1
|
Takahashi N. [Prevention and Treatment of Cancer with Vitamin A and Its Derivatives: Cell Differentiation and Proliferation]. YAKUGAKU ZASSHI 2024; 144:203-222. [PMID: 38296498 DOI: 10.1248/yakushi.23-00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Normal differentiation and proliferation of cells are essential for maintaining homeostasis. Following the successful completion of whole genome sequencing, protein modification has been attracted increasing attention in order to understand the roles of protein diversification in protein function and to elucidate molecular targets in mechanisms of signal transduction. Vitamin A is an essential nutrient for health maintenance. It is present as β-carotene in green and yellow vegetables and retinyl ester in animal products and absorbed into the body from the intestines. After ingestion, it is converted to retinol and oxidized in target cells to retinal, which plays critical roles in vision. It is then further oxidized to retinoic acid (RA), which exhibits a number of effects prior to being metabolized by cytochrome P450 and excreted from the body. Since RA exhibits cell differentiation-inducing actions, it is used as a therapeutic agent for patients with acute promyelocytic leukemia. The current paper describes: (1) HL60 cell differentiation and cell differentiation induction therapy by RA; (2) roles played by RA and retinal and their mechanisms of action; (3) retinoylation, post-translational protein-modified by RA, a novel non-genomic RA mechanism of action without RA receptor; (4) new actions of β-carotene and retinol in vivo and (5) potent anticancer effects of p-dodecylaminophenol (p-DDAP), a novel vitamin A derivative created from the RA derivative fenretinide. We propose that nutritional management of vitamin A can be effective at preventing and treating diseases, and that p-DDAP is a promising anticancer drug.
Collapse
Affiliation(s)
- Noriko Takahashi
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
2
|
Takahashi N. Inhibitory Effects of Vitamin A and Its Derivatives on Cancer Cell Growth Not Mediated by Retinoic Acid Receptors. Biol Pharm Bull 2022; 45:1213-1224. [DOI: 10.1248/bpb.b22-00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Noriko Takahashi
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
3
|
Potenza RL, Lodeserto P, Orienti I. Fenretinide in Cancer and Neurological Disease: A Two-Face Janus Molecule. Int J Mol Sci 2022; 23:ijms23137426. [PMID: 35806431 PMCID: PMC9266536 DOI: 10.3390/ijms23137426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/05/2023] Open
Abstract
Recently, several chemotherapeutic drugs have been repositioned in neurological diseases, based on common biological backgrounds and the inverse comorbidity between cancer and neurodegenerative diseases. Fenretinide (all-trans-N-(4-hydroxyphenyl) retinamide, 4-HPR) is a synthetic derivative of all-trans-retinoic acid initially proposed in anticancer therapy for its antitumor effects combined with limited toxicity. Subsequently, fenretinide has been proposed for other diseases, for which it was not intentionally designed for, due to its ability to influence different biological pathways, providing a broad spectrum of pharmacological effects. Here, we review the most relevant preclinical and clinical findings from fenretinide and discuss its therapeutic role towards cancer and neurological diseases, highlighting the hormetic behavior of this pleiotropic molecule.
Collapse
Affiliation(s)
- Rosa Luisa Potenza
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-06-49902389
| | - Pietro Lodeserto
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (P.L.); (I.O.)
| | - Isabella Orienti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy; (P.L.); (I.O.)
| |
Collapse
|
4
|
Takahashi N, Saito D, Hasegawa S, Yamasaki M, Imai M. Vitamin A in health care: Suppression of growth and induction of differentiation in cancer cells by vitamin A and its derivatives and their mechanisms of action. Pharmacol Ther 2021; 230:107942. [PMID: 34175370 DOI: 10.1016/j.pharmthera.2021.107942] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/13/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Vitamin A is an important micro-essential nutrient, whose primary dietary source is retinyl esters. In addition, β-carotene (pro-vitamin A) is a precursor of vitamin A contained in green and yellow vegetables that is converted to retinol in the body after ingestion. Retinol is oxidized to produce visual retinal, which is further oxidized to retinoic acid (RA), which is used as a therapeutic agent for patients with promyelocytic leukemia. Thus, the effects of retinal and RA are well known. In this paper, we will introduce (1) vitamin A circulation in the body, (2) the actions and mechanisms of retinal and RA, (3) retinoylation: another RA mechanism not depending on RA receptors, (4) the relationship between cancer and actions of retinol or β-carotene, whose roles in vivo are still unknown, and (5) anti-cancer actions of vitamin A derivatives derived from fenretinide (4-HPR). We propose that vitamin A nutritional management is effective in the prevention of cancer.
Collapse
Affiliation(s)
- Noriko Takahashi
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan.
| | - Daisuke Saito
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Shinya Hasegawa
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Masahiro Yamasaki
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Masahiko Imai
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| |
Collapse
|
5
|
Retinal toxicities of systemic anticancer drugs. Surv Ophthalmol 2021; 67:97-148. [PMID: 34048859 DOI: 10.1016/j.survophthal.2021.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 01/07/2023]
Abstract
Newer anticancer drugs have revolutionized cancer treatment in the last decade, but conventional chemotherapy still occupies a central position in many cancers, with combination therapy and newer methods of delivery increasing their efficacy while minimizing toxicities. We discuss the retinal toxicities of anticancer drugs with an emphasis on the mechanism of toxicity. Uveitis is seen with the use of v-raf murine sarcoma viral oncogene homolog B editing anticancer inhibitors as well as immunotherapy. Most of the cases are mild with only anterior uveitis, but severe cases of posterior uveitis, panuveitis, and Vogt-Koyanagi-Harada-like disease may also occur. In the retina, a transient neurosensory detachment is observed in almost all patients on mitogen-activated protein kinase kinase (MEK) inhibitors. Microvasculopathy is often seen with interferon α, but vascular occlusion is a more serious toxicity caused by interferon α and MEK inhibitors. Crystalline retinopathy with or without macular edema may occur with tamoxifen; however, even asymptomatic patients may develop cavitatory spaces seen on optical coherence tomography. A unique macular edema with angiographic silence is characteristic of taxanes. Delayed dark adaptation has been observed with fenretinide. Interestingly, this drug is finding potential application in Stargardt disease and age-related macular degeneration.
Collapse
|
6
|
Saeed A, Dullaart RPF, Schreuder TCMA, Blokzijl H, Faber KN. Disturbed Vitamin A Metabolism in Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients 2017; 10:nu10010029. [PMID: 29286303 PMCID: PMC5793257 DOI: 10.3390/nu10010029] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022] Open
Abstract
Vitamin A is required for important physiological processes, including embryogenesis, vision, cell proliferation and differentiation, immune regulation, and glucose and lipid metabolism. Many of vitamin A’s functions are executed through retinoic acids that activate transcriptional networks controlled by retinoic acid receptors (RARs) and retinoid X receptors (RXRs).The liver plays a central role in vitamin A metabolism: (1) it produces bile supporting efficient intestinal absorption of fat-soluble nutrients like vitamin A; (2) it produces retinol binding protein 4 (RBP4) that distributes vitamin A, as retinol, to peripheral tissues; and (3) it harbors the largest body supply of vitamin A, mostly as retinyl esters, in hepatic stellate cells (HSCs). In times of inadequate dietary intake, the liver maintains stable circulating retinol levels of approximately 2 μmol/L, sufficient to provide the body with this vitamin for months. Liver diseases, in particular those leading to fibrosis and cirrhosis, are associated with impaired vitamin A homeostasis and may lead to vitamin A deficiency. Liver injury triggers HSCs to transdifferentiate to myofibroblasts that produce excessive amounts of extracellular matrix, leading to fibrosis. HSCs lose the retinyl ester stores in this process, ultimately leading to vitamin A deficiency. Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and is a spectrum of conditions ranging from benign hepatic steatosis to non-alcoholic steatohepatitis (NASH); it may progress to cirrhosis and liver cancer. NASH is projected to be the main cause of liver failure in the near future. Retinoic acids are key regulators of glucose and lipid metabolism in the liver and adipose tissue, but it is unknown whether impaired vitamin A homeostasis contributes to or suppresses the development of NAFLD. A genetic variant of patatin-like phospholipase domain-containing 3 (PNPLA3-I148M) is the most prominent heritable factor associated with NAFLD. Interestingly, PNPLA3 harbors retinyl ester hydrolase activity and PNPLA3-I148M is associated with low serum retinol level, but enhanced retinyl esters in the liver of NAFLD patients. Low circulating retinol in NAFLD may therefore not reflect true “vitamin A deficiency”, but rather disturbed vitamin A metabolism. Here, we summarize current knowledge about vitamin A metabolism in NAFLD and its putative role in the progression of liver disease, as well as the therapeutic potential of vitamin A metabolites.
Collapse
Affiliation(s)
- Ali Saeed
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
- Institute of Molecular Biology & Bio-Technology, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Robin P F Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Tim C M A Schreuder
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
7
|
Anzaldi M, Viale M, Macciò C, Castagnola P, Oliveri V, Rosano C, Balbi A. Synthesis of short retinoidal amides related to fenretinide: antioxidant activities and differentiation-inducing ability. Cancer Chemother Pharmacol 2017; 79:725-736. [PMID: 28275870 DOI: 10.1007/s00280-017-3265-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/20/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE By a scaffold shortening strategy, a small series of retinoidal amides fenretinide (4-HPR) analogs have been synthesized from α, β-ionones and tested for their antiproliferative and differentiating activities, and antioxidant effect. METHODS The antiproliferative activity and triggering of apoptosis of our short retinoids were evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and 4'-6-diamidino-2-phenylindole staining and microscope evaluation after 3- or 6-day exposure, while their differentiating activity was established by the analysis of the expression of the CD11b marker of differentiation in treated HL60 target cells and by the superoxide production assayed colorimetrically by the nitro blue tetrazolium-reducing activity assay. Finally, the antioxidant activity was determined by the 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) diammonium salt radical cation decolourisation assay utilizing the antioxidant Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) as reference (Trolox equivalent antioxidant capacity, or TEAC). Docking analysis was performed to study the binding features to the Retinoic Acid Receptor alpha (RARα). RESULTS While no pharmacologically relevant antiproliferative activity was evidenced, some of our short retinoids showed a differentiating and antioxidant activity similar to that of 4-HPR. In particular, compound 2b6 displayed a scavenging activity two times more efficient than 4-HPR itself. Finally, the docking analysis showed that these short retinoids, like 4-HPR, bind to the RARα protein with good fitness scores. CONCLUSION Our data could pave the way for the design of new potent and less toxic antioxidant and differentiating compounds related to 4-HPR.
Collapse
Affiliation(s)
- Maria Anzaldi
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Maurizio Viale
- IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, U.O.C. Bioterapie, L.go R. Benzi, 10, 16132, Genoa, Italy
| | - Chiara Macciò
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Patrizio Castagnola
- IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, U.O.C. Bioterapie, L.go R. Benzi, 10, 16132, Genoa, Italy
| | - Valentina Oliveri
- Dipartimento di Scienze Chimiche, University of Catania, Viale A. Doria, 6, 95125, Catania, Italy
| | - Camillo Rosano
- IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, U.O.S. Biopolimeri e Proteomica, L.go R. Benzi, 10, 16132, Genoa, Italy
| | - Alessandro Balbi
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV, 3, 16132, Genoa, Italy.
| |
Collapse
|
8
|
Inhibitory effects of p-dodecylaminophenol on the invasiveness of human fibrosarcoma cell line HT1080. Bioorg Med Chem 2013; 21:6015-21. [DOI: 10.1016/j.bmc.2013.07.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 12/12/2022]
|
9
|
Imai M, Takahashi N. Growth inhibition and mechanism of action of p-dodecylaminophenol against refractory human pancreatic cancer and cholangiocarcinoma. Bioorg Med Chem 2012; 20:2520-6. [DOI: 10.1016/j.bmc.2012.02.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 02/25/2012] [Accepted: 02/27/2012] [Indexed: 11/16/2022]
|
10
|
Takahashi N, Egawa R, Imai M, Takahashi K, Ohba T, Imaizumi M. The anti-tumor agent, p-DDAP potently suppresses proliferation through apoptosis in human neuroblastoma NB-39-nu cells. Cancer Lett 2010; 297:252-8. [DOI: 10.1016/j.canlet.2010.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/22/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
|
11
|
|
12
|
Total rod ERG suppression with high dose compassionate Fenretinide usage. Doc Ophthalmol 2008; 117:257-61. [DOI: 10.1007/s10633-008-9132-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 05/17/2008] [Indexed: 10/22/2022]
|
13
|
Takahashi N, Watanabe Y, Maitani Y, Yamauchi T, Higashiyama K, Ohba T. p-Dodecylaminophenol derived from the synthetic retinoid, fenretinide: antitumor efficacy in vitro and in vivo against human prostate cancer and mechanism of action. Int J Cancer 2008; 122:689-98. [PMID: 17955489 DOI: 10.1002/ijc.23154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fenretinide, N-(4-hydroxyphenyl)retinamide (4-HPR) is an aminophenol-containing synthetic retinoid derivative of all-trans-retinoic acid, which is a potent chemopreventive and antiproliferative agent against various cancers. Clinical studies of 4-HPR have shown side effects consisting of night blindness and ocular toxicity. To maintain potent anticancer activity without side effects, p-dodecylaminophenol (p-DDAP) was designed based on structure-activity relationships of 4-HPR. In our study, we investigate whether p-DDAP shows anticancer activity against human prostate cancer cell line PC-3 when compared with 4-HPR. p-DDAP inhibited PC-3 cell growth progressively from low to high concentration in a dose-dependent manner. p-DDAP was the most potent antiproliferative agent in vitro among 6 p-alkylaminophenols and 3 4-hydroxyphenyl analogs examined including 4-HPR. Cells treated with p-DDAP were shown to undergo apoptosis, based on condensation nuclei, cytofluorimetric analysis, propidium iodide staining and the expression of bcl-2 and caspase 3. p-DDAP arrested the S phase of the cell cycle, while 4-HPR arrested the G(0)/G(1) phase. In addition, both the i.v. and i.p. administration of p-DDAP suppressed tumor growth in PC-3-implanted mice in vivo. p-DDAP showed no effects on blood retinol concentrations, in contrast to reductions after 4-HPR administration. These results indicate that p-DDAP exhibits excellent anticancer efficacy against hormonal independent prostate cancer in vitro and in vivo, and it may have great potential for clinical use in the treatment of prostate cancer with reduced side effects.
Collapse
Affiliation(s)
- Noriko Takahashi
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Lee JI, Nguyen VT, Chen ML, Adamson PC. A rapid, sensitive and selective liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry method for determination of fenretinide (4-HPR) in plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 862:64-71. [PMID: 18032119 DOI: 10.1016/j.jchromb.2007.10.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 08/17/2007] [Accepted: 10/30/2007] [Indexed: 11/24/2022]
Abstract
A simple and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method using an atmospheric pressure chemical ionization source (APCI) for the quantification of fenretinide (4-HPR) in mouse plasma was developed and validated. After a simple protein precipitation of plasma sample by acetonitrile, 4-HPR was analyzed by LC-APCI-MS/MS. High-performance liquid chromatography (HPLC) separation was conducted on a Hypurity C18 column (50mmx2.1mm, 5microm) with a flow rate 0.60mL/min using a gradient mobile phase comprised of 0.05% formic acid in water (A) and methanol (B), and a run time of 4.5min. The elimination of a tedious sample preparation process and a shorter run time substantially reduced total analysis time. The method was linear over the range 0.5-100ng/mL, with r>0.998. The intra- and inter-assay precisions were 1.4-9.2% and 5.1-8.2%, respectively, and the intra- and inter-assay accuracies were 93.9-98.6% and 92.7-95.3%, respectively. The absolute recoveries were 90.3% (1.5ng/mL), 97.0% (7.5ng/mL) and 92.1% (75.0ng/mL) for 4-HPR, and 99.1% for the internal standard (150ng/mL). The analytical method had excellent sensitivity using a small sample volume (30microL) with the lower limit of quantification (LLOQ) 0.5ng/mL. This method is robust and has been successfully employed in a pharmacokinetic study of 4-HPR in a mouse xenograft model of neuroblastoma.
Collapse
Affiliation(s)
- James I Lee
- Division of Clinical Pharmacology and Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104-4318, USA
| | | | | | | |
Collapse
|
15
|
Ohba T, Yamauch T, Higashiyama K, Takahashi N. Potent anticancer activities of novel aminophenol analogues against various cancer cell lines. Bioorg Med Chem 2007; 15:847-53. [PMID: 17092729 DOI: 10.1016/j.bmc.2006.10.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 10/17/2006] [Accepted: 10/20/2006] [Indexed: 10/24/2022]
Abstract
Novel aminophenol analogues were synthesized based on the structure of fenretinide (N-(4-hydroxyphenyl)retinamide, 5), which is a potent anticancer agent. Our findings showed that the anticancer activities of 5 were due to the side chain attached to the aminophenol moiety. A p-octylaminophenol (p-OAP) provided the most potent anticancer activity among p-alkylaminophenols examined. In this study, we investigated anticancer activities against various cancer cell lines by the new aminophenols, p-dodecylaminophenol (1), p-decylaminophenol (2), N-(4-hydroxyphenyl)dodecananamide (3), and N-(4-hydroxyphenyl)decananamide (4), which exhibits a side chain as long as 5. Cell growth of breast cancer (MCF-7, MCF-7/Adr(R)), prostate cancer (DU-145), and leukemia (HL60) cells was suppressed by 1 and 2 in a fashion dependent on the length of the alkyl chain attached to the aminophenol. In contrast, 3 and 4 were extremely weak. Compound 5 was less potent than 1. Cell growth of liver cancer (HepG2) was not markedly affected by these compounds. In addition, apoptosis of HL60 cells was induced by 1 and 2 in a chain length-dependent manner, but not by 3 and 4. Incorporation of compounds into HL60 cells was in the order 1>2=3>4. These results indicated that anticancer activities for 1 and 2 are correlated with their incorporation into cancer cells and their capability to induce apoptosis, but not for 3 and 4. Compound 1, a potent anticancer agent with potency strikingly greater than 5, may potentially be useful in clinic.
Collapse
Affiliation(s)
- Toshihiro Ohba
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | |
Collapse
|
16
|
Takahashi N, Ohba T, Yamauchi T, Higashiyama K. Antioxidant and anticancer activities of novel p-alkylaminophenols and p-acylaminophenols (aminophenol analogues). Bioorg Med Chem 2006; 14:6089-96. [PMID: 16725328 DOI: 10.1016/j.bmc.2006.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 05/01/2006] [Accepted: 05/02/2006] [Indexed: 11/18/2022]
Abstract
Novel compounds were designed based on fenretinide, N-(4-hydroxyphenyl)retinamide (2), which is a synthetic amide of all-trans-retinoic acid (1) that is a potent antioxidant and anticancer agent. Our recent findings indicated that antioxidant and anticancer activities were due to p-methylaminophenol moiety (8) in 2, and that p-octylaminophenol (7), which has an elongated alkyl chain, was more potent than 8. This finding lets us to investigate whether compounds containing alkyl or acyl chains linked to an aminophenol residue as long as 2 and 1, would show activities greater than 2. For this purpose, we prepared p-dodecanoylaminophenol (3), p-decanoylaminophenol (4), p-dodecylaminophenol (5), and p-decylaminophenol (6). The p-alkylaminophenols, 5 and 6, exhibited superoxide scavenging activities, but not p-acylaminophenols, 3 and 4. Elongation of the alkyl chain length reduced superoxide trapping capability (8>7>6>5). In contrast, lipid peroxidation in rat liver microsomes was reduced by 5 and 6 in dose-dependent manner. Compounds 3 and 4 were poor lipid peroxidation inhibitors, being approximately 400- to 1300-fold lower than 5 and 6. In addition, all compounds inhibited cell growth of human leukemia cell lines, HL60 and HL60R, in dose-dependent manners (5>6>3=4). The HL60R cell line is resistant against 1. Growth of both cell lines was suppressed by 5 and 6 in a fashion dependent on the length of the aminophenol alkyl chain, but not by 3 and 4. These results indicate that 5, a potent anticancer agent greater than 2, may potentially have clinical utility, and that its anticancer activity is correlated with inhibitory potency against lipid peroxidation, but not with superoxide scavenging activity.
Collapse
Affiliation(s)
- Noriko Takahashi
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Tokyo 142-8501, Japan.
| | | | | | | |
Collapse
|
17
|
Takahashi N, Honda T, Ohba T. Anticancer and superoxide scavenging activities of p-alkylaminophenols having various length alkyl chains. Bioorg Med Chem 2006; 14:409-17. [PMID: 16203149 DOI: 10.1016/j.bmc.2005.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2005] [Revised: 08/07/2005] [Accepted: 08/09/2005] [Indexed: 10/25/2022]
Abstract
A series of p-alkylaminophenols including 3, p-butylaminophenol; 4, p-hexylaminophenol; 5, p-octylaminophenol; and 6, N-(p-methoxybenzyl)aminophenol were synthesized based on the structure of fenretinide, N-(4-hydroxyphenyl)retinamide (1). This latter agent is a synthetic amide of all-trans-retinoic acid (RA), which is a cancer chemopreventive and antiproliferative agent. It was found that elongation of the alkyl chain length in these compounds increased antioxidative activity and inhibition of lipid peroxidation. These findings led us to investigate whether antiproliferative activity against cancer cells was effected by the length of alkyl chains linked to the aminophenol residue. All p-alkylaminophenols inhibited growth of HL60 and HL60R cells in a dose-dependent manners. The HL60R line is a resistant clone against RA. Growth of various cancer cell lines (HL60, HL60R, MCF-7, MCF-7/Adr(R), HepG2, and DU-145) was suppressed by p-alkylaminophenols in a fashion dependent on the aminophenol alkyl chain length (5>4>3>p-methylaminophenol (2)), with 5 being the most potent inhibitor of cell growth against HL60R, MCF-7/Adr(R), and DU-145 cells among p-alkylaminophenols tested, including 1. In particular, with the exception of compound 2, antiproliferative activity against DU-145 cells by these p-alkylaminophenols was greater than by 1. In HL60 cells, growth inhibition was associated with apoptosis. On the other hand, elongation of the alkyl chain length reduced superoxide trapping capability (2>3>4>5) in contrast to the effects on inhibition of lipid peroxidation. These results indicate that anticancer activity of p-alkylaminophenols correlated with the inhibitory activity of lipid peroxidation, but not with the superoxide scavenging activity.
Collapse
Affiliation(s)
- Noriko Takahashi
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | |
Collapse
|
18
|
Camerini T, Mariani L, De Palo G, Marubini E, Di Mauro MG, Decensi A, Costa A, Veronesi U. Safety of the synthetic retinoid fenretinide: long-term results from a controlled clinical trial for the prevention of contralateral breast cancer. J Clin Oncol 2001; 19:1664-70. [PMID: 11250995 DOI: 10.1200/jco.2001.19.6.1664] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To describe the pattern of occurrence of adverse events commonly arising during treatment with fenretinide, a synthetic retinoid under investigation for cancer prevention. PATIENTS AND METHODS The series includes 2,867 women accrued in a trial aimed at assessing the effect of fenretinide on the prevention of second breast malignancy. Women were randomly assigned to receive no treatment (1,435 patients) or 5-year fenretinide treatment (1,432 patients). In terms of disease recurrence in the breast, the trial showed a possible beneficial effect of the compound in premenopausal women, and an opposite trend in postmenopausal women. End points considered for safety assessment were the occurrence of diminished dark adaptation, dermatologic disorders, gastrointestinal symptoms, disorders of the ocular surface, and abnormal laboratory values. RESULTS The most common adverse events were diminished dark adaptation (cumulative incidence, 19.0%) and dermatologic disorders (18.6%). Less common events were gastrointestinal symptoms (13.0%) and disorders of the ocular surface (10.9%). In comparison, incidence figures in the control arm were 2.9% for diminished dark adaptation, 2.9% for dermatologic disorders, 5.4% for gastrointestinal symptoms, and 3.2% for disorders of the ocular surface. Symptoms occurring during fenretinide treatment tended to recover with time. No between-group difference was observed for the occurrence of laboratory data abnormalities. Overall, 63 (4.4%) treatment discontinuations were caused by adverse events. CONCLUSION Given the number of patients involved in the study and the prolonged intake of the drug, the experience on fenretinide tolerability can be considered sufficiently reassuring to justify further testing of the retinoid.
Collapse
|
19
|
Conley B, O'Shaughnessy J, Prindiville S, Lawrence J, Chow C, Jones E, Merino MJ, Kaiser-Kupfer MI, Caruso RC, Podgor M, Goldspiel B, Venzon D, Danforth D, Wu S, Noone M, Goldstein J, Cowan KH, Zujewski J. Pilot trial of the safety, tolerability, and retinoid levels of N-(4-hydroxyphenyl) retinamide in combination with tamoxifen in patients at high risk for developing invasive breast cancer. J Clin Oncol 2000; 18:275-83. [PMID: 10637240 DOI: 10.1200/jco.2000.18.2.275] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE N-(4-hydroxyphenyl) retinamide (¿4-HPR, Fenretinide; R.W. Johnson Pharmaceutical Research Institute, Springhouse, PA) and tamoxifen (TAM) have synergistic antitumor and chemopreventive activity against mammary cancer in preclinical studies. We performed a pilot study of this combination in women at high risk for developing breast cancer. PATIENTS AND METHODS Thirty-two women were treated with four cycles of 4-HPR, 200 mg orally (PO) for 25 days of each 28-day cycle, and TAM, 20 mg PO once daily for 23 months beginning after 1 month of 4-HPR alone. Tolerability, dark adaptometry, tissue biopsies, and retinoid plasma concentrations (Cp) were evaluated. RESULTS Symptomatic reversible nyctalopia developed in two patients (6%) on 4-HPR, but 16 (73%) of 22 patients had reversible changes in dark adaptation, which correlated with relative decrease in Cp retinol (P </=.01). Four patients stopped treatment for side effects, and 84% of patients had hot flashes. Other commonly reported (grade </= 2) reversible toxicities included skin and ocular dryness, fatigue, and mood changes. Serum high-density lipoprotein increased and cholesterol decreased from baseline to month 4. Baseline mean +/- SD Cp retinol was 708 +/- 280 ng/mL. Mean +/- SD Cp of 4-HPR, N-(4-methoxyphenyl) retinamide (4-MPR), and retinol after 1 month of 4-HPR were 0.34 +/- 0.21 micromol/L, 0.28 +/- 0.21 micromol/L, and 282 +/- 127 ng/mL, respectively. Mean retinoid Cps did not change after 3 months of 4-HPR + TAM. CONCLUSIONS TAM administration did not affect Cp 4-HPR or 4-MPR. Reversible nyctalopia correlated with relative decrease in Cp retinol but was not symptomatic for most patients. TAM + 4-HPR has acceptable tolerability for this high-risk cohort.
Collapse
Affiliation(s)
- B Conley
- Greenebaum Cancer Center, Divisions of Hematology and Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|