José do Rio Preto, Department of Biology, SP, Brazil; São Paulo State University (UNESP), School of Engineering (FEIS), Campus Ilha Solteira, Department of Biology and Animal Science, Brazil.
| |
Collapse
|
22
|
The role of extracellular matrix in tumour angiogenesis: the throne has NOx servants. Biochem Soc Trans 2021; 48:2539-2555. [PMID: 33150941 PMCID: PMC7752075 DOI: 10.1042/bst20200208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) dynamics in tumour tissue are deregulated compared to the ECM in healthy tissue along with disorganized architecture and irregular behaviour of the residing cells. Nitric oxide (NO) as a pleiotropic molecule exerts different effects on the components of the ECM driving or inhibiting augmented angiogenesis and tumour progression and tumour cell proliferation and metastasis. These effects rely on the concentration of NO within the tumour tissue, the nature of the surrounding microenvironment and the sensitivity of resident cells to NO. In this review article, we summarize the recent findings on the correlation between the levels of NO and the ECM components towards the modulation of tumour angiogenesis in different types of cancers. These are discussed principally in the context of how NO modulates the expression of ECM proteins resulting in either the promotion or inhibition of tumour growth via tumour angiogenesis. Furthermore, the regulatory effects of individual ECM components on the expression of the NO synthase enzymes and NO production were reviewed. These findings support the current efforts for developing effective therapeutics for cancers.
Collapse
|
23
|
Kyriakou I, Yarandi N, Polycarpou E. Efficacy of cannabinoids against glioblastoma multiforme: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153533. [PMID: 33812759 DOI: 10.1016/j.phymed.2021.153533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/09/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION The increased incidence of Glioblastoma Multiforme, the most aggressive and most common primary brain tumour, is evident worldwide. Survival rates are reaching only 15 months due to its high recurrence and resistance to current combination therapies including oncotomy, radiotherapy and chemotherapy. Light has been shed in the recent years on the anticancer properties of cannabinoids from Cannabis sativa. OBJECTIVE To determine whether cannabinoids alone or in combination with radiotherapy and/or chemotherapy inhibit tumour progression, induce cancer cell death, inhibit metastasis and invasiveness and the mechanisms that underlie these actions. METHOD PubMed and Web of Science were used for a systemic search to find studies on the anticancer effects of natural cannabinoids on glioma cancer cells in vitro and/or in vivo. RESULTS A total of 302 papers were identified, of which 14 studies were found to fit the inclusion criteria. 5 studies were conducted in vitro, 2 in vivo and 7 were both in vivo and in vitro. 3 studies examined the efficacy of CBD, THC and TMZ, 1 study examined CBD and radiation, 2 studies examined efficacy of THC only and 3 studies examined the efficacy of CBD only. 1 study examined the efficacy of CBD, THC and radiotherapy, 2 studies examined the combination of CBD and THC and 2 more studies examined the efficacy of CBD and TMZ. CONCLUSION The evidence in this systematic review leads to the conclusion that cannabinoids possess anticancer potencies against glioma cells, however this effect varies with the combinations and dosages used. Studies so far were conducted on cells in culture and on mice as well as a small number of studies that were conducted on humans. Hence in order to have more accurate results, higher quality studies mainly including human clinical trials with larger sample sizes are necessitated urgently for GBM treatment.
Collapse
Affiliation(s)
- Ismini Kyriakou
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| | - Niousha Yarandi
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK.
| | - Elena Polycarpou
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| |
Collapse
|
24
|
Wan CY, Li L, Liu LS, Jiang CM, Zhang HZ, Wang JX. Expression of Matrix Metalloproteinases and Tissue Inhibitor of Matrix Metalloproteinases during Apical Periodontitis Development. J Endod 2021; 47:1118-1125. [DOI: 10.1016/j.joen.2021.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022]
|
25
|
Shi ML, Chen YF, Wu WQ, Lai Y, Jin Q, Qiu WL, Yu DL, Li YZ, Liao HF. Luteolin inhibits the proliferation, adhesion, migration and invasion of choroidal melanoma cells in vitro. Exp Eye Res 2021; 210:108643. [PMID: 34058231 DOI: 10.1016/j.exer.2021.108643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/24/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022]
Abstract
Choroidal melanoma is a devastating disease that causes visual loss and a high mortality rate due to metastasis. Luteolin, a potential anticancer compound, is widely found in natural plants. The aim of this study was to evaluate the antiproliferative, antiadhesive, antimigratory and anti-invasive effects of luteolin on choroidal melanoma cells in vitro and to explore its potential mechanism. Cell counting kit-8 (CCK-8) assays, 5-ethynyl-2'-deoxyuridine (EdU) assays, Cell adhesion, migration, and invasion assays were performed to examine the inhibitory effects of luteolin on cell cell viability, proliferation, adhesion, migration and invasion capacities, respectively. Considering the correlation between Matrix metalloenzymes and tumor metastasis, Enzyme-linked immunosorbent assays (ELISAs) were used to assess matrix metalloproteases MMP-2 and MMP-9 secretion. Western blotting was performed to detect p-PI3K P85, Akt, and p-Akt protein expression. The cytoskeletal proteins vimentin were observed with cell immunofluorescence staining. Luteolin can inhibit OCM-1 cell proliferation, migration, invasion and adhesion and C918 cell proliferation, migration, and invasion through the PI3K/Akt signaling pathway. Therefore, Luteolin may have potential as a therapeutic medication for Choroidal melanoma.
Collapse
Affiliation(s)
- Meng-Lin Shi
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Province Blood Center, Nanchang, 330052, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China
| | - Yu-Fen Chen
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Wei-Qi Wu
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Yao Lai
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Qi Jin
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Wan-Lu Qiu
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Dong-Lian Yu
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Yi-Zhong Li
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Hong-Fei Liao
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China.
| |
Collapse
|
26
|
Bee Venom Components as Therapeutic Tools against Prostate Cancer. Toxins (Basel) 2021; 13:toxins13050337. [PMID: 34067049 PMCID: PMC8150751 DOI: 10.3390/toxins13050337] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer is one of the most common cancers in men. Despite the development of a variety of therapeutic agents to treat either metastatic hormone-sensitive prostate cancer, advanced prostate cancer, or nonmetastatic/metastatic castration-resistant prostate cancer, the progression or spread of the disease often cannot be avoided. Additionally, the development of resistance of prostate cancer cells to available therapeutic agents is a well-known problem. Despite extensive and cost-intensive research over decades, curative therapy for metastatic prostate cancer is still not available. Therefore, additional therapeutic agents are still needed. The animal kingdom offers a valuable source of natural substances used for the treatment of a variety of diseases. Bee venom of the honeybee is a mixture of many components. It contains proteins acting as enzymes such as phospholipase A2, smaller proteins and peptides such as melittin and apamin, phospholipids, and physiologically active amines such as histamine, dopamine, and noradrenaline. Melittin has been shown to induce apoptosis in different cancer cell lines, including prostate cancer cell lines. It also influences cell proliferation, angiogenesis, and necrosis as well as motility, migration, metastasis, and invasion of tumour cells. Hence, it represents an interesting anticancer agent. In this review article, studies about the effect of bee venom components on prostate cancer cells are discussed. An electronic literature research was performed utilising PubMed in February 2021. All scientific publications, which examine this interesting subject, are discussed. Furthermore, the different types of application of these promising substances are outlined. The studies clearly indicate that bee venom or melittin exhibited anticancer effects in various prostate cancer cell lines and in xenografts. In most of the studies, a combination of bee venom or the modified melittin with another molecule was utilised in order to avoid side effects and, additionally, to target selectively the prostate cancer cells or the surrounding tissue. The studies showed that systemic side effects and unwanted damage to healthy tissue and organs could be minimised when the anticancer drug was not activated until binding to the cancer cells or the surrounding tissue. Different targets were used, such as the matrix metalloproteinase 2, hormone receptors expressed by prostate cancer cells, the extracellular domain of PSMA, and the fibroblast activation protein occurring in the stroma of prostate cancer cells. Another approach used loaded phosphate micelles, which were cleaved by the enzyme secretory phospholipase A2 produced by prostate cancer cells. In a totally different approach, targeted nanoparticles containing the melittin gene were used for prostate cancer gene therapy. By the targeted nonviral gene delivery, the gene encoding melittin was delivered to the prostate cancer cells without systemic side effects. This review of the scientific literature reveals totally different approaches using bee venom, melittin, modified melittin, or protoxin as anticancer agents. The toxic agents acted through several different mechanisms to produce their anti-prostate cancer effects. These mechanisms are not fully understood yet and more experimental studies are necessary to reveal the complete mode of action. Nevertheless, the researchers have conducted pioneering work. Based on these results, further experimental and clinical studies about melittin and modifications of this interesting agent deriving from nature are necessary and could possibly lead to a complementary treatment option for prostate cancer.
Collapse
|
27
|
Zhao L, Wang Y, Xu Y, Sun Q, Liu H, Chen Q, Liu B. BIRB796, an Inhibitor of p38 Mitogen-Activated Protein Kinase, Inhibits Proliferation and Invasion in Glioblastoma Cells. ACS OMEGA 2021; 6:11466-11473. [PMID: 34056302 PMCID: PMC8154025 DOI: 10.1021/acsomega.1c00521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Glioblastoma (GBM) is the most common malignant tumor, and it is characterized by high cellular proliferation and invasion in the central nervous system of adults. Due to its high degree of heterogeneity and mortality, there is no effective therapy for GBM. In our study, we investigated the effect of the p38-MAPK signaling pathway inhibitor BIRB796 on GBM cells. Cell Counting Kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EDU) staining, and cell cycle distribution analysis were performed, and the results showed that BIRB796 decreased proliferation in U87 and U251 cells. Moreover, wound healing and invasion assays were performed, which showed that BIRB796 inhibited the migration and invasion of human GBM cells. We found that BIRB796 treatment significantly decreased the formation of the cytoskeleton and thus downregulated the movement ability of the cells, as shown by phalloidin staining and vimentin immunofluorescence staining. Real-time polymerase chain reaction showed that the mRNA levels of MMP-2, Vimentin, CyclinD1, and Snail-1 were downregulated. Consistently, the expressions of MMP-2, Vimentin, CyclinD1, and p-p38 were also decreased after BIRB796 treatment. Taken together, all our results demonstrated that BIRB796 could play an antitumor role by inhibiting the proliferation and invasion in GBM cells. Thus, BIRB796 may be used as an adjuvant therapy to improve the therapeutic efficacy of GBM treatment.
Collapse
Affiliation(s)
- Linyao Zhao
- Department
of Neurosurgery, Renmin Hospital of Wuhan
University, Hubei 430060, China
- Central
Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Yixuan Wang
- Department
of Neurosurgery, Renmin Hospital of Wuhan
University, Hubei 430060, China
- Central
Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Yang Xu
- Department
of Neurosurgery, Renmin Hospital of Wuhan
University, Hubei 430060, China
- Central
Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Qian Sun
- Department
of Neurosurgery, Renmin Hospital of Wuhan
University, Hubei 430060, China
- Central
Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Hao Liu
- Department
of Neurosurgery, Renmin Hospital of Wuhan
University, Hubei 430060, China
- Central
Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Qianxue Chen
- Department
of Neurosurgery, Renmin Hospital of Wuhan
University, Hubei 430060, China
- Central
Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Baohui Liu
- Department
of Neurosurgery, Renmin Hospital of Wuhan
University, Hubei 430060, China
- Central
Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| |
Collapse
|
28
|
Borghesi J, Giancoli Kato Cano da Silva M, de Oliveira Pimenta Guimarães K, Mario LC, de Almeida da Anunciação AR, Silveira Rabelo AC, Gonçalves Hayashi R, Lima MF, Miglino MA, Oliveira Favaron P, Oliveira Carreira AC. Evaluation of immunohistopathological profile of tubular and solid canine mammary carcinomas. Res Vet Sci 2021; 136:119-126. [PMID: 33609969 DOI: 10.1016/j.rvsc.2021.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/10/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most common cancer in women, but the incidence of mammary carcinoma in female dogs is even higher than in humans. These two tumors have similarities that can be seen by its biological behavior, molecular genetic alterations, and histology. This suggest that female dogs can be an excellent model for preclinical oncological studies. And the mammary carcinoma most frequently found in this species is the tubular and solid carcinomas. The extracellular matrix (ECM) has an important role in the progression of these tumors. Because of that we proposed to evaluate the ECM components of these carcinomas through histology with specific stains such as Masson's Trichrome, Picrosirius Red and the technique of scanning electron microscopy. With that, we found the presence of collagen fibers in the tubular carcinoma and around its parenchyma. On the other hand, the solid carcinoma presented collagen fibers throughout the parenchyma and around each tumor cell. With the transmission electron microscopy, we observed the presence of mitochondrias and rough endoplasmic reticulum in both tumors. And finally, we evaluated the expression of proteins through the immunohistochemistry, in which we found a high expression of VEGF, PCNA, CK-18 and vimentin in solid carcinoma, and a positive mark in the tubular and solid carcinoma for collagen I, III and fibronectin. Thus, we demonstrated some differences in the ECM of these mammary carcinomas, allowing a better understanding of its histological characteristics, and these data may contribute to future studies about therapies focused on tumors ECM.
Collapse
Affiliation(s)
- Jéssica Borghesi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil.
| | | | | | - Lara Carolina Mario
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | | | - Ana Carolina Silveira Rabelo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | - Rafael Gonçalves Hayashi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | - Mariana Ferreira Lima
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | - Maria Angélica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | - Phelipe Oliveira Favaron
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil; NUCEL (Cell and Molecular Therapy Center), School of Medicine, Sao Paulo University, Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
29
|
Kaewmeesri P, Kukongviriyapan V, Prawan A, Kongpetch S, Senggunprai L. Cucurbitacin B Diminishes Metastatic Behavior of Cholangiocarcinoma Cells by Suppressing Focal Adhesion Kinase. Asian Pac J Cancer Prev 2021; 22:219-225. [PMID: 33507702 PMCID: PMC8184164 DOI: 10.31557/apjcp.2021.22.1.219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/24/2021] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Cholangiocarcinoma (CCA) is a malignant tumor with aggressive metastatic property resulted from dysregulation of metastasis-regulated signaling pathways. The aim of this study was to investigate the effect of cucurbitacin B on metastatic behavior of CCA cells through modulation of focal adhesion kinase (FAK) protein. METHODS KKU-452 cells were treated with a specific FAK inhibitor, FAK inhibitor-14, or cucurbitacin B at various concentrations for 24 h. Cell viability was assessed by sulforhodamine B assay. The migratory and invasive abilities of the cells were investigated using wound healing and transwell invasion assays, respectively. The fibronectin-coated plate was used for adhesion assay. The effects of the test compounds on FAK activation and the expression of metastasis-associated proteins were determined by Western blot analysis. The amount of MMP-9 was evaluated using a commercial ELISA Kit. RESULTS FAK inhibitor-14 and cucurbitacin B at concentrations which minimally affected KKU-452 cell viability could suppress FAK activation, evidently by decreased level of phospho-FAK protein after exposure to the compound. At these conditions, cucurbitacin B suppressed metastatic behavior including migration, invasion and adhesion abilities of CCA cells similar to FAK inhibitor-14. Further molecular studies demonstrated that FAK inhibitor-14 and cucurbitacin B downregulated the expression of metastasis-associated proteins including MMP-9, ICAM-1 and VEGF. Consequently, exposure to cucurbitacin B inhibited the production of MMP-9 enzyme in CCA cells similar to FAK inhibitor-14 treatment. CONCLUSION FAK participated in regulation of metastatic behavior of KKU-452 CCA cells. Cucurbitacin B suppressed FAK activation in the cells which was associated with inhibition of metastasis essential steps and their related metastatic proteins. The compound may be developed as a novel therapeutic agent for CCA metastasis therapy. .
Collapse
Affiliation(s)
| | | | | | | | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, and Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
30
|
Prajapati A, Chauhan G, Shah H, Gupta S. Oncogenic transformation of human benign prostate hyperplasia with chronic cadmium exposure. J Trace Elem Med Biol 2020; 62:126633. [PMID: 32818862 DOI: 10.1016/j.jtemb.2020.126633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/03/2020] [Accepted: 08/05/2020] [Indexed: 11/28/2022]
Abstract
Experimentally, it has been proved that cadmium served as an effective carcinogen and able to induce tumors in rodents in a dose-specific manner. However, systemic evaluation of cadmium exposure for the transformation of prostatic hyperplasia into prostate cancer (PCa) is still unclear. In the present study, an attempt has been made to establish cadmium-induced human prostate carcinogenesis using an in vitro model of BPH cells. Wide range of cadmium concentrations, i.e., 1 nM, 10 nM, 100 nM and 1μM, were chronically exposed to the human BPH cells for transformation into PCa and monitored using cell and molecular biology approaches. After eight weeks of exposure, the cells showed subtle morphological changes and shifts of cell cycle in the G2M phase. Significant increase in expression of prostatic genes AR, PSA, ER-β, and 5αR with increased nuclear localization of AR and pluripotency markers Cmyc, Klf4 indicated the carcinogenic effect of Cd. Further, the BPH cells exposed to Cd showed a substantial increase in the secretion of MMP-2 and MMP-9, influencing migratory potential of the cells along with decreased expression of the p63 protein which further strengthen the progression towards carcinogenesis and aggressive tumor studies. Data from the present study state that Cd exhibited marked invasiveness in BPH cells. These observations established a connecting link of BPH towards PCa pathogenesis. Further, the study will also help in investigating the intricate pathways involved in cancer progression.
Collapse
Affiliation(s)
- Akhilesh Prajapati
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India; Biotechnology, School of Science, GSFC University, Vadodara, 391750, India.
| | - Gaurav Chauhan
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Harsh Shah
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Sarita Gupta
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India.
| |
Collapse
|
31
|
The tumor suppressor Zinc finger protein 471 suppresses breast cancer growth and metastasis through inhibiting AKT and Wnt/β-catenin signaling. Clin Epigenetics 2020; 12:173. [PMID: 33203470 PMCID: PMC7672945 DOI: 10.1186/s13148-020-00959-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
Background Zinc-finger protein 471 (ZNF471) is a member of the Krüppel-associated box domain zinc finger protein (KRAB-ZFP) family. ZNF471 is methylated in squamous cell carcinomas of tongue, stomach and esophageal. However, its role in breast carcinogenesis remains elusive. Here, we studied its expression, functions, and molecular mechanisms in breast cancer. Methods We examined ZNF471 expression by RT-PCR and qPCR. Methylation-specific PCR determined its promoter methylation. Its biological functions and related molecular mechanisms were assessed by CCK-8, clonogenicity, wound healing, Transwell, nude mice tumorigenicity, flow cytometry, BrdU-ELISA, immunohistochemistry and Western blot assays.
Results ZNF471 was significantly downregulated in breast cell lines and tissues due to its promoter CpG methylation, compared with normal mammary epithelial cells and paired surgical-margin tissues. Ectopic expression of ZNF471 substantially inhibited breast tumor cell growth in vitro and in vivo, arrested cell cycle at S phase, and promoted cell apoptosis, as well as suppressed metastasis. Further knockdown of ZNF471 verified its tumor-suppressive effects. We also found that ZNF471 exerted its tumor-suppressive functions through suppressing epithelial-mesenchymal transition, tumor cell stemness and AKT and Wnt/β-catenin signaling. Conclusions ZNF471 functions as a tumor suppressor that was epigenetically inactivated in breast cancer. Its inhibition of AKT and Wnt/β-catenin signaling pathways is one of the mechanisms underlying its anti-cancer effects.
Collapse
|
32
|
Huang H, Hao J, Pang K, Lv Y, Wan D, Wu C, Ma Y, Yang X, Zhang WK. A biflavonoid-rich extract from Selaginella moellendorffii Hieron. induces apoptosis via STAT3 and Akt/NF-κB signalling pathways in laryngeal carcinoma. J Cell Mol Med 2020; 24:11922-11935. [PMID: 32869923 PMCID: PMC7579697 DOI: 10.1111/jcmm.15812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/27/2020] [Accepted: 08/09/2020] [Indexed: 12/13/2022] Open
Abstract
Selaginella moellendorffii Hieron. (SM), a perennial evergreen plant, has been used in the treatment of acute infectious hepatitis, thoracic and hypochondriac lumbar contusions, systemic oedema and thrombocytopaenia. However, the role of a biflavonoid-rich extract from SM (SM-BFRE) in anti-larynx cancer has rarely been reported. In this study, the in vitro and in vivo anti-laryngeal cancer activity and potential mechanisms of SM-BFRE were investigated. An off-line semipreparative liquid chromatography-nuclear magnetic resonance protocol was carried out to determine six biflavonoids from SM-BFRE. In vitro, MTT assay revealed that SM-BFRE inhibited the proliferation of laryngeal carcinoma cells. A wound healing assay indicated that SM-BFRE suppressed the migration of laryngeal cancer cells. Hoechst 33 258 and Annexin V-FITC/PI double staining assays were performed and verified that SM-BFRE induced apoptosis in laryngeal carcinoma cells. The Hep-2 bearing nude mouse model confirmed that SM-BFRE also exhibited anticancer effect in vivo. In addition, Western blot analysis demonstrated that SM-BFRE exerted its anti-laryngeal cancer effect by activating the mitochondrial apoptotic pathway and inhibiting STAT3 and Akt/NF-κB signalling pathways. All results suggested that SM-BFRE could be considered as a potential chemotherapeutic drug for laryngeal cancer.
Collapse
Affiliation(s)
- Huiqi Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ji Hao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Kejian Pang
- Hotian Uygur Pharmaceutical Co., Ltd, Hotian, China
| | - Yibing Lv
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Dingrong Wan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Chaoqun Wu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yuanren Ma
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wei K Zhang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
33
|
Siangcham T, Vivithanaporn P, Sangpairoj K. Anti-Migration and Invasion Effects of Astaxanthin against A172 Human Glioblastoma Cell Line. Asian Pac J Cancer Prev 2020; 21:2029-2033. [PMID: 32711429 PMCID: PMC7573402 DOI: 10.31557/apjcp.2020.21.7.2029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Indexed: 11/25/2022] Open
Abstract
Objectives: The study was to investigate anti-migration and invasion effects of astaxanthin (ATX), a natural carotenoid derivative distributed in marine environments, against A172 human glioblastoma cells. Materials and Methods: Cell viability after ATX treatment was measured by MTT assays. Tumor cell migration and invasion were observed by scratch and Boyden chamber assays, respectively. Expression of MMP-2 and activity of MMP-9 were observed by immunoblotting and gelatin zymography, respectively. Results: ATX up to 150 µM was not toxic to A172 cells at 48 h post-treatment. In contrast, ATX at 50 and 100 µM significantly decreased migration and invasion of A172 cells at 24 and 48 h post-treatment. Metastatic-reducing effect of ATX is associated with the reduction of MMP-2 and MMP-9 expressions in a dose-dependent manner. Conclusion: This finding indicated that ATX has anti-migration and invasion effects against human glioblastoma cells and might be applicable for the protection against metastasis of glioblastoma.
Collapse
Affiliation(s)
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Kant Sangpairoj
- Division of Anatomy, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand.,Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
34
|
Sarkar P, Li Z, Ren W, Wang S, Shao S, Sun J, Ren X, Perkins NG, Guo Z, Chang CEA, Song J, Xue M. Inhibiting Matrix Metalloproteinase-2 Activation by Perturbing Protein-Protein Interactions Using a Cyclic Peptide. J Med Chem 2020; 63:6979-6990. [PMID: 32491863 DOI: 10.1021/acs.jmedchem.0c00180] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report on a cyclic peptide that inhibits matrix metalloproteinase-2 (MMP2) activation with a low-nM-level potency. This inhibitor specifically binds to the D570-A583 epitope on proMMP2 and interferes with the protein-protein interaction (PPI) between proMMP2 and tissue inhibitor of metalloproteinases-2 (TIMP2), thereby preventing the TIMP2-assisted proMMP2 activation process. We developed this cyclic peptide inhibitor through an epitope-targeted library screening process and validated its binding to proMMP2. Using a human melanoma cell line, we demonstrated the cyclic peptide's ability to modulate cellular MMP2 activities and inhibit cell migration. These results provide the first successful example of targeting the PPI between proMMP2 and TIMP2, confirming the feasibility of an MMP2 inhibition strategy that has been sought after for 2 decades.
Collapse
Affiliation(s)
- Priyanka Sarkar
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Zhonghan Li
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Wendan Ren
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Siwen Wang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Shiqun Shao
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Jianan Sun
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Nicole G Perkins
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Zhili Guo
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Min Xue
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
35
|
Malik R, Mambetsariev I, Fricke J, Chawla N, Nam A, Pharaon R, Salgia R. MET receptor in oncology: From biomarker to therapeutic target. Adv Cancer Res 2020; 147:259-301. [PMID: 32593403 DOI: 10.1016/bs.acr.2020.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
First discovered in the 1984, the MET receptor tyrosine kinase (RTK) and its ligand hepatocyte growth factor or HGF (also known as scatter factor or SF) are implicated as key players in tumor cell migration, proliferation, and invasion in a variety of cancers. This pathway also plays a key role during embryogenesis in the development of muscular and nervous structures. High expression of the MET receptor has been shown to correlate with poor prognosis and resistance to therapy. MET exon 14 splicing variants, initially identified by us in lung cancer, is actionable through various tyrosine kinase inhibitors (TKIs). For this reason, this pathway is of interest as a therapeutic target. In this chapter we will be discussing the history of MET, the genetics of this RTK, and give some background on the receptor biology. Furthermore, we will discuss directed therapeutics, mechanisms of resistance, and the future of MET as a therapeutic target.
Collapse
Affiliation(s)
- Raeva Malik
- George Washington University Hospital, Washington, DC, United States
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Jeremy Fricke
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Neal Chawla
- Department of Medicine, Advocate Illinois Masonic Medical Center, Chicago, IL, United States
| | - Arin Nam
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Rebecca Pharaon
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States.
| |
Collapse
|
36
|
Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther 2020; 5:28. [PMID: 32296047 PMCID: PMC7067809 DOI: 10.1038/s41392-020-0134-x] [Citation(s) in RCA: 1096] [Impact Index Per Article: 274.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the hallmark of cancer that is responsible for the greatest number of cancer-related deaths. Yet, it remains poorly understood. The continuous evolution of cancer biology research and the emergence of new paradigms in the study of metastasis have revealed some of the molecular underpinnings of this dissemination process. The invading tumor cell, on its way to the target site, interacts with other proteins and cells. Recognition of these interactions improved the understanding of some of the biological principles of the metastatic cell that govern its mobility and plasticity. Communication with the tumor microenvironment allows invading cancer cells to overcome stromal challenges, settle, and colonize. These characteristics of cancer cells are driven by genetic and epigenetic modifications within the tumor cell itself and its microenvironment. Establishing the biological mechanisms of the metastatic process is crucial in finding open therapeutic windows for successful interventions. In this review, the authors explore the recent advancements in the field of metastasis and highlight the latest insights that contribute to shaping this hallmark of cancer.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- High-Impact Cancer Research Program, Harvard Medical School, Boston, MA, 02115, USA.
| | - Mohamad Y Fares
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hussein H Khachfe
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hamza A Salhab
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
37
|
YTHDF2 promotes spermagonial adhesion through modulating MMPs decay via m 6A/mRNA pathway. Cell Death Dis 2020; 11:37. [PMID: 31959747 PMCID: PMC6971064 DOI: 10.1038/s41419-020-2235-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
As the foundation of male fertility, spermatogenesis is a complicated and highly controlled process. YTHDF2 plays regulatory roles in biological processes through accelerating the degradation of target mRNAs. However, the function of YTHDF2 in spermatogenesis remains elusive. Here, we knocked out Ythdf2 in mouse spermatogonia via CRISPR/Cas9, and found that depletion of Ythdf2 mainly downregulated the expression of matrix metallopeptidase (MMPs), thus affecting cell adhesion and proliferation. m6A-IP-PCR and RIP-PCR analysis showed that Mmp3, Mmp13, Adamts1 and Adamts9 were modified with m6A and simultaneously interacted with YTHDF2. Moreover, inhibition of Mmp13 partially rescued the phenotypes in Ythdf2-KO cells. Taken together, YTHDF2 regulates cell-matrix adhesion and proliferation through modulating the expression of Mmps by the m6A/mRNA degradation pathway.
Collapse
|
38
|
Ling W, Yangchun X, Wei W, Qiang W. Knockdown of long non-coding RNA GHET1 suppresses cervical carcinoma in vitro and in vivo. Cancer Biomark 2020; 28:21-32. [PMID: 32176622 DOI: 10.3233/cbm-190269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The present study evaluated the effects of the long non-coding RNA (lncRNA) gastric carcinoma high-expressed transcript (GHET1) in cervical carcinoma development. METHODS The expression levels of GHET1 and PTEN were measured using in situ hybridisation, immunohistochemistry (IHC) and quantitative reverse transcription PCR assay to investigate their correlations. In an in vitro study, the effects of GHET1 knockdown on the biological activities of SiHa and HeLa cells were evaluated by MTT, flow cytometry, transwell and wound-healing assays and relative protein expression was measured using western blotting. In an in vivo experiment, cell apoptosis and relative protein expression were measured in nude mice using TUNEL and IHC assays, respectively. RESULTS The expression levels of lncRNA GHET1 and PTEN protein differed significantly between cancer and adjacent normal tissues (P< 0.05) and were negatively correlated in the clinical data. In vitro, proliferation rateswere significantly down-regulated in SiHa and HeLa cells. The GHET1 knockdown (si-GHET1) groups showed significantly higher G1 phase and apoptosis rates and significantly suppressed invasion and migration abilities compared with the normal control (NC) group (P< 0.05 for all). The expression levels of PTEN, PI3 K, AKT, P53, matrix metalloproteinase (MMP)-2 and MMP-9 proteins differed significantly between the si-GHET1 and NC groups (P< 0.05 for all). In vitro, the lncRNA group showed significantly suppressed tumour volume and weight, increased cell apoptosis and different relative protein expression levels compared with the NC group (P< 0.05 for all). CONCLUSION GHET1 knockdown suppressed cervical carcinoma development via the PTEN/PI3 K/AKT signalling pathway.
Collapse
Affiliation(s)
- Wang Ling
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xu Yangchun
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wang Wei
- Department of Radiology, The Second Department of the First Hospital Additional to Jilin University, Changchun, Jilin, China
| | - Wang Qiang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
39
|
Tumor Microenvironment in Diffuse Large B-Cell Lymphoma: Role and Prognosis. Anal Cell Pathol (Amst) 2019; 2019:8586354. [PMID: 31934533 PMCID: PMC6942707 DOI: 10.1155/2019/8586354] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/06/2019] [Indexed: 12/23/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) represents 30-40% of all non-Hodgkin lymphomas (NHL) and is a disease with an aggressive behavior. Because about one-third of DLBCL patients will be refractory or resistant to standard therapy, several studies focused on identification of new individual prognostic and risk stratification biomarkers and new potential therapeutic targets. In contrast to other types of cancers like carcinomas, where tumor microenvironment was widely investigated, its role in DLBCL pathogenesis and patient survival is still poorly understood, although few studies had promising results. The composition of TME and its interaction with neoplastic cells may explain the role of several genes (beta2-microglobulin gene, CD58 gene), receptor-like programmed cell death-1 (PD-1) and its ligand (PD-L1), or other cell components (Treg) in tumor evasion of immune surveillance, resulting in tumor progression. Also, it was found that “gene expression profile” of the microenvironmental cells, the phenotype of tumor-associated macrophages (TAM), the expression of matricellular proteins like SPARC and fibronectin, the overexpression of several types of matrix metalloproteinases (MMPs) like MMP-2 and MMP-9, or the tissue inhibitors of matrix metalloproteinases (TIMPs) may lead to a favorable or adverse outcome. With this review, we try to highlight the influence of microenvironment components over lymphoid clone progression and their prognostic impact in DLBCL patients.
Collapse
|
40
|
Martini P, Chiogna M, Calura E, Romualdi C. MOSClip: multi-omic and survival pathway analysis for the identification of survival associated gene and modules. Nucleic Acids Res 2019; 47:e80. [PMID: 31049575 PMCID: PMC6698707 DOI: 10.1093/nar/gkz324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/29/2019] [Accepted: 04/29/2019] [Indexed: 01/09/2023] Open
Abstract
Survival analyses of gene expression data has been a useful and widely used approach in clinical applications. But, in complex diseases, such as cancer, the identification of survival-associated cell processes - rather than single genes - provides more informative results because the efficacy of survival prediction increases when multiple prognostic features are combined to enlarge the possibility of having druggable targets. Moreover, genome-wide screening in molecular medicine has rapidly grown, providing not only gene expression but also multi-omic measurements such as DNA mutations, methylation, expression, and copy number data. In cancer, virtually all these aberrations can contribute in synergy to pathological processes, and their measurements can improve a patient’s outcome and help in diagnosis and treatment decisions. Here, we present MOSClip, an R package implementing a new topological pathway analysis tool able to integrate multi-omic data and look for survival-associated gene modules. MOSClip tests the survival association of dimensionality-reduced multi-omic data using multivariate models, providing graphical devices for management, browsing and interpretation of results. Using simulated data we evaluated MOSClip performance in terms of false positives and false negatives in different settings, while the TCGA ovarian cancer dataset is used as a case study to highlight MOSClip’s potential.
Collapse
Affiliation(s)
- Paolo Martini
- Department of Biology, University of Padova, Via U.Bassi 58B, 35121 Padova, Italy
| | - Monica Chiogna
- Department of Statistical Sciences 'Paolo Fortunati', University of Bologna, via delle Belle Arti 41, 40126 Bologna, Italy
| | - Enrica Calura
- Department of Biology, University of Padova, Via U.Bassi 58B, 35121 Padova, Italy
| | - Chiara Romualdi
- Department of Biology, University of Padova, Via U.Bassi 58B, 35121 Padova, Italy
| |
Collapse
|
41
|
Satish Kumar K, Velayutham R, Roy KK. A systematic computational analysis of human matrix metalloproteinase 13 (MMP-13) crystal structures and structure-based identification of prospective drug candidates as MMP-13 inhibitors repurposable for osteoarthritis. J Biomol Struct Dyn 2019; 38:3074-3086. [PMID: 31378153 DOI: 10.1080/07391102.2019.1651221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Ravichandiran Velayutham
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Kuldeep K. Roy
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| |
Collapse
|
42
|
Tan S, Khumalo N, Bayat A. Understanding Keloid Pathobiology From a Quasi-Neoplastic Perspective: Less of a Scar and More of a Chronic Inflammatory Disease With Cancer-Like Tendencies. Front Immunol 2019; 10:1810. [PMID: 31440236 PMCID: PMC6692789 DOI: 10.3389/fimmu.2019.01810] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 07/17/2019] [Indexed: 01/01/2023] Open
Abstract
Keloids are considered as benign fibroproliferative skin tumors growing beyond the site of the original dermal injury. Although traditionally viewed as a form of skin scarring, keloids display many cancer-like characteristics such as progressive uncontrolled growth, lack of spontaneous regression and extremely high rates of recurrence. Phenotypically, keloids are consistent with non-malignant dermal tumors that are due to the excessive overproduction of collagen which never metastasize. Within the remit of keloid pathobiology, there is increasing evidence for the various interplay of neoplastic-promoting and suppressing factors, which may explain its aggressive clinical behavior. Amongst the most compelling parallels between keloids and cancer are their shared cellular bioenergetics, epigenetic methylation profiles and epithelial-to-mesenchymal transition amongst other disease biological (genotypic and phenotypic) behaviors. This review explores the quasi-neoplastic or cancer-like properties of keloids and highlights areas for future study.
Collapse
Affiliation(s)
- Silvian Tan
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom
| | - Nonhlanhla Khumalo
- Hair and Skin Research Laboratory, Department of Dermatology, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom
- Hair and Skin Research Laboratory, Department of Dermatology, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
43
|
Sabol RA, Giacomelli P, Beighley A, Bunnell BA. Adipose Stem Cells and Cancer: Concise Review. Stem Cells 2019; 37:1261-1266. [DOI: 10.1002/stem.3050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/11/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Rachel A. Sabol
- Center for Stem Cell Research; Tulane University School of Medicine; New Orleans Louisiana USA
| | - Paulina Giacomelli
- Center for Stem Cell Research; Tulane University School of Medicine; New Orleans Louisiana USA
| | - Adam Beighley
- Center for Stem Cell Research; Tulane University School of Medicine; New Orleans Louisiana USA
| | - Bruce A. Bunnell
- Center for Stem Cell Research; Tulane University School of Medicine; New Orleans Louisiana USA
- Department of Pharmacology; Tulane University; New Orleans Louisiana USA
- Division of Regenerative Medicine; Tulane National Primate Research Center; Covington Louisiana USA
| |
Collapse
|
44
|
Luschnig P, Schicho R. Cannabinoids in Gynecological Diseases. Med Cannabis Cannabinoids 2019; 2:14-21. [PMID: 34676329 DOI: 10.1159/000499164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/25/2019] [Indexed: 11/19/2022] Open
Abstract
The endocannabinoid system (ECS) is a multifunctional homeostatic system involved in many physiological and pathological conditions. The ligands of the ECS are the endo-cannabinoids, whose actions are mimicked by exogenous cannabinoids, such as phytocannabinoids and synthetic cannabinoids. Responses to the ligands of the ECS are mediated by numerous receptors like the classical cannabinoid receptors (CB1 and CB2) as well as ECS-related receptors, e.g., G protein-coupled receptors 18 and 55 (GPR18 and GPR55), transient receptor potential ion channels, and nuclear peroxisome proliferator-activated receptors. The ECS regulates almost all levels of female reproduction, starting with oocyte production through to parturition. Dysregulation of the ECS is associated with the development of gynecological disorders from fertility disorders to cancer. Cannabinoids that act at the ECS as specific agonists or antagonists may potentially influence dysregulation and, therefore, represent new therapeutic options for the therapy of gynecological disorders.
Collapse
Affiliation(s)
- Petra Luschnig
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Rudolf Schicho
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
45
|
Yi L, Ouyang L, Wang S, Li SS, Yang XM. Long noncoding RNA PTPRG-AS1 acts as a microRNA-194-3p sponge to regulate radiosensitivity and metastasis of nasopharyngeal carcinoma cells via PRC1. J Cell Physiol 2019; 234:19088-19102. [PMID: 30993702 DOI: 10.1002/jcp.28547] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/22/2022]
Abstract
Protein regulator of cytokinesis 1 (PRC1) has been reported in correlation with various malignancies. Functionality of PRC1 in nasopharyngeal carcinoma (NPC) was investigated, in perspective of long noncoding RNA (lncRNA) regulatory circuitry. Aberrant expressed messenger RNA and lncRNA were screened out from the Gene Expression Omnibus microarray database. NPC cell line CNE-2 was adopted for in vitro study and transfected with mimic or short hairpin RNA of miR-194-3p and PTPRG-AS1. The radioactive sensitivity, cell viability, migration, invasion, and apoptosis were detected. PTPRG-AS1 and PRC1 were upregulated in NPC, whereas miR-194-3p was downregulated. PTPRG-AS1 was found to specifically bind to miR-194-3p as a competing endogenous RNA and miR-194-3p targets and negatively regulates PRC1. Overexpressed miR-194-3p or silenced PTPRG-AS1 resulted in enhanced sensitivity to radiotherapy and cell apoptosis along with suppressed cell migration, invasion and proliferation in NPC. Furthermore, impaired tumor formation was also caused by miR-194-3p overexpression or PTPRG-AS1 suppression through xenograft tumor in nude mice. In our study, PTPRG-AS1/miR-194-3p/PRC1 regulatory circuitry was revealed in NPC, the mechanism of which can be of clinical significance for treatment of NPC.
Collapse
Affiliation(s)
- Liang Yi
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Lei Ouyang
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shuang Wang
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shi-Sheng Li
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xin-Ming Yang
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
46
|
Lu L, Liu S, Dong Q, Xin Y. Salidroside suppresses the metastasis of hepatocellular carcinoma cells by inhibiting the activation of the Notch1 signaling pathway. Mol Med Rep 2019; 19:4964-4972. [PMID: 30942419 DOI: 10.3892/mmr.2019.10115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 03/26/2019] [Indexed: 11/06/2022] Open
Abstract
Salidroside (SDS) is a phenylpropanoid glycoside isolated from Rhodiola rosea L. It exhibits multiple pharmacological properties in clinical medicine and has been commonly used in traditional Chinese medicine. The present study investigated the inhibitory effects of SDS on tumor invasion and migration, and the expression of metastasis‑related genes in highly metastatic hepatocellular carcinoma (HCC) cells (MHCC97H) in vitro. The underlying mechanisms of SDS on the tumor metastasis were also explored. SDS was found to significantly reduce wound closure areas and inhibit cell migration. In addition, SDS markedly inhibited the invasion of these cells into Matrigel‑coated membranes. SDS markedly downregulated the expression of Notch1, Snail, COX‑2, MMP‑2, MMP‑9 genes and upregulated the expression of E‑cadherin in a dose‑dependent manner. Furthermore, SDS inhibited the expression of the Notch signaling target genes, Hey1, Hes1 and Hes5. On the whole, the findings of this study suggest that SDS inhibits HCC cell metastasis by modulating the activity of the Notch1 signaling pathway.
Collapse
Affiliation(s)
- Linlin Lu
- Department of Clinical Medicine, Qingdao University, Qingdao University Hospital, Qingdao, Shandong 266003, P.R. China
| | - Shousheng Liu
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Quanjiang Dong
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Yongning Xin
- Digestive Disease Key Laboratory of Qingdao, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
47
|
Chao WW, Cheng YW, Chen YR, Lee SH, Chiou CY, Shyur LF. Phyto-sesquiterpene lactone deoxyelephantopin and cisplatin synergistically suppress lung metastasis of B16 melanoma in mice with reduced nephrotoxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:194-206. [PMID: 30668340 DOI: 10.1016/j.phymed.2018.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cisplatin (CP) is a chemotherapeutic drug for treating melanoma that also causes adverse side effects in cancer patients. PURPOSE This study investigated the bioefficacy of a phytoagent deoxyelephantopin (DET) in inhibiting B16 melanoma cell activity, its synergism with CP against metastatic melanoma, and its capability to attenuate CP side effects in animals. METHODS DET and CP bioactivities were assessed by MTT assay, isobologram analysis, time-lapse microscopy, migration and invasion assays, flow cytometry and western blotting. In vivo bioluminescence imaging was used to detect lung metastasis of B16 cells carrying COX-2 reporter gene in syngeneic mice. H&E staining and immunohistochemistry were used to evaluate the compound/drug efficacy and CP side effects. Nephrotoxicity caused by CP treatment in mice was evaluated by UPLC/ESI-QTOF MS - based metabolomics and haematometry. RESULT DET, alone or in combination with cisplatin, inhibited B16 cell proliferation, migration, and invasion, and induced cell-cycle arrested at the G2/M phase and de-regulated cell-cycle mediators in cancer cells. In a murine B16COX-Luc metastatic allograft model, CP2 (2 mg/kg) treatment inhibited B16 lung metastasis accompanied by severe body weight loss, renal damage and inflammation, and haematological toxicity. DET10 and CP cotreatment (DET10 + CP1) or sequential treatment (CP2→DET10) significantly inhibited formation of pulmonary melanoma foci and reduced renal damage. DET pretreatment (Pre-DET10) or CP2→DET10 treatment had the longest survival (52 vs. 37 days for tumor control mice). CP treatment caused abnormally accumulated urea cycle metabolites and serotonin metabolite hippuric acid in renal tissues that were not seen with DET alone or in combination with CP. CONCLUSION The CP and DET combination may be an effective intervention for melanoma with reduced side effects.
Collapse
Affiliation(s)
- Wen-Wan Chao
- Department of Nutrition and Health Sciences, Kainan University, Taoyuan 338, Taiwan
| | - Ya-Wen Cheng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Shu-Hua Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ching-Yi Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Lie-Fen Shyur
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; PhD Program in Translational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
48
|
Abstract
Matrix metalloproteinases (MMPs) are responsible for the degradation of extracellular matrix components and hence play a crucial role in physiological and pathologic processes. The imbalance between the expression of MMPs and their inhibitors can be effective in leukemic cell processes such as migration, angiogenesis, survival, and apoptosis, playing a key role in the progression and prognosis of leukemia. In this review, we discuss the potential involvement of MMPs and their inhibitors in the pathogenesis and progression of leukemia by examining their role in the prognosis of leukemia. Inducing leukemic cell growth, migration, invasiveness, and angiogenesis are the main roles of MMPs in leukemia progression mediated by their degradative activity. Given the important role of MMPs in leukemia progression, further clinical trials are needed to confirm the link between MMPs' expressions and leukemia prognosis. It is hoped to use MMPs as therapeutic targets to improve patients' health by recognizing the prognostic value of MMPs in leukemia and their effect on the progression of these malignancies and their response to treatment.
Collapse
|
49
|
Conlon GA, Murray GI. Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis. J Pathol 2019; 247:629-640. [DOI: 10.1002/path.5225] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Guy A Conlon
- Department of PathologyNHS Grampian, Aberdeen Royal Infirmary Aberdeen UK
| | - Graeme I Murray
- Department of Pathology, School of MedicineMedical Sciences and Nutrition, University of Aberdeen Aberdeen UK
| |
Collapse
|
50
|
Roberto D, Klotz LH, Venkateswaran V. Cannabinoid WIN 55,212-2 induces cell cycle arrest and apoptosis, and inhibits proliferation, migration, invasion, and tumor growth in prostate cancer in a cannabinoid-receptor 2 dependent manner. Prostate 2019; 79:151-159. [PMID: 30242861 DOI: 10.1002/pros.23720] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cannabinoids have demonstrated anticarcinogenic properties in a variety of malignancies, including in prostate cancer. In the present study, we explored the anti-cancer effects of the synthetic cannabinoid WIN 55,212-2 (WIN) in prostate cancer. METHODS Established prostate cancer cells (PC3, DU145, LNCaP) were treated with varying concentrations of WIN. Cell proliferation was determined by the MTS assay. The anti-migration and anti-invasive potential of WIN was examined by the wound healing assay and the matrigel invasion assay. Cell cycle analysis was performed by flow cytometry, and mechanistic studies were performed by Western blot. Athymic mice (n = 10) were inoculated with human PC3 cells. Once tumors reached 100 mm3 , animals were randomized into two groups: saline control and WIN (5 mg/kg), delivered by intraperitoneal injection three times per week for 3 weeks. RESULTS WIN significantly reduced prostate cancer cell proliferation, migration, invasion, induced apoptosis, and arrested cells in Go/G1 phase in a dose-dependent manner. Mechanistic studies revealed these effects were mediated through a pathway involving cell cycle regulators p27, Cdk4, and pRb. Pre-treatment with a CB2 antagonist, AM630, followed by treatment with WIN resulted in a reversal of the anti-proliferation and cell cycle arrest previously seen with WIN alone. In vivo, administration of WIN resulted in a reduction in the tumor growth rate compared to control (P < 0.05). CONCLUSIONS The following study provides evidence supporting the use of WIN as a novel therapeutic for prostate cancer.
Collapse
Affiliation(s)
- Domenica Roberto
- Department of Surgery (Urology), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Laurence H Klotz
- Department of Surgery (Urology), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Vasundara Venkateswaran
- Department of Surgery (Urology), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|